UNIVERSITY OF DERBY

AN INVESTIGATION INTO THE
REAL-TIME MANIPULATION AND
CONTROL OF THREE-
DIMENSIONAL SOUND FIELDS

Bruce Wiggins

Doctor of Philosophy 2004

Contents

Contents

(0] o] (=] 0| £ TSP ii
IS A T U SRR Vil
LiSt Of EQUALIONS ... e e et e e e e e e eeaannes XVii
LISE Of TADIES ...t e e e e eeeaeens Xix
ACKNOWIEAGEMENTSo XX
ADSITACT. ..o XXi
Chapter 1 - INtrodUCTIONue e 1
I A = 7- Tt (o | (o 11] o RO 1
1.2 The Research Problem..........ccooooiiiiiii e 4
1.3 Aims and Objectives of the Research.............ccccovvvviiiiiiiiiieiiin, 6
1.4 Structure of this REPOIt..........oiviiiiiiiiece e 8
Chapter 2 - Psychoacoustics and Spatial Sound Perception.............cccceuvvennn. 9
P00 R 01 1 g To [T £ o P 9
2.2 LateraliSationcooeeeeeee e 9
2.2.1 Testing the Lateralisation Parameters.ccccovvvvvviiiieeeeeeenn, 12
2.2.2 Analysis of the Lateralisation Parametersccccccceeeeeeeeeee. 19

Y22GS Yo 10 (o I o Tor= | 7= 11 (] o 24
23.1 ROOM LOCAliSAtION ..o 24
2.3.2 Height and Distance Perception..........cccccccceeieeieeieeiviiiiieneeeee, 29

2.4 SUIMIMATY ..ttt e e e e e e et e e e e et e e e e e et e e e eenba e eeeennnns 32
Chapter 3 - Surround SOUNd SYSEMSuuuuriiiiiiiiiiiiiiiiiiiiieiieiieeeeeeeeeees 34
3.1 INrOAUCTION e 34
3.2 Historic Review of Surround Sound Techniques and Theory 34
3.2.1 Bell Labs’ Early Spaced Microphone Technique 34
3.2.2 Blumlein’s Binaural Reproduction System..............cccoeeeiiiiinnne 36
3.2.3 Stereo Spaced Microphone Techniques...........ccccvvvvvviieeeeeene, 41
3.2.4 Pan-potted StEre0ccovvviiiiiiiiii e 43
3.2.5 Enhanced Stere0.........oooooiiiiiiii e 45
3.2.6 DOIDY SEEIEO....co oo 46
3.2.7 QUAArapnONICSuueie e 48

3.3 Review of Present Surround Sound Techniques............cccovvvvunnnn... 49

3.3.1 AMDBDISONICS ..o 49

3.3.2 Wavefield SYynthesiScoovvuiiiiiii e 72
3.3.3 Vector Based Amplitude Panning..........cccccceoveeeieiiiiiiiiicieneeeee, 75
3.3.4 Two Channel, Binaural, Surround Soundeiiineeennee. 78
3.3.5 Transaural Surround SOUNdcooovviiiiiiiiiiiiiiieeeee 83
3.3.6 AMDIOPNONICScvviiiiie e 94
34 SUMIMAIY Lottt e e e e e e e et e e et e e eaaneeeraneaes 96
Chapter 4 - Development of a Hierarchical Surround Sound Format............. 99
o R | 1 0T [Tod 1 o] o SRR 99
4.2 DescCription Of SYSteM.......ccovviiiiiiiie e 99
4.3 B-Format to Binaural Reproductionccccoeeeeiiiiiiiiiiiiiiieeeeeee, 103
N O] o o] 1] 0] o - ST 110
Chapter 5 - Surround Sound Optimisation Techniques.................cevvveveenenee. 111
5.1 INrOAUCTION .. 111
5.2 The Analysis of Multi-channel Sound Reproduction Algorithms Using
HRTEF DAtal.....ieiiiiiie ettt e e 113
5.2.1 The Analysis of Surround Sound Systemsccceeeeeeeeeennn. 113
5.2.2 Analysis Using HRTF Data............cccoevvvvvviiiiiiee e 113
5.2.3 LiStENING TESES vvviiiie e 114
5.24 HRTE SIMUIAtIONoiii e 118
5.25 Impulse Response ANAlYSIScccooiiiiiiiiiiiees 120
5.2.6 SUMMAIY .ot e e e e e e e a e e ea e e enaneees 127
5.3 Optimisation of the Ambisonics systemcccceeeeeeeeiiiiiiiiiceennn. 133
5.3.1 INErOAUCTION ... 133
5.3.2 Irregular Ambisonic Decodingccccoeeeiiirieiiiiiiees 135
5.3.3 DTt o Lo (=T gy £ (= o 138
5.3.4 The Heuristic Search Methodsccccceii, 142
5.3.5 Validation of the Energy and Velocity Vector............ccccccuenn... 151
5.3.6 HRTF Decoding Technique — Low Frequency..............ccccc..... 157
5.3.7 HRTF Decoding Technique — High Frequency....................... 159
5.3.8 LiSteniNg TSt ...ooviiiii i 161
5.4 The Optimisation of Binaural and Transaural Surround Sound
S S IMIS . it 180
54.1 INEFOAUCTION ...ttt 180
5.4.2 INVErse FIlterNgvuiiiii e 180

5.4.3 Inverse Filtering of HR.T.F. Data.............cccoovviiiieeiieeeeceen, 186
5.4.4 Inverse Filtering of H.R.T.F. Data to Improve Crosstalk

Cancellation Filters. ... 189
TR T O] o Td 1153 [£ 196
5.5.1 Ambisonic Optimisations Using Heuristic Search Methods197
5.5.2 Further Work for Ambisonic Decoder Optimisation................. 199
5.5.3 Binaural and Transaural Optimisations Using Inverse Filtering. ...
... 200
5.5.4 Further Work for Binaural and Transaural Optimisations........ 200
5.5.5 Conversion of Ambisonics to Binaural to Transaural
(=T o] oo 18 o 1 o] o U UPPRT 201
Chapter 6 - Implementation of a Hierarchical Surround Sound System....... 203
(G 70 A [o1 oo [8{ox 1 o] o N 203
6.1.1 Digital Signal Processing Platformcccooooeeeiiiiiiiiieennn. 204
6.1.2 Host Signal Processing Platform (home computer)................ 206
6.1.3 Hybrid SyStem ... 207
6.2 Hierarchical Surround Sound System — Implementation 208
6.2.1 System To Be Implemented.ccooovririiiiieecciieee 208
6.2.2 Fast CONVOIULIONiiiiiiiiiiiiie e 210
6.2.3 Decoding AIgOrithmscooooiii e 214
6.3 Implementation - Platform SpecifiCSccccevvvvviiiiiiiieee e, 226
6.4 Example AppPliCationiiiiee i 234
6.5 CONCIUSIONS ...ouiiiiiie et 242
Chapter 7 - CONCIUSIONSuuuiiiiiiiiiiiiiiiiiiiiei bbb 244
4% S [o1 o o [8{ox 1 o] o N 244
7.2 Ambisonics Algorithm development..............ccoovvviiiiiiieie e, 245
7.2.1 FUrther WOrk ... 251
7.3 Binaural and Transaural Algorithm Developmentccccccueee. 251
7.3.1 B-format to Binaural Conversioncoooeeeeiieiiiinnieesesennns 251
7.3.2 Binaural to Two Speaker Transauralcccccoeeevvviiiiinnnnnn.. 253
7.3.3 Binaural to Four Speaker Transaural............cccccooeeeviiiiiiinnnnnn. 253
7.3.4 FUINEr WOTK ... 256
Chapter 8 - REfEIENCES.coi i 258

(@ gF=T o] (=T g I Y o] o =1 g o [)G 269

9.1 MAtlaD COE ..o 269

9.1.1 Matlab Code Used to Show Phase differences created in
BIUMIEIN'S STEIOuveeie e 269
9.1.2 Matlab Code Used to Demonstrate Simple Blumlein Spatial

[0 [U =1 57= 11 o] o P 270
9.1.3 Matlab Code Used To Plot Spherical Harmonics 271
9.1.4 Code used to plot A-format capsule responses (in 2D) using
OVEISAMPIING. .ooiiiiiiiiiiiiii e 273

9.15 Code Used to Create Free Field Crosstalk Cancellation Filters ...

9.1.6 Code Used to Create Crosstalk Cancellation Filters Using HRTF
Data and Inverse Filtering TEChNIQUESccooiiiiiii s 276
9.1.7 Matlab Code Used in FregDip Function for the Generation of

Crosstalk Cancellation FIlteISo 278
9.1.8 Matlab Code Used To Generate Inverse Filterscc.......... 279
9.2 WINAOWS CHF COOC ..ot 281

9.2.1 Code Used for Heuristic Ambisonic Decoder Optimisations...281
9.2.2 Windows C++ Code used in the Real-Time Audio System
Software309

List of Figures

Figure 1.1

Figure 2.1

Figure 2.2
Figure 2.3

Figure 2.4

Figure 2.5
Figure 2.6

Figure 2.7
Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14
Figure 2.15

Speaker configuration developed in the multi-channel surround
SOUNd [2D0ratory........ccvvviiii i e 7
The two paths, ‘a’ and ‘b’, that sound must travel from a source
at 45° to the left of a listener, to arrive at the ears. 10
Increasing I.L.D. with frequency and angle of incidence........... 12

Simulink models showing tests for the three localisation cues

provided by LLL.D. and L. T.D........ccovrriiiiiiie e, 13
Relative phase shift for a 1 kHz sine wave delayed by 0.00025

anNd 0.00125 SECONASuvuuuiiieeeeiieeeiiiiies e e e e e et e e e e e e eeeenes 15
An 8 kHz tone with a low frequency attack envelope 16

Cone of Confusion — Sources with same I.L.D. and I.T.D. are
ShOWN @S grey CIrCIES. ...uuuiiiie e 16
THE PINN@ ... 18
Frequency and phase response at the right ear when subjected
to an impulse at 0°,45° and 90° to the right of the listener......... 19
The relationship between source incidence angle, frequency and
amplitude difference between the two ears.cccoeeeevvveeennnes 20
Relationship between source incidence angle, frequency and
the phase difference between the two ears.c.cceceeevveennnnns 21
Relationship between source incidence angle, frequency and
the time difference (in samples) between the two ears............. 22
Minimum audible angle between successive tones as a function
of frequency and position of source (data taken from Gulick
(1989)). ettt 23
Simple example of a source listened to in a room. Direct, four
1% order reflections and one 2" order reflection shown
(horizontal ONIY).ccoiiiiic e 25
Impulse response of an acoustically treated listening room.26
Binaural impulse response from a source at 30° to the left of the
listener. Dotted lines indicate some discrete reflections arriving
AL IEft @I .oiiiiiiiiiiiiiiiiiee 28

Figure 2.16

Figure 2.17

Figure 2.18
Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7
Figure 3.8

Figure 3.9
Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Relationship between source elevation angle, frequency and the

amplitude at an ear of a listener (source is at an azimuth of 0°).

A graph showing the direct sound and early reflections of two
SOUICES N @ FOOIM. .eiiiiiiiiiiiiiiieiieeeee e et e e et e et et e et e e e e e e e e e eeeeeees 31
A near and far source impinging on the head........................... 32
Graphical depiction of early Bell Labs experiments. Infinite
number of microphones and speakers model................ccco...... 35
Early Bell Labs experiment. Limited number of microphones
and speakers Model.ccooviiiiiiiiiiiii e 36
Standard “stereo triangle” with the speakers at +/-30° to the
listener (x denotes the crosstalk path).........ccccccovvnin. 37
Low frequency simulation of a source recorded in Blumlein
Stereo and replayed over a pair of loudspeakers. The source is
to the left Of CEeNMIe........uiiieie e 38
Polar pickup patterns for Blumlein Stereo technique............... 39
Graph showing the pick up patterns of the left speaker’s feed
after spatial equalisation.............cccccceeiiii i, 40
ORTF near-coincident microphone technique. 42
Typical Decca Tree microphone arrangement (using omni-
directional CapSUIES).........uuiiiieeiiieieeiie e e 43
A stereo panning law based on Blumlein stereo....................... 44
Simplified block diagram of the Dolby Stereo encode/decode
PIOCESS ... ettt ettt ettt 48
Plot of microphone responses derived from two figure of eight
MICTOPNONES. ...eetiiie et e e e e e e e e e enanes 51
The four microphone pickup patterns needed to record first
order Ambisonics (note, red represents in-phase, and blue
represents out-of-phase pickup)..........cceeeiiiiiiiiiiieiiicicie e, 52
Graphical representation of the variable polar patterns available
using first order Ambisonics (in 2 dimensions, in this case).54
Velocity and Energy Vector plot of an eight-speaker array using

virtual cardioids (low and high frequency directivity of d=1).57

Figure 3.15

Figure 3.16

Figure 3.17

Figure 3.18
Figure 3.19

Figure 3.20

Figure 3.21

Figure 3.22

Figure 3.23

Figure 3.24

Figure 3.25

Figure 3.26

Virtual microphone responses that maximise the energy and
velocity vector responses for an eight speaker rig (shown at 0°
and 1800 fOr CIAMLY).oveeeeeeeieceeeeseeee et en e 58
Velocity and Energy Vector plot of an eight speaker Ambisonic

decode using the low and high frequency polar patterns shown

T o T L= 700 TSP 58
Energy and velocity vector analysis of an irregular speaker

decode optimised by Gerzon & Barton (1992).............eevveveeeee. 60
Four microphone capsules in a tetrahedral arrangement. 61

B-Format spherical harmonics derived from the four cardioid
capsules of an A-format microphone (assuming perfect
coincidence). Red represents in-phase and blue represents out-
Of-phase PICKUP.cooeereeeee e e 62
Simulated frequency responses of a two-dimensional, multi-
capsule A-format to B-format processing using a capsule
spacing radius Of 1.2CM.......ceuviiiiiiiiiiiiiiieiiiieeeee e 63
Effect of B-format zoom parameter on W, X, and Y signals.65
Four different decodes of a point source polar patterns of 1%,

2" 3 & 4™ order systems (using virtual cardioid pattern as a 1%
order reference and equal weightings of each order). Calculated
using formula based on equation (3.4), using an azimuth of 180°
and an elevation of 0° and a directivity factor (d) of 1............... 67
An infinite speaker decoding of a 1%, 2", 3" & 4™ order
Ambisonic source at 180°. The decoder’s virtual microphone
pattern for each order is shown in Figure 3.22.ccccceeeeeee. 68
Graph of the speaker outputs for a 1% and 2" order signal, using
four speakers (last point is a repeat of the first, i.e. 0°/360°) and
a source position 0f 180°.ccocveveveeereeeeeeee e 69
Energy and Velocity Vector Analysis of a 4" Order Ambisonic
decoder for use with the ITU irregular speaker array, as
proposed by Craven (2003).ccoviiiiiiiiiiinnee e 70
Virtual microphone patterns used for the irregular Ambisonic

decoder as shown in Figure 3.25.ccccoovieiiiiiiiiiiiiiiee e, 70

Figure 3.27

Figure 3.28
Figure 3.29

Figure 3.30

Figure 3.31

Figure 3.32

Figure 3.33

Figure 3.34

Figure 3.35

Figure 3.36

Figure 3.37

Figure 3.38

Figure 3.39

Figure 3.40

Figure 3.41

Figure 3.42

Figure 3.43
Figure 4.1

The effect that the angle of radiation has on the synthesis of a

plane wave using Wavefield Synthesis............cccccccvvieiiinnnenn, 74
Graphical representation of the V.B.A.P. algorithm. 76
Simulation of a V.B.A.P. decode. Red squares — speakers, Blue
pentagram — Source, Red lines — speaker gains. 77
Pair of HRTFs taken from a KEMAR dummy head from an angle
of 45° to the left and a distance of 1 metre from the centre of the
head. Green — Left Ear, Blue — Right Ear.ccccccceeeeeeeeenne. 79
Example of a binaural synthesis problem.cccccvvvvviinnn.. 81

Graphical representation of the crosstalk cancellation problem.

... 84
Simulation of Figure 3.32 using the left loudspeaker to cancel
the first sound arriving at MiC2.........ccooveeeviiiiiiiiiiiii e 85
Example of free-field crosstalk cancellation filters and an
example implementation block diagram.cccooeeeiiiiiiiiinnnn, 85

Frequency response of free field crosstalk cancellation filters..86
The Crosstalk cancellation problem, with responses shown. ...86
Transfer functions c; and c; for a speaker pair placed at +/- 30°,
and their corresponding crosstalk cancelling filters. 88
Frequency response of the two speaker to ear transfer functions
(c1 & ¢2) and the two crosstalk cancellation filters (hy & hy) given
T T U =T TR RSP 89
The regularisation parameter (left figure) and its effect on the
frequency response of the crosstalk cancellation filters h; & h;
(e |18 e U T =) TSP 90
Simulation of crosstalk cancellation using a unit pulse from the
left channel both with and without frequency dependent
regularisation applied (as in Figure 3.39).ccccceviiiiiiiinnnnn. 91
Example of the effect of changing the angular separation of a
pair of speakers used for crosstalk cancellation. 93

Example of the effect of changing the angular separation of the

speakers using HRTF data.ccoovvvvviiiiiiiiiiiiiiiiiiiiiiieeeeeee 94
Example Ambiophonics layout.coevviiiiiiieiieeeee e, 95
Ideal surround sound encoding/decoding scheme. 100

Figure 4.2
Figure 4.3

Figure 4.4
Figure 4.5

Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

Figure 5.5

Figure 5.6
Figure 5.7

Figure 5.8

Figure 5.9

Standard speaker layout as specified in the ITU standard.101
Virtual Microphone Configuration for Simple Ambisonic
DT ot o Lo [0o U TTR 103
Horizontal B-Format to binaural conversion process............... 103
Example W, X and Y HRTFs Assuming a Symmetrical Room.

... 105
Ideal, 4-Speaker, Ambisonic Layout...........ccccccceiiiiiiiiiiiiennnnn. 106
Ideal Double Crosstalk Cancellation Speaker Layouit............. 106
Double Crosstalk Cancellation System..........cccccceevvvveviiinnnnnn.. 107

Perceived localisation hemisphere when replaying stereophonic
material over a crosstalk cancelled speaker pair.................... 107
Example of Anechoic and non-Anechoic HRTFs at a position of

307 from the lISTENET.cvcveeieieeeec et 108
Spherical Harmonics up to the 2™ Order...........ccccveveeeeveenn.n.. 109
2D polar graph showing an example of a 1% and 2" order virtual
pickup pattern (0° point source decoded to a 360 speaker array).

... 110
Speaker Arrangement of Multi-channel Sound Research Lab.
... 115
Screen shot of two Simulink models used in the listening tests.
... 116
Screen shot of listening test GUL.cccooeeeieiiiiiiiiiiiiieeeee, 116
Filters used for listening test signals.cccooveeeeeiiieiiiiinnnnn. 117
Figure indicating the layout of the listening room given to the
testees as a guide to estimating source position. 118
The Ambisonic to binaural conversion process. 119

Example left and right HRTFs for a real and virtual source (1st
Order Ambisonics) at 45° clockwise from centre front. 120
The average amplitude and time differences between the ears
for low, mid and high frequency ranges.............cccccceeeeeivviinnnn. 123
The difference in pinna amplitude filtering of a real source and
1% and 2" order Ambisonics (eight speaker) when compared to

A TCAI SOUICE. ... e et 124

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14

Figure 5.15

Figure 5.16

Figure 5.17

Figure 5.18

Figure 5.19

Figure 5.20

Figure 5.21

Figure 5.22

Figure 5.23

Figure 5.24

Listening Test results and estimated source localisation for 1°

Order AMDISONICSccvviiiiiiiiiiiiiiieieeeieeeeeeeeeeeeeee e 128
Listening Test results and estimated source localisation for 2"
Order AMDISONICScoovviiiiiiiee e e e e e eeeees 129
Listening Test results and estimated source localisation for five
speaker 1% Order AMbISONICSc.coveveeeeeeeeee e, 130
Listening test results for Amplitude Panned five speaker system.
... 131
Average Time and Frequency Localisation Estimate for 1% Order
AMDISONICS. .. 131
Average Time and Frequency Localisation Estimate for 2"
Order AMDISONICS.covvviiiiiiiee e e e e e eeeees 132
Average Time and Frequency Localisation Estimate for five
speaker 1% Order AMbISONICS.coveveeeeeeeeee e, 132

RT60 Measurement of the University of Derby’s multi-channel
sound research laboratory, shown in */3 octave bands............ 133
Recommended loudspeaker layout, as specified by the ITU..134
Virtual microphone polar plots that bring the vector lengths in
Equation (5.3) as close to unity as possible (as shown in Figure
5.21), for a 1st order, eight Speaker rig............cceeeeeeeeeeeeeeennne. 136
Velocity and energy localisation vectors. Magnitude plotted over
360° and angle plotted at five discrete values. Inner circle
represents energy vector, outer circle represents velocity vector.
Using virtual cardioids.cooooiiiiiiiiii 136
Velocity and energy localisation vectors. Magnitude plotted over
360° and angle plotted at five discrete values. Inner circle
represents energy vector, outer circle represents velocity vector.
Using virtual patterns from Figure 5.19...........ccoooiiiiiiiiiiiiinns 137
Energy and velocity vector response of an ITU 5-speaker
system, using virtual cardioids.cccoeeeeeeiiiiiiiiiic e 138
Polar patterns of the four B-format signals used in 1st order
AMDBISONICS. ... 139
A simple Tabu Search application.cccooeeeeeeiiiiiiiiiennn. 146

Figure 5.25

Figure 5.26

Figure 5.27

Figure 5.28

Figure 5.29

Figure 5.30

Figure 5.31

Figure 5.32

Figure 5.33

Figure 5.34

Figure 5.35
Figure 5.36

Figure 5.37

Figure 5.38

Figure 5.39
Figure 5.40

Graphical plot of the Gerzon/Barton coefficients published in the
Vienna paper and the Wiggins coefficients derived using a Tabu
search algorithm. Encoded/decoded direction angles shown are
0°, 12.25°, 22.5° 45°, 90°, 135% and 180°.ccceveveverennee, 146
The transition of the eight coefficients in a typical low frequency
Tabu search run (2000 iterations). The square markers indicate
the three most accurate sets of decoder coefficients (low
FIENESS). ettt 147
The virtual microphone patterns obtained from the three
optimum solutions indicated by the squares in figure 5.25.147
Energy and Velocity Vector Analysis of a 4" Order Ambisonic
decoder for use with the ITU irregular speaker array, as
proposed by Craven (2003)........ccoovvireriiiiiieeeeeeeeeere e e 148
Virtual microphone patterns used for the irregular Ambisonic
decoder as shown in Figure 5.28.cccooiiiiiiiiiiiiiiiiiiieeeeee 148
Screenshot of the 4™ Order Ambisonic Decoder Optimisation
using a Tabu Search Algorithm application. 149
Graph showing polar pattern and velocity/energy vector analysis
of a 4™ order decoder optimised for the 5 speaker ITU array
using a tabu search algorithm.ccco 150
A decoder optimised for the ITU speaker standard. 151
A graph showing real sources and high and low frequency
decoded sources time and level differences............ccccevvveeeeee. 153
Graphical representation of two low/high frequency Ambisonic

(0 [=ToloTo (=T £ T PP 154
HRTF simulation of two sets of decoder............ccoooeiiiiiiiiinnnns 155
HRTF Simulation of head movement using two sets of decoder
COETTICIENTS. .ovieiiee e e e eeeees 156
Comparison between best velocity vector (top) and a HRTF set
of coefficients (DOtOM).ovviieiiiii e, 158

Polar and velocity vector analysis of decoder derived from HRTF

(0 = - VR RSRPPRRTN 158
Decoder 1 — SP451 Default Settings........ccccevvveeeeveveeeviiinnnn. 164
Decoder 2 — HRTF Optimised Decoder.............cccevvvvevvvnnnnnnn.. 165

Figure 5.41
Figure 5.42
Figure 5.43
Figure 5.44

Figure 5.45

Figure 5.46

Figure 5.47

Figure 5.48

Figure 5.49

Figure 5.50

Figure 5.51

Figure 5.52
Figure 5.53

Figure 5.54

Figure 5.55

Figure 5.56

Figure 5.57

Decoder 3 — HRTF Optimised Decoder.............ccevvvvvvvvnnnnnnn.. 165
Decoder 4 — Velocity and Energy Vector Optimised Decoder 167
Decoder 5 - Velocity and Energy Vector Optimised Decoder.167
Comparison of low frequency phase and high frequency
amplitude differences between the ears of a centrally seated
listener using the 5 Ambisonic decoders detailed above........ 168
Graphs showing absolute error of a decoder’s output (phase and
level differences between the ears of a centrally seated listener)
compared to a real source, with respect to head movement. .169
Graph Showing the Average Time and Amplitude Difference

Error with Respect to A Centrally Seated Listener’'s Head

(@ 41T o] =1 1] 1RSSR 170
Sheet given to listening test candidates to indicate direction and

Size Of SOUNT SOUICE......ccvviiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeee e 172
Screenshot of Matlab Listening Test GULI.cccceeeiieneenee. 173

Graphs showing the results of the panned source part of the
listening test for each subject. ‘Actual’ shows the correct
position, D1 — D5 represent decoders 1 —5.cccccceeeeeeeene. 174
Graph showing mean absolute perceived localisation error with
mean source size, against decoder number...........ccccoeeeeeen... 175
Graph showing the mean, absolute, localisation error per
decoder taking all three subjects into account........................ 176
Inverse filtering using the equation shown in Equation (5.13) 182
Frequency response of the original and inverse filters using an

8192 POINt F.F.T.. oottt 183
Typical envelope of an inverse filter and the envelope of the filter
Shown iN FIgUIe 5.52. ... 183

Two F.1.R. filters containing identical samples, but the left filter’s
envelope has been transformed. ... 184
The convolution of the original filter and its inverse (both

transformed and non-transformed versions from Figure 5.55).

A frequency and time domain response of the filter after a

hamming window has been applied..............ccoovvvviiiiieen e, 186

Figure 5.58
Figure 5.59

Figure 5.60

Figure 5.61

Figure 5.62

Figure 5.63

Figure 5.64

Figure 5.65

Figure 5.66

Figure 5.67

Figure 5.68

Figure 5.69

Figure 5.70

Figure 5.71

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4

The response of a 1024-point windowed inverse filter............ 186
The 1024-point inverse filters using a 90° and a 0°, near ear,
HRTF response as the signal to be inverted. 187
Comparison of a HRTF data set (near ear only) before (right
hand side) and after (left hand side) inverse filtering has been
applied, using the 90°, near ear, response as the reference. .188
System to be matrix inverted.cccoeiveeiiiiiiiiii 189
HRTF responses for the ipsilateral and contralateral ear
responses to the system shown in Figure 5.61. 190
Crosstalk cancellation filters derived using the near and far ear
responses from Figure 5.62..........ccooviiiiiiiiiiiieciiccee e 190
Inverse filter response using the near ear H.R.T.F. from Figure
ST 77U EERRT 191
Near and far ear responses after the application of the inverse
filter shown in Figure 5.64 (frequency domain scaling identical to
that Of FIQUIe 5.62).uuuiiiiiiiiiiiiiiiiiii e 192
Crosstalk cancellation filters derived using the near and far ear

responses from Figure 5.65 (frequency domain scaling identical

to that of FIQUIe 5.63).cooiiiiiiiiiiiie e 192
Filter representing inverse of hl, in both the time and frequency
(0 (o] 0 = 1| o PO PP 193
Crosstalk cancellation filters after convolution with the inverse
filter shown in figure 5.51.......ccooiiiiii e 194
The optimised crosstalk cancellation system.......................... 194

Left Ear (blue) and Right Ear (red) responses to a single impulse
injected into the left channel of double and single inverted cross

talk cancellation SYStemsS.coouviiiiiiiiiiieee e 195
Left Ear (blue) and Right Ear (red) responses to a single impulse

injected into the left channel of a crosstalk cancellation system.

... 196
A Von Neumann ArchiteCture.ccooooooiiiiiiiiii 205
Diagram of a Harvard Architecture ... 206

The hierarchical surround sound system to be implemented. 209

Time domain convolution function.cooeee e 211

Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 7.1
Figure 7.2
Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Fast convolution algorithm..............cccciiiiii 212
The regular array decoding problem...........cccccceeiieiiiiiiiiininnn, 216
A two-speaker transaural reproduction system. 223
Bank of HRTFs used for a four-channel binauralisation of an

AMDBISONIC SIGNAL.........iiiiiiiieec e 224
Block digram of a four-speaker crosstalk cancellation system.
... 224
Waveform audio block diagram — Wave out.cccceennnee 227
Simulink model used to measure inter-device delays............. 231
Graphical plot of the output from 4 audio devices using the
Waveform audio APL.........oooiiii e 232
Block Diagram of Generic ‘pass-through’ Audio Template Class
... 233
Screen shot of simple audio processing application GUI........ 240

Block diagram of the applications audio processing function. 241
Recommended loudspeaker layout, as specified by the ITU..246
Low frequency (in red) and high frequency (in green) analysis of

an optimised Ambisonic decode for the ITU five speaker layout.

A graph showing a real source’s (in red) and a low frequency
decoded source’s (in blue) inter aural time differences. 247
HRTF Simulation of head movement using two sets of decoder
COBTIICIENTS. .. e 248
Energy and Velocity vector analysis of two 4" order, frequency
independent decoders for an ITU five speaker array. The
proposed Tabu search’s optimal performance with respect to
low frequency vector length and high/low frequency matching of
source position can be seen clearly...............oeveeiiiiiiiiiiiiinnnee. 250
B-format HRTF filters used for conversion from B-format to
binaural deCoder. ... 252
B-format HRTF filters used for conversion from B-format to
binaural deCOder.........coovviiiie e 254

List of Equations

(2.1)
(2.2)

(3.1)
(3.2)

(3.3)
(3.4)

(3.5)
(3.6)
(3.7)
(3.8)
(3.9)
(3.10)
(3.11)

(3.12)
(3.13)
(3.14)
(3.15)

(4.2)
(4.2)
(4.3)
(4.4)

(5.1)
(5.2)
(5.3)
(5.4)

Diameter of a sphere comparable to the human head.............. 10
The frequency corresponding to the wavelength equal to the
diameter of the head.............uuvveiiiiiiiiiiiiiiiiiiieeeee 11
Stereo, pairwise panning equatioNS............ccoevvvevrviniiieeeeeeeeeennns 43
Equation showing how to calculate a figure of eight response
pointing in any direction from two perpendicular figure of eight
(SRS 010 1 IST= S U PPPPN 50
B-Format encoding equationsccooeeviiviiiiiinee e 52
B-Format decoding equations with alterable pattern parameter

... 53
Example B-Format encode.........ccoooeevviiieiiiiiiiiee e 54
Example B-Format decode to a single speaker.............cccccen.... 55
Velocity and Energy Vector EQUAationscccoeeeeevvvveeviiinnnnnnn. 56
A-Format to B-Format conversion equations.................cc.ceuu... 62
B-format rotation and zoom equations............c..ccceeevvvviiiinnnnnnnn. 65
2" order spherical harmMONICS.............coeeeeeeeeeeeeeeeeeeeeeee e 66
Calculation of the spatial aliasing frequency for wavefield

SYNENESIS ..o 73
Cross-talk cancellation problemccoooeeeiiiiiiiiiiiee e, 87
Derivation of cross-talk cancellation filters.............ccccvvviiinnn. 87
The cross-talk cancellation filters, hy and hy.......ovvvvviiiiiiiinnneee, 88

The cross-talk cancellation filters, hy and h, with the frequency

dependent regularisation parameter............cccccccveiieeeeeeeeeeeennnnns 89
Ambisonic decoding equation.............ccoeeuvieiiiiieneeeeeeeiin 103
Calculation of Ambisonic to binaural HRTF filters 104

Ambisonic to binaural decoding equations - general case......104

Ambisonic to binaural decoding equations - left/right symmetry

ASSUMEA ...ttt ettt e e e e e e e e e e e e e e e eeeenes 104
Calculation of Ambisonic to binaural HRTF filters 119
Ambisonic encoding equationS...........cccceevvvviiiieeeeeeeeeeinn 120
Energy and velocity vector equations...........cccceeeeeevveviiiinnnnnn.. 135
Horizontal only Ambisonic encoding equations 139

(5.5)
(5.6)
(5.7)

(5.8)
(5.9)
(5.10)
(5.11)
(5.12)
(5.13)
(6.1)
(6.2)

(6.3)
(6.4)

Gerzon's forward dominance equation.............cccccceeeeeeeeeeeene. 140
Generalised five speaker Ambisonic decoder 140

Magnitude, angle and perceived volume equations for the

velocity and energy VECIOIScoooeeeeeeeiieeeeeeeeeeeeeeeeeeeeeeeeee 141
Volume, magnitude and angle fitness equations..................... 144
Low and high frequency fithess equations...............cccccvvvunnn... 144
HRTF fitneSs equation.............uuuiiiiiieiiiiiiiicie e 157
HRTF head turning fitness equation.................oooeeeeeeeieieeenns 160
The inverse filtering problem - time domain................ccc.o...... 181
The inverse filtering problem - frequency domain................... 181
Convolution in the time domaincccooeeieiiiiiiiiiiii e 210

Equation relating length of FFT, length of impulse response and
length of signal for an overlap-add fast convolution function..213
Ambisonic decoding equation.............ccoeuuviiiiiieeeeeeeeei e 218

Second order Ambisonic to Binaural decoding equation........ 222

List of Tables

Table 2.1

Table 3.1
Table 5.1

Table 6.1
Table 6.2
Table 6.3

Table 6.4
Table 6.5

Table 6.6

Table 6.7

Table 6.8
Table 6.9
Table 6.10
Table 6.11

Table 6.12
Table 6.13

Table 6.14

Table 6.15
Table 6.16
Table 6.17
Table 6.18
Table 6.19

Table indicating a narrow band source’s perceived position in
the median plane, irrespective of actual source position. 18
SoundField Microphone Capsule Orientation............................ 61
Table showing decoder preference when listening to a
reverberant, pre-recorded piece of MUSIC............cceeeeeeeeneennn. 177
Matlab code used for the fast convolution of two wave files...214
AMDIE STTUCTUIE. .. 215
Function used to calculate a speaker's Cartesian co-ordinates
which are used in the Ambisonic decoding equations. 217
AmbISONIC Cross-over fUNCHON.........ccooiii 219

Function used to decode an Ambisonic signal to a regular array.

... 220
Function used to decode an Ambisonic signal to an irregular
BUITAY . ceetie ettt ettt e et e e e e e e e nr e ae 221
Function used to decode a horizontal only, 1% order, Ambisonic
signal to headphones.ccoooi i 223
Code used for 2 and 4 speaker transaural reproduction......... 225
WaVEHDR SITUCTUIE.......cccveiiieiei e 228
WaveformatEX StruCtUre.oouvvviiiiieieieiiieiiiee e 229

Initialisation code used to set up and start an output wave

[0 C o USSR 230
Closing a Wave DEVICEccoveeeeeiiiiiiiiiie e 232
Example implementation of the ProcessAudio function for a
Stereo APPlICALION.ooeiieiiiee e 234
C++ Class definition file for an allpass based shelving
equalisation UNIt.oouuviiiiie e e e e 235
C++ class definition file for the fast convolution algorithm...... 236
Constructor for the FastFilter class.........ccooovviiiiiiiiiiiiin, 237
Matlab function used to write FIR coefficients to afile............ 237
C++ code used to read in the FIR coefficients from a file. 238

Decoding switch statement in the example application 242

Acknowledgements

Many thanks must go to my supervisors, lain Paterson-Stephens and Richard
Thorn for their greatly appreciated input throughout this research. | thank
Stuart Berry and Val Lowndes for introducing me to the world of heuristic
search methods and Peter Lennox, Peter Schillebeeckx and Howard Stratton
who have been constant sources of opinion, knowledge and wisdom on
various areas of my project. Finally, | must thank Rachel, for keeping my feet
on the ground, keeping me sane, and putting up with the, seemingly,

everlasting write-up period.

Abstract

This thesis describes a system that can be used for the decoding of a three
dimensional audio recording over headphones or two, or more, speakers. A
literature review of psychoacoustics and a review (both historical and current)
of surround sound systems is carried out. The need for a system which is
platform independent is discussed, and the proposal for a system based on
an amalgamation of Ambisonics, binaural and transaural reproduction
schemes is given. In order for this system to function optimally, each of the
three systems rely on providing the listener with the relevant psychoacoustic
cues. The conversion from a five speaker ITU array to binaural decode is well
documented but pair-wise panning algorithms will not produce the correct
lateralisation parameters at the ears of a centrally seated listener. Although
Ambisonics has been well researched, no one has, as yet, produced a
psychoacoustically optimised decoder for the standard irregular five speaker
array as specified by the ITU as the original theory, as proposed by Gerzon
and Barton (1992) was produced (known as a Vienna decoder), and example
solutions given, before the standard had been decided on. In this work, the
original work by Gerzon and Barton (1992) is analysed, and shown to be
suboptimal, showing a high/low frequency decoder mismatch due to the
method of solving the set of non-linear simultaneous equations. A method,
based on the Tabu search algorithm, is applied to the Vienna decoder
problem and is shown to provide superior results to those shown by Gerzon
and Barton (1992) and is capable of producing multiple solutions to the
Vienna decoder problem. During the write up of this report Craven (2003) has
shown how 4" order circular harmonics (as used in Ambisonics) can be used
to create a frequency independent panning law for the five speaker ITU array,
and this report also shows how the Tabu search algorithm can be used to
optimise these decoders further. A new method is then demonstrated using
the Tabu search algorithm coupled with lateralisation parameters extracted
from a binaural simulation of the Ambisonic system to be optimised (as these
are the parameters that the Vienna system is approximating). This method
can then be altered to take into account head rotations directly which have

been shown as an important psychoacoustic parameter in the localisation of a

sound source (Spikofski et al., 2001) and is also shown to be useful in
differentiating between decoders optimised using the Tabu search form of the
Vienna optimisations as no objective measure had been suggested.
Optimisations for both Binaural and Transaural reproductions are then
discussed so as to maximise the performance of generic HRTF data (i.e. not
individualised) using inverse filtering methods, and a technique is shown that
minimises the amount of frequency dependant regularisation needed when

calculating cross-talk cancellation filters.

Chapter 1 - Introduction

1.1 Background

Surround sound has quickly become a consumer ‘must have’ in the audio
world, due, in the main part, to the advent of the Digital Versatile Disk, Super
Audio CD technology and the computer gaming industry. It is generally taken
to mean a system that creates a sound field that surrounds the listener. Or, to
be put another way, it is trying to recreate the illusion of the ‘you are there’
experience. This is in contrast to the stereophonic reproduction that has been
the standard for many years, which creates a ‘they are here’ illusion (Glasgal,
2003c).

The direction that the surround sound industry has taken, when referring to
format and speaker layout, has depended, to some extent, on which system
the technology has been used for. As already mentioned, two main streams
of surround sound development are taking place:
e The DVD Video/Audio industry can be broadly categorised as follows:
0 These systems are predicated around audio produced for a
standard 5 speaker (plus sub-woofer, or low frequency effects
channel) layout as described in the ITU standard ‘ITU-R BS.775-
1.
o Few DVD titles deviate from this standard as most DVD players
are hardware based and, therefore, of a fixed specification.
0 Some processors are available with virtual speaker surround
(see crosstalk cancelled systems) and virtual headphone
surround systems.
o Recording/panning techniques are not fixed and many different
systems are utilised including:
= Coincident recording techniques
= Spaced recording techniques
= Pair-wise panned using amplitude or time or a

combination of the two.

e The computer gaming industry can be broadly categorised as follows:

o Number and layout of speakers are dictated by the soundcard
installed in the computer. Typically:

= Two speakers — variable angular spacing.

= Four speakers — based on a Quadraphonic arrangement
or the ITU five speaker layout without a centre speaker.

» Five speakers — based on ITU-R BS.755-1 layout.

= Six speakers — same as above but with a rear centre
speaker.

= Seven speakers — typically, same as five speakers with
additional speakers at +/- 90°.

o Two channel systems rely on binaural synthesis (using head
related transfer functions) and/or crosstalk cancellation
principles using:

= Binaural/Transaural simulation of a more than two
speaker system.
= HRTF simulation of sources.

0 More than two speaker systems generally use pair-wise panning

algorithms in order to place sounds.

Both of the above viewpoints overlap, mainly due to the need for computers to
be compatible with DVD audio/video. However, the computer gaming industry
has started moving away from five speaker surround with 7.1 surround sound

being the standard on most new PCs.

The systems described above all co-exist, often being driven by the same
carrier signals. For example, all surround sound output on a DVD is derived
from the 5.1 speaker feeds that are stored on the actual disk. So headphone
surround processing can be carried out by simulating the 5.1 speaker array
binaurally, and two speaker virtual surround systems can be constructed by
playing a crosstalk cancelled version of the binaural simulation. In the same
fashion many crosstalk cancelled and binaural decodes provided by the audio
hardware in computers is driven by the signal that would normally be sent to

the 4, 5, 6 or 7 speaker array with other cards choosing to process the sound

effects and music directly with individual pairs of head related transfer
functions (see CMedia, N.D. and Sibbald, A., 2000 for examples of these two

systems).

The above situation sounds ideal from a consumer choice, point of view, but
there are a number of issues with the systems, described above, as a whole.
The conversion from multi-speaker to binaural/transaural (crosstalk cancelled)
system assumes that a, normally pair-wise panned, speaker presentation will
provide the ear/brain system with the correct cues needed for the listener to
experience a truly immersive, psychoacoustically correct aural presentation.
However, the five speaker layout, as specified by the ITU, was not meant to
deliver this, and is predicated on a stable 60° frontal image, with the surround
speakers used only for effects and ambience information. This is, of course,
not a big issue for films, but as computer games and audio only presentations
are based around the same, five speaker, layout, this is not ideal. Computer
games often do not want to give a preference to any particular direction with
the surround sound audio experience hopefully providing extra cues to the
game player in order to give them a more accurate auditory ‘picture’ of the
environment around them and music presentations often want to try and
simulate the space that the music was recorded in as accurately as possible,

which will include material from the rear and sides of the listener.

A less obvious problem with PC based audio systems is that although the final
encoding and decoding of the material is handled by the audio hardware (as
most sound sources for games are panned in real-time), and so it is the
hardware that dictates what speaker/headphone setup to use, inserting pre-
recorded surround sound music can be problematic as no speaker layout can
be assumed. Conversely for the DVD systems, the playing of music is,
obviously, well catered for but only as long as it is presented in the right
format. Converting from a 5.1 to a 7.1 representation, for example, is not
necessarily a trivial matter and so recordings designed for a 5.1 ITU setup
cannot easily use extra speakers in order to improve the performance of the
recording. This is especially true as no panning method can be assumed

after the discrete speaker feeds have been derived and stored on the DVD.

The problems described above can be summarised as follows:

e 5.1 DVD recordings cannot be easily ‘upmixed’ as:

o0 No panning/recording method can be assumed.

o Pair-wise panned material cannot be upmixed to another pair-
wise panned presentation (upmixing will always increase the
number of speakers active when panning a single source).

e Computer gaming systems produce surround sound material ‘on-the-
fly’ and so pre-recorded multi-channel music/material can be difficult to
add as no presentation format can be assumed.

e Both systems, when using virtual speaker technology (i.e. headphone
or cross talk cancelled simulation of a multi-speaker representation)
are predicated on the original speaker presentation delivering the
correct psychoacoustical cues to the listener. This is not the case for
the standard, pair-wise panned method which relies on this crosstalk to
present the listener with the correct psychoacoustic cues (see

Blumlein’s Binaural Sound in chapter 3.2.2).

These problems stem, to some extent, from the lack of separation between
the encoding and the decoding of the material, with the encode/decode
process generally taken as a whole. That is the signals that are stored, used
and listened to are always derived from speaker feeds. This then leads to the
problem of pre-recorded pieces needing to either be re-mixed and/or re-
recorded if the number or layout of the speakers is to be changed.

1.2 The Research Problem

How can the encoding be separated from the decoding in audio systems, and
how can this system be decoded in a psychoacoustically aware manner for

multiple speakers or headphone listening?

While the transfer from multiple speaker systems to binaural or crosstalk
cancelled systems is well documented, the actual encoding of the material

must be carried out in such a way so as to ensure:

e Synthesised or recorded material can be replayed over different
speaker arrays.

e The decoded signal should be based on the psychoacoustical
parameters with which humans hear sound thus allowing a more
meaningful conversion from a multi-speaker signal to binaural or
crosstalk cancelled decode.

The second point would be best catered for using a binaural recording or
synthesis technique. However, upmixing from a two channel binaural
recording to a multi-speaker presentation can not be carried out in a
satisfactory way, with the decoder for such a system needing to mimic all of
the localisation features of the ear/brain system in order to correctly separate
and pan sounds into the correct position. For this reason, it is a carrier signal
based on a multi-speaker presentation format that will be chosen for this

system.

Many people sought to develop a multi-speaker sound reproduction system
as early as the 1900s, with work by Bell Labs trying to create a truly ‘they are
here’ experience using arrays of loudspeakers in front of the listener.
Perhaps they were also striving for a true volume solution which, to a large
extent, has still not been achieved (except in a system based on Bells’ early
work called wavefield synthesis, see Chapter 3). However, it was Alan
Blumlein’s system, binaural sound, that was to form the basis for the system
we now know as stereo, although it was to be in a slightly simplified form than

the system that Blumlein first proposed.

The first surround sound standard was the Quadraphonic format. This system
was not successful due to the fact that it was based on the simplified stereo
technique and so had some reproduction problems coupled with
Quadraphonics having a number of competing standards. At around the
same time a number of researchers, including Michael Gerzon, recognised
these problems and proposed a system that took more from Blumlein’s
original idea. This new system was called Ambisonics, but due to the failings
of the Quadraphonic system, interest in this new surround sound format was

poor.

Some of the benefits of the Ambisonics system are now starting to be realised

and it is this system that was used as the basis of this investigation.

1.3 Aims and Objectives of the Research

Develop a flexible multi-channel sound listening room capable of the
auditioning of several speaker positioning formats simultaneously.
Using the Matlab/Simulink software combined with a PC and a multi-
channel sound card, create a surround sound toolbox enabling a
flexible and quick development environment used to encode/decode
surround sound systems in real-time.

Carry out an investigation into the Ambisonic surround sound system
looking at the optimisation of the system for different speaker
configurations, specifically concentrating on the ITU standard five
speaker layout.

Carry out an investigation into Binaural and Transaural sound
reproduction and how the conversion from Ambisonics to these
systems can be achieved.

Propose a hybrid system consisting of a separate encode and decode
process, making it possible to create a three-dimensional sound piece
which can be reproduced over headphones or two or more speakers.

Create a real-time implementation of this system.

At the beginning of this project, a multi-channel sound lab was setup so

different speaker layouts and decoding schemes could be auditioned. The lab

contained speakers placed in a number of configurations so that experiments

and testing would be quick to set up, and flexible. It consisted of a total of

fourteen speakers as shown in Figure 1.1.

Three main speaker system configurations have been incorporated into this

array:

A regularly spaced, eight speaker, array
A standard ITU-R BS.755-1 five speaker array

A closely spaced front pair of speakers

Figure 1.1 Speaker configuration developed in the multi-channel surround sound
laboratory

The system, therefore, allows the main forms of multi-speaker surround
formats to be accessed simultaneously. A standard Intel® Pentium® Il (Intel
Corporation, 2003) based PC was used in combination with a Soundscape®
Mixtreme® (Sydec, 2003) sixteen channel sound card. This extremely
versatile setup was originally used with the Matlab®/Simulink® program (The
MathWorks, 2003), which was possible after rewriting Simulinks ‘To’ and
‘From Wave Device’ blocks to handle up to sixteen channels of audio
simultaneously and in real-time (the blocks that ship with the product can
handle a maximum of two channels of audio, see Chapter 5). This system
was then superseded by custom C++ programs written for the Microsoft
Windows operating system (Microsoft Corporation, 2003), as greater CPU
efficiency could be utilised this way, which is an issue for filtering and other

CPU intensive tasks.

Using both Matlab/Simulink and dedicated C++ coded software it was
possible to both test, evaluate and apply optimisation techniques to the
decoding of an Ambisonics based surround sound system and to this end the
aim of this project was to develop a surround sound format, based on the

hierarchical nature of B-format, the signal carrier of Ambisonics, that was able

to be decoded to headphones and speakers, and investigate and optimise

these systems using head related transfer functions.

1.4 Structure of this Report

This report is split into three main sections as listed below:
1. Literature review and discussion:
a. Chapter 2 — Psychoacoustics and Spatial Sound Perception
b. Chapter 3 — Surround Sound Systems
2. Surround sound format proposal and system development research
a. Chapter 4 — Hierarchical Surround Sound Format
b. Chapter 5 — Surround Sound Optimisation Techniques
3. System implementation and signal processing research
a. Chapter 6 — Implementation of a Hierarchical Surround Sound
System.
Sections two and three detail the actual research and development aspects of
the project with section one giving a general background into surround sound
and the psychoacoustic mechanisms that are used to analyse sounds heard
in the real world (that is, detailing the systems that must be fooled in order to

create a realistic, immersive surround sound experience).

Chapter 2 - Psychoacoustics and Spatial Sound

Perception

2.1 Introduction

This Chapter contains a literature review and discussion of the current
thinking and research in the area of psychoacoustics and spatial sound
perception. This background research is important as it is impossible to
investigate and evaluate surround systems objectively without first knowing
how our brain processes sound, as it is this perceptual system that we are
aiming to fool. This is particularly true when optimisations are to be sought
after, as unless it is known what parameters we are optimising for, only
subjective and empirically derived alterations can be used to improve a
system’s performance or, in the same way, help us explain why a system is

not performing as we would have hoped.

2.2 Lateralisation

One of the most important physical rudiments of the human hearing system is
that it possesses two separate data collection points, that is, we have two
ears. Many experiments have been conducted throughout history (for a
comprehensive reference on these experiments see Blauert (1997) and
Gulick et al. (1989)) concluding that the fact that we hear through two audio
receivers at different positions on the head is important in the localisation of
the sounds (although our monaural hearing capabilities are not to be under-

estimated).

If we observe the situation shown in Figure 2.1 where a sound source
(speaker) is located in an off-centre position, then there are a number of
differences between the signals arriving at the two ears, after travelling paths
‘a’ and ‘b’. The two most obvious differences are:
e The distances travelled by the sounds arriving at each ear are different
(as the source is closer to the left ear).
e The path to the further away of the two ears (‘b’) has the added

obstacle of the head.

These two separate phenomena will manifest themselves at the ears of the
listener in the form of time and level differences between the two incoming
signals and, when simulated correctly over headphones, will result in an effect
called lateralisation. Lateralisation is the sensation of a source being inside
the listener’'s head. That is, the source has a direction, but the distance of the

listener to the source is perceived as very small.

If we take the speed of sound as 342 ms™ and the diameter of an average
human head (based on a sphere, with the ears at 90° and 270° of that sphere)
as 18 cm, then the maximum path difference between the left and right ears

(d) is half the circumference of that sphere, given by equation (2.1).

d =TIr =11x0.09 =0.28274m

(2.1)
where d is half the circumference of a sphere
r is the radius of the sphere
b
Cl
Figure 2.1 The two paths, ‘a’ and ‘b’, that sound must travel from a source at 45° to

the left of a listener, to arrive at the ears.

Taking the maximum circumferential distance between the ears as 28 cm, as
shown in equation (2.1), this translates into a maximum time difference
between the sounds arriving at the two ears of 0.83 ms. This time difference
is termed the Interaural Time Difference (I.T.D.) and is one of the cues used

by the ear/brain system to calculate the position of sound sources.

The level difference between the ears, termed I.L.D. (Interaural Level
Difference) is not, substantially, due to the extra distance travelled by the
sound. The main difference here is obtained from the shadowing effect of the
head. So, unlike I.T.D., which will be the same for all frequencies (although
the phase difference is not constant), I.L.D. is frequency dependent due to
diffraction. As a simple rule of thumb, any sound that has a wavelength larger
than the diameter of the head will tend to be diffracted around and any sound
with a wavelength shorter than the diameter of the head will tend to be
attenuated causing a low pass filtering effect. The frequency corresponding
to the wavelength equal to the diameter of the head is shown in equation
(2.2).

f= % 15> 342 =1.89kHz

2.2)

where 0.18 is the diameter of the head.

There is, however, a smooth transition from low to high frequencies that
means that the attenuation occurring at the opposite ear will increase with
frequency. A graph showing an approximation of the I.L.D. of a sphere, up to
2 kHz, is shown in Figure 2.2 (equations taken from Duda (1993)). This figure

shows the increasing I.L.D. with increasing frequency and angle of incidence.

12,

10+
[%2)
8F 2
o
EJ\ (0]
o
% 6r g:
| o
)
=
4t 3
)
[¢]
2
2 [
0
10" 10° 10°
Frequency (Hz)
Figure 2.2 Increasing I.L.D. with frequency and angle of incidence.

2.2.1 Testing the Lateralisation Parameters.

A few simple experiments can be set up in order to test the working frequency
ranges, and the effectiveness of the sound source position artefacts described
above. The two cues presented, I.L.D. and I.T.D. actually result in three
potential auditory cues. They are:

e An amplitude difference between the two ears (I.L.D).

e A time difference between the two ears (I.T.D).

e A phase difference between the sounds at the ears (1.T.D.).

Simulink models that can be used to test these three localisation parameters,
under headphone listening conditions, are shown in Figure 2.3. Several data
sources are utilised in these models (also shown in Figure 2.3) and are

discussed below.

=] LevelCueTest =10 x| =] PhaseCueT est o [=] 53|
File Edit View Simulation Format Tools File Edit Wiew Simulaion Fomat Tools
Ds@&| fed|=e]|r o h Dem&E| iy = B
[t
| &
Sine Wave
Sine Wavel
at
ignal From
Wotkspace
e Plays Sin Waves and Alters the Phase
Signal From from - piiZ to pii2 radians
Wodspase Load PhaseCue.mat
Ready [100% |ode45 v Fieady [100% | |odeds v
=] TimeCueT est o [g1 amay 2 array

File Edt Wiew Simulation Format Tools

DsE&| s r o |

b ti
rence of 0.8 mS (36 Samples)
Load PhaseCue mat

e L

Ready

[odeds

4

6 0 2 4
5

1
0.8 05
0.6
0
0.4
0.2 -0.5
0 -1
2 4
x 10

Il

T T T
0 05 1 15 2 25 3 35 4
1 second duration of signal array

x 10°

Figure 2.3
by I.L.D. and

I.T.D..

Simulink models showing tests for the three localisation cues provided

Arrays ‘gl’ and ‘g2’ are a rectified sine wave and a cosine wave, and are used

to represent an amplitude gain, a phase change or a time delay. In order for

the various lateralisation cues to be tested, the models must be configured as

described below:

e Level Difference — If ‘g1’ is taken as the gain of the left channel, and a

rectified version of ‘g2’ is used for the gain of the right channel, then the

sound source is level panned smoothly between the two ears, and this is

what the listener perceives, at any given frequency.

e Phase Difference — A sine wave of any phase can be constructed using a

mixture of a sine wave at 0° and a sine wave at 90° (a cosine). So
applying the gains ‘g1’ and ‘g2’ to a sine and a cosine wave which are then
summed, will create a sine wave that changes phase from -I1/2 to I1/2. At
low frequencies this test will tend to pan the sound between the two ears.
However, as the frequency increases the phase difference between the
signals has less effect. For example, at 500 Hz the sounds lateralises

very noticeably. At 1000 Hz only a very slight source movement is

perceivable and at 1500 Hz, although a slight change in timbre can be
noted, the source does not change position.

e Time Difference — For this test a broad band random noise source was
used so that the sound contained many transients. The source was also
pulsed on and off (see Figure 2.3) so that as the time delay between the
two ears changed the pulsed source would not move significantly while it
was sounding. The time delay was achieved using two fractional delay
lines, using ‘gl’ and a rectified ‘g2’ scaled to give a delay between the ears
varying from —0.8 ms to 0.8 ms (+/- 35 samples at 44.1 kHz), which
roughly represents a source deflection of —90° to 90° from straight ahead.
Slight localisation differences seem to be present up to a higher frequency
than with phase differences, but most of this cue’s usefulness seems to

disappear after around 1000 Hz.

It is clear that the phase and time differences between the two ears of the
listener are related, but they should be considered as two separate cues to
the position of a sound source. For example if we take a 1 kHz sine wave, the
period is equal to 0.001 seconds. If this sound is delayed by 0.00025
seconds, the resulting phase shift will be 90°. However, if the sine wave is
delayed by 0.00125 seconds the phase shift seen will be 450°. As the ears
are not able to detect absolute phase shift they must compare the two ears’
signals, which will still give a phase shift of 90° as shown in Figure 2.4. It is
also apparent from Figure 2.4 that if a sound of a different frequency is used,
the same time delay will give a different phase difference between the ears.
As frequency increases the phase change due to path differences between
the ears becomes greater, but once the phase difference between the two
ears is more than 180° then the brain can no longer decide which signal is

lagging and the cue becomes ambiguous (Gulick, 1989).

1 |
|
/ :
0 4
!
l
1 L 1 L L L L
0 50 : 100 150 200 250 300
1 - -~ - 7
/o [\ J [\ /
\ / \ / \ / \ / \ / \
\ [\ / \ / \\ / \ ,‘/ \
0 “\ b [\ / / \ b
1 | /\/‘ : AN ‘\\ / L N/ L \\ / L
0 50 i 100 150 200 250 300
1 - -
[/ 7\ /
l
|
0 | B
|
l
-1 I ! Z N/ I N/ I \/ I
0 50 100 150 200 250 300

Sample Number (fs=44100Hz)

Figure 2.4 Relative phase shift for a 1 kHz sine wave delayed by 0.00025 and
0.00125 seconds

The difference between time and phase cues is significant, as they will need
to be utilised by the ear/brain system for different localisation situations. If we
take the situation where the listener is trying to localise a continuous sine
wave tone, the time of arrival cues seen in Figure 2.4 will be not be present
and only phase and amplitude cues can be used (it should also be noted that
a pure sine wave tone can be a difficult source to locate anyway).
Alternatively, if the listener is trying to localise a repeating ‘clicking’ sound,
then the time of arrival cues due to source position will be present. Also, it
has been found that, even for higher frequency sounds, time/phase cues can
still be utilised with regards to the envelope of the sound arriving at the head,

as shown in Figure 2.5.

Graph showing an 8kHz sound with a lower frequency attack envelope

—

=
= m

Arnplitude

=
m
T

—_

o
=
m
—
-
m
]
e
m
w
w
m
e
=
m

x 10
1 T T T T T T T T T
— Right Ear
05t
i)
=
=2
= 0
£
=T
D5t
_1 1 1 1 1 1 1 Il 1 1
o o0s 1 15 2 25 3 38 4 45
Time (s) . 10-3
Figure 2.5 An 8 kHz tone with a low frequency attack envelope

Using a combination of the cues described above, a good indication of the
angle of incidence of an incoming sound can be constructed, but the sound
will be perceived as inside the head with the illusion of sounds coming from
behind the listener being more difficult to achieve. The reason for this is the
so-called ‘Cone of Confusion’ (Begault, 2000). Any sound that is coming from
a cone of directions (shown as grey circles in Figure 2.6) will have the same
level, phase and time differences associated with it making the actual position

of the source potentially ambiguous.

Figure 2.6 Cone of Confusion — Sources with same |.L.D. and I.T.D. are shown as
grey circles.

So how does the ear/brain system cope with this problem? There are two
other mechanisms that help to resolve the position of a sound source. They
are:

e Head movement.

e Angular dependent filtering.
Head movement can be utilised by the ear/brain system to help strengthen
auditory cues. For example if a source is at 45° to the left (where 0°
represents straight ahead), then turning the head towards the left would
decrease the I.L.D. and I.T.D. between the ears and turning the head to the
right would increase the I.L.D. and I.T.D. between the ears. If the source
were located behind the listener the opposite would be true, giving the
ear/brain system an indication of whether the source is in the front or the back
hemi-sphere. In a similar fashion, up/down differentiation can also be
resolved with a tilting movement of the head. This is a very important cue in
the resolution of front/back reversals perfectly demonstrated by an experiment
carried out by Spikofski et al. (2001). In this experiment a subject listens to
sounds recorded using a fixed dummy head with small microphones placed in
its ears. Although reported lateralisation was generally good, many front back
reversals are present for some listeners. The same experiment is then
conducted with a head tracker placed on the listeners head which controls the
angle that the dummy head is facing (that is, the recording dummy head
mirrors the movements of the listener in real-time). In this situation virtually
no front/back reversals are perceived by the listener. Optimising binaural
presentations by utilising the head turning parameter is well documented,
however, its consideration in the optimisation of speaker based systems has

not been attempted, but will be investigated in this project.

Angular dependant filtering is another cue used by the ear/brain system, and
is the only angular direction cue that can be utilised monaurally, that is, sound
localisation can be achieved by using just one ear (Gulick, 1989). The filtering
results from the body and features of the listener, the most prominent of which
is the effect of the pinnae, the cartilage and skin surrounding the opening to
the ear canal, as shown in Figure 2.7.

Figure 2.7 The Pinna

The pinna acts as a very complex filtering device, imprinting a unique phase
and frequency response onto pressure waves impinging on the head,
depending on the angular direction of this pressure wave. This implies that
sound sources made up of certain bands are more likely to be heard as
emanating from a particular location due to the natural peaks and troughs that
are apparent in the HRTF data due to pinna filtering, and this has been shown
in experiments using narrow-band sound sources. For example, Zwicker &
Fastl (1999) found that narrow band sources of certain frequencies are
located at certain positions on the median plane, irrespective of the position of

the sound source as indicated in Table 2.1.

Narrow band source Perceived position (in
centre frequency the median plane)
300Hz, 3kHz Front
8kHz Above
1kHz, 10kHz Behind
Table 2.1 Table indicating a narrow band source’s perceived position in the

median plane, irrespective of actual source position.

The example filters shown in Figure 2.8 (taken from HRTF data measured at
the MIT media lab by Gardner & Martin (1994)) shows the phase/magnitude
response at the right ear due to a source at 0°,45° and 90° to the right of the
listener. Interestingly, if the complex filtering from a moving source is heard
from a stationary sound source using both ears (e.g. if an in-ear recording is
replayed over speakers), the listener will perceive timbral changes in the

heard material.

Frequency Domain Plats of HRTF = for Three Source Positions

Magnitude (dB)
:))
[} = [}

P
=

@
]
o

1000 T T T

-1000 S S

Phase (degrees)

01 1) SIS [P O R e
— 0O degrees :
-3000 | = 4A degrees [------------- roremme e formrmeoeeneees 5
— 80 degrees 0 : 0
-4000 L ' '
a 0.5 1 1.5 2

Frequency (Hz) « 1ot
Figure 2.8 Frequency and phase response at the right ear when subjected to an

impulse at 0°,45° and 90° to the right of the listener.

Using the points discussed above, a number of simple assumptions can be
made about the human auditory system.
e Amplitude differences between the ears will only be present, and
therefore can only be utilised, in sounds greater than some frequency
(that is, when the sound no longer diffracts around the head).
e Phase cues can only be totally unambiguous if the sound is delayed by
less than half the corresponding wavelength of the sound’s frequency
(i.e. low frequencies), but may still be utilised together with other cues
(such as I.L.D.) up to a delay corresponding to a full wavelength (a
phase change of 360°) (Gulick, W.L. et al., 1989).
e Time cues can only be useful when transients are apparent in the

sound source, e.g. at the beginning of a sound.

2.2.2 Analysis of the Lateralisation Parameters

In order to quantify what frequency ranges the lateralisation parameters are
valid for, an example ‘head’ is now used. This head was measured at the
M.I.T. media lab in the U.S.A. and the impulse response measurements for a
great many source positions were taken in an anechoic room. The resulting

impulse responses are measures of the Head Related Transfer Function

(which result in Head Related Impulse Responses, but are still generally
known as HRTFs) due to the dummy head. As the tests were carried out in
an anechoic chamber, they are a very good measure of how we lateralise
sound sources, that is, the minimum of auditory cues are present as no
information regarding the space in which the recordings are made is apparent.
Figure 2.9 shows a plot representing the amplitude difference (z-axis)
measured between the two ears for frequencies between 0 Hz and 20 kHz (x-
axis) and source angles between 0 and 180° (y-axis). The red colouring
indicates that there is no amplitude difference between the ears, and is most
apparent at low frequencies, which is expected as the head does not obstruct
the sound wave for these, longer, wavelengths. The amplitude differences in
the signals arriving at the ears can be seen to occur at around 700 Hz and
then can be seen to increase after this point. This graph shows a significant
difference between modelling the head as a sphere (as in Figure 2.2) and
measuring the non-spherical dummy head with amplitude peaks and troughs

becoming very evident.

2

Amplitude (dE)

Angla of Ineidanca (dagrees)

L
Frequency (10000 Hz)

Figure 2.9 The relationship between source incidence angle, frequency and
amplitude difference between the two ears.

Figure 2.10 shows a very similar graph, but this time, representing the phase
difference between the two ears. The colour scaling now goes from —180° to
180° (although the scale on this graph is in radians, from -3.142 to 3.142). A
clear pattern can be observed with the limit of unambiguous phase differences
between the ears following a crescent pattern with no phase differences
occurring when sounds are directly in front of or behind the listener. The
largest phase difference between the ears is to be found from a source at an
angle of 90° to the listener where unambiguous phase differences occur up to
approximately 800 Hz. The anomalies apparent in this figure (negative phase
difference) could be due to one of two effects:

e Pinna, head and torso filtering.

e Errors in the measured HRTF data.
Of the two possible effects, the second is most likely, as the compact set of
HRTFs were used (see Gardner & Martin (1994)). The compact set of HRTFs
has been processed in such a way as to cut down their size and inverse
filtered in a crude manner. Given these limitations, a good trend in terms of

the phase difference between the two ears is still evident.

Figure 2.10 Relationship between source incidence angle, frequency and the phase
difference between the two ears.

Figure 2.11 shows the time of arrival difference between the two ears, and
also indicates why interaural time difference and interaural phase difference
should be considered as two separate auditory cues. Usable time differences
are apparent for every frequency of sound as long as the source is at an off-
centre position, and this is the only lateralisation cue for which this is the case.
This graph also shows that filtering due to the pinna, head and torso create
differing time delays which are dependent upon the frequency of the incoming
sound. If some form of time delay filtering were not present (i.e. no
head/torso or pinna filtering), the time difference for each source angle of

incidence would be constant across the audio spectrum.

Angle of Incide

Figure 2.11 Relationship between source incidence angle, frequency and the time
difference (in samples) between the two ears.

The three graphs shown in Figure 2.9, Figure 2.10 and Figure 2.11 usefully
provide an insight into possible reasons for a number of psychoacoustic
phenomena. If we consider the minimum audible angle (M.A.A.) for sounds of
differing frequencies, and source azimuths (where the M.A.A. is taken as the
angle a source has to be displaced by, until a perceived change in location is
noted), it can be seen that the source’s M.A.A. gets larger the more off-centre
the source’s original position (see Figure 2.12 and Gulick (1989)). This is

coupled with the M.A.A. increasing for all source positions between the

frequencies of 1 kHz and 3 kHz.

The question arises; can the M.A.A. effect be explained using the three
H.R.T.F. analysis figures given above? Firstly, why would the minimum
audible angle be greater the more off-centre the sound source for low
frequencies? If the phase difference graph is observed, then it can be seen
that the gradient of the change of phase difference with respect to head
movement is greatest when a source is directly behind or directly in front of
the listener. That is, if the head is rotated 1°, then a source directly in front of
the listener will create a greater phase change between the two listening
conditions when compared to a source that is at an azimuth of 90° implying an

increased resolution to the front (and rear) of the listener.

14

—©- 0 Degrees
—- 30 Degrees | \
~4— 60 Degrees | | W

12+

-
o
T
p
T~
L

foc]
T
|

Minimum Audible Angle (degrees)

L L | L L L L L L L L L | L L L L
500 1000 5000 10000
Frequency (Hz)

Figure 2.12 Minimum audible angle between successive tones as a function of
frequency and position of source (data taken from Gulick (1989)).

It should also be noted that the M.A.A. worsens between 1 kHz and 3 kHz. If
the interaural amplitude is studied, it can be seen that the difference between
the ears starts to become pronounced after approximately 1 kHz and does not
become more obvious until higher frequencies. Also, 1 kHz is around the
frequency where unambiguous phase cues start to disappear (and more so as
the angle of incidence of the source increases). It is this cross-over period

between the brain using level and phase cues where the M.A.A. is at its

largest. Another interesting result, that can also be seen from Figure 2.12, is
that phase cues (used primarily at low frequencies) perform better, on
average, than higher frequency cues (pinna filtering and level differences) and
it is often mentioned that low frequency, temporal, cues are the more robust
cues (for example, Wightman, F.L. and Kistler, D.J., 1992 and Huopaniemi, J.
et al, 1999).

2.3 Sound Localisation

The term localisation differs from lateralisation in that not only is source
direction angle arrived at, but a listener can gain information on the type of
location a sound is emanating from and the distance from the source to the
listener. Also, information on the size of a sound source as well as which way

it may be facing can be gleaned just by listening for a short time.

2.3.1 Room Localisation

When walking into an acoustic space for the first time, the brain quickly makes
a number of assumptions about the listening environment. It does this using
the sound of the room (using any sounds present) and the reaction of the
listener inside this room. One example of this is when walking into a
cathedral. In this situation one of the first sounds possibly heard will be your
own footsteps, and this will soon give the impression that the listener is in a
large, enclosed space. This is also the reason that people susceptible to
claustrophobia are ill advised to enter an anechoic chamber, as the lack of
any reverberation in the room can be very disconcerting, and bring on a
claustrophobic reaction. Interestingly, listening to sound sources in an
anechoic chamber will often give the impression that the sound source is
almost ‘inside the head’ (much like listening to conventional sound sources
through headphones). The human brain is not used to listening to sounds
without a corresponding location (even large open expanses have sound
reflections from the floor), and the only time this will happen is if the source is
very close to the head, somebody whispering in your ear, for example, and so

the brain decides that any sound without a location is likely to be very close.

If we are listening to a sound source in a real location, a large number of
reflections may also reach the ears. The first sound that is heard will be the
direct sound, as this has the shortest path length (assuming nothing obstructs
the source). Then, the first order reflections will be heard. Figure 2.13 shows
a simplified example of this (in two dimensions). Here it can clearly be seen
that the direct sound has the shortest path length, which implies that this
signal has the properties listed below:

e The direct sound will be the loudest signal from the source to reach the
listener (both due to the extra path length and the fact that some of the
reflected source’s energy will be absorbed by the reflective surface).

e The direct sound will be the first signal to reach the ears of the listener.

e The direct sound may be the only signal that will be encoded (by the

head of the listener) in the correct direction.

/

i
2nd Order
Reflections

0.9

0.8

0.7+

0.6 -

0.5

' Listener

1st Order 7
Reflections

0.1+

Figure 2.13 Simple example of a source listened to in a room. Direct, four 1° order
reflections and one 2" order reflection shown (horizontal only).

In the example shown above (Figure 2.13) a simple square room is shown
along with four of the 1% order sound reflections (there are two missing, one
from the floor and one from the ceiling) and one 2" order reflection. These
signal paths will also be attenuated due to absorption associated with the wall
and the air. Surfaces in a room, and the air itself, possess an absorption

coefficient, a numerical grade of acoustic absorption, although a more

accurate measure is the frequency dependent absorption coefficient. As
reflections in the room build up to higher and higher orders, a diffuse sound
field is created, where the individual echoes are more difficult to analyse.
Figure 2.14 shows an example impulse response of an actual room. The
room has a reasonably short reverberation time as the walls are acoustically
treated with foam panels. The graph shows ¥ of a second in time (11025

samples at 44.1 kHz sampling rate).

x 10°
10 ‘

/Direct Sound

8 L . . -
/ Early, discrete Reflections

4+ Diffuse Tail f

i / |

Amplitude

L L L L L
0 2000 4000 6000 8000 10000 12000
Sample Number

Figure 2.14 Impulse response of an acoustically treated listening room.

As mentioned at the beginning of this section, the response of a room gives
listeners significant insight into the type of environment that they are in.
However, Figure 2.14 shows a very complicated response. So how does the
brain process this? An extremely important psychoacoustic phenomenon and
one that the ear/brain system uses in this type of situation has been termed
the precedence effect (Begault, 2000). The precedence effect is where the
brain gives precedence to the sound arriving at the listener first, with the
direction of this first sound taken as the angular direction indicator. This
sounds very simple, but as we have two ears, the initial sound arrives at the
ears twice and, therefore, has two arrival times associated with it. Figure 2.15
shows the equivalent reverberation impulse responses that arrive at both

ears. The source used in this graph is at 30° to the left of the listener very

close to the rear wall, and about 1 metre away from the left wall. It can clearly
be seen that the source’s direct sound arrives at the left ear first, followed,
around 11 samples later (0.25 ms at 44.1 kHz), by the right ear. As the
ear/brain system uses this time difference to help lateralise the incoming
sound, the precedence effect does not function for such short time
differences. Under laboratory tests it has been noted that if the same signal is
played into each ear of a pair of headphones, but one channel is delayed
slightly (Begault, 2000):

e For a delay between 0 and 0.6mS the source will move from the centre
towards the undelayed side of the listeners head.

e Between approximately 0.7 and 35mS the source will remain at the
undelayed side of the listeners head, that is, the precedence effect
employs the first source to determine the lateralisation. However,
although the source position will not change, the perceived tone, and
width of the source will tend to alter as the delay between the left and
right ears is increased (note that this implies an effect analogous to
comb filtering which occurs during the processing of the sounds
arriving at the two ears by the brain of the listener).

e Finally, increasing the time delay still further will create the illusion of
two separate sources one to the left of the listener and one to the right.

The delayed source is perceived as an echo.

Amplitude

[l
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
L1 1 L
80p 1000 1200 1400 1600 1800 2000
|
|
|
|
|
[l
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Sample Number

Right Ear

Amplitude

I 1 L 1 L L
800 1000 1200 1400 1600 1800 2000
Sample Number

Figure 2.15 Binaural impulse response from a source at 30° to the left of the
listener. Dotted lines indicate some discrete reflections arriving at left
ear.

The above points help to explain why the ear/brain system uses the
precedence effect. If a source has many early reflections (i.e. the source is in
a reverberant room) the ear/brain system needs a way of discriminating
between the direct sound and the room’s response to that sound (reflections
and diffuse field). The precedence effect is the result of this phenomenon. If
we take a source in a room (as given in figure 2.13), assuming the room is a 4
m by 4 m, square room and the initial source is 0.45m away from the listener
(that is, the listener and source positions are as in Figure 2.13). The direct
sound will take 1.3ms to reach the listener (taking the speed of sound in air as
342 ms™). The source is at an azimuth of approximately 63° from straight
ahead which will lead to a time difference between the ears of around 0.5 ms
(using the approximate binaural distance equation from Gulick (1989)). The
nearest reflection has a path length of around 3.2 m from the source to the
listener which equates to a delay time of 9.4 ms. Because of the precedence
effect, the first time delay between the ears will be utilised in the lateralisation
of the sound source, and the first discrete echo will not be heard as an echo,

but it will not change the perceived position of the sound source either, and

will just change the width or timbre of the source. It is this type of processing
in the ear/brain system that gives us vital information about the type of space
we are situated in. However, as the above points suggest, it may be at the
expense of localisation accuracy, with the precedence effect breaking down if
the echo is louder than the direct sound, which normally only occurs if the
source is out of sight, but a reflection path off a wall is the loudest sound to

reach the listener.

2.3.2 Height and Distance Perception

Although lateralisation has been discussed, no explanation has yet been
given to resolution of sources that appear above or below the listener. As the
ears of the listener are both on the same plane, horizontally, the sound
reaching each ear will not contain any path differences due to elevation
(although, obviously, if a sound is elevated and off-centre, the path
differences for the lateral position of the sound will be present), and as there
are no path differences the only static cue that can be utilised for an elevated
cue is the comb filtering introduced by head and pinna. Figure 2.16 shows a
3-axis graph representing a source straight in front of the listener changing
elevation angle from —40° to 90°. Perhaps the most notable feature of this
plot is the pronounced trough that originates at around 7 kHz for an elevation
of —40°, which goes through a smooth transition to around 11 kHz at an
elevation of 60°. It is most probably these pinna filtering cues (combined with
head movements) that are used to resolve sources that are above and below
the listener (Zwicker & Fastl, 1999). Interestingly, it has also been shown in
Zwicker & Fastl (1999) that narrow, band-limited sources heard by a listener
can have a ‘natural’ direction. For example, an 8 kHz centre frequency is
perceived as coming from a location above the head of the subject, whereas a
1 kHz centre frequency is perceived as coming from a location behind the

listener.

-40

-20

)

20

ce (degr

Angle of Inciden

40

B0

a0

10’
Frequency (10000 Hz)

Figure 2.16 Relationship between source elevation angle, frequency and the
amplitude at an ear of a listener (source is at an azimuth of 0°).

In order to assess the apparent distance of a source to the listener, a number
of auditory cues are used. The first and most obvious cue is that of
amplitude. That is, a source that is near by will be louder than a source that is
further away. The relationship between a point source’s amplitude and
distance, in the free field, is known as the inverse square law as for each
doubling of distance, the amplitude of the source will reduce by a quarter
(1/[2%]). This is, of course, the simplest case, only holding true for a point
source in the free field. Sources are rarely a perfect point source, and rarely
heard in the perfect free field (i.e. anechoic circumstances) so, in reality, the
amplitude reduction is normally less than the inverse square law suggests. In
addition to the pure amplitude changes, distance dependant filtering can be
observed, due to air absorption (Savioja, 1999). This will result in a more low-
pass filtered signal, the further away the source. The direct to reverberant
ratio of the sound will change depending on the source’s distance to the
listener with a source close to the listener exhibiting a large amount of direct
sound when compared to the reverberation, but a sound further away will

have a similar amount of reverberation, but a lower level of direct sound

(Begault, 2000). There are two reasons for this. Firstly, the diffuse part of the
room'’s response (i.e. the part not made up of direct sound or first order
reflections) is made up from the sound bouncing off many surfaces, and as
such, will be present all through the room. This means that the level of this
part of the reverberation is reasonably constant throughout the room. Also, as
the source moves away from the listener, the distance ratio between the path
length of the direct sound and the early reflections becomes closer to one.
This means that the first reflections will arrive closer (in time), and have an
amplitude that is more similar to the level of the direct sound. This is shown in
Figure 2.17.

Source £

N i 4 List,i.aner

Figure 2.17 A graph showing the direct sound and early reflections of two sources
inaroom.

Evidence suggests that the reverberation cue is one of the more robust cues
in the simulation of distance and has been shown to create the illusion of a
sound source outside of the head under headphone listening conditions
(McKeag & McGrath, 1997).

Of all the cues available to differentiate source distances, the least apparent is
that the source’s incidence angle from the listener’s ears will change as the
source is moved away from a listener (Gulick, 1989). Figure 2.18 shows two

source examples, one source very close to the listener, and one source at

infinity. The close source has a greater binaural distance associated with it
when compared to the far source. This means that as sources move off-

centre, the binaural distance for a far source will not increase as quickly as
the binaural distance for a near source (that is, the maximum binaural time

difference is less for a far source).

N
) |

Near Source Far Source
Figure 2.18 A near and far source impinging on the head.

2.4 Summary

In summary, the ear/brain system uses a number of different cues when trying
to make sense of the sounds that we hear. These consist of the low level
cues that are a result of the position and shape of the ears, such as:

e Interaural level differences.

e Interaural phase and time differences.

e Head/torso and pinna filtering.
These cues are used by the ear/brain system to help determine the angular
direction of a sound, but are also combined and processed using higher order
cognitive functions in order to help make sense of such things as the
environment that the sounds have occurred in. It is these higher order
functions that give us the sense of the environment that we are in, assigning
more information to the object than a directional characteristic alone. Such
attributes as distance perception are formed in this way, but other attributes
can also be attached in a similar manner, such as the size of an object, or an
estimation as to whether the sounding object is facing us, or not (in the case

of a person talking, for example).

If a successful surround sound system is to be developed then it is apparent
that not only should the low-level cues be satisfied, but they should also be as
coherent with one another as possible so that the higher order cognitive

functions of the ear/brain system can also be satisfied in a useful and

meaningful way.

Chapter 3 - Surround Sound Systems

3.1 Introduction

In this chapter past and current surround sound algorithms and techniques
will be discussed starting with a historical account of the first systems,
proposed by Bell Labs and Alan Blumlein, how Blumlein’s early system was
used as a loose basis for stereo, and then on to the theory and rationale
behind the systems that are used presently.

The early systems are of importance as most surround sound systems in use
today base themselves on the techniques and principles of this early work. In
the context of this research, one main system will be decided upon as
warranting further research in order to fulfil the research problem detailed in
Chapter 1, with the following criteria needing to be met:
e A hierarchical carrier format must be decided upon.
e This carrier must be able to be decoded for multi-speaker systems
with different speaker arrangements.
e This decode must be able to provide the listener with the relevant
auditory cues which will translate well into a binaural representation.
As the above system is to be converted into a binaural and transaural
representation, these systems will also be discussed.

3.2 Historic Review of Surround Sound Techniques and
Theory

Although standard stereo equipment works with two channels, early work was
not necessarily fixed to that number, with the stereo arrangement familiar to
us today not becoming a standard until the 1950s. Bell labs original work was
predicated on many more speakers than this initially (Rumsey & McCormick,
1994) and is the first system described in this section.

3.2.1 Bell Labs’ Early Spaced Microphone Technique

The early aims of the first directional sound reproduction techniques tried at

Bell Labs was that of trying to reproduce the sound wave front from a source

on a stage (Rumsey & McCormick, 1994). A sound source was placed on a
stage in a room; this was then picked up by a large number of closely spaced
microphones in a row, in front of the source. These signals were then
transmitted to an equal number of similarly spaced loudspeakers (as shown in
Figure 3.1).

&

--'--------------

Figure 3.1 Graphical depiction of early Bell Labs experiments. Infinite number of
microphones and speakers model.

The result was an accurate virtual image that did not depend on the position
of the listener (within limits) as the wave front approaching the speakers is
reproduced well, much like wave-field synthesis (to be discussed later in this
chapter). Bell Labs then tried to see if they could recreate the same idea
using a smaller number of speakers (Figure 3.2), but this did not perform as
accurately (Steinberg, J. & Snow, W., 1934). The main problem with such a
setup is that once the many speakers are removed, the three sources (as in

the example shown in Figure 3.2) do not reconstruct the wave front correctly.

Let us consider the three speaker example shown in Figure 3.2. If the source
is recorded by three microphones, as shown, the middle microphone will
receive the signal first, followed then by the microphone on the right, and
lastly captured by the microphone on the left. These three signals are
reproduced by the three loudspeakers. If the listener is placed directly in front
of the middle loudspeaker, then the signal from the middle speaker will reach
them first, followed by the right and left loudspeakers together. However, as

the signal from the source was delayed in reaching the left and right

microphones, the delay from each of the left and right speakers is increased
even more. Now, if the combined spacing between the microphones and
speakers equates to a spacing greater than the diameter of the head, then the
time delays reproduced at the ears of the listener will be greater than the
maximum interaural time difference of a real source. This will then result in
either the precedence effect taking over (i.e. the source will emanate from the
centre loudspeaker) or, worse still, echoes will be perceived. This is due to a
phenomenon known as ‘spatial aliasing’ and will be described in more detail in
section 3.3.2. The spacing of the microphones was necessary as directional
microphones had not been invented at this point in time, and only pressure

sensitive, omnidirectional microphones were available.

&

Figure 3.2 Early Bell Labs experiment. Limited number of microphones and
speakers model.

3.2.2 Blumlein’s Binaural Reproduction System

While carrying out research into the work of Alan Blumlein, it was soon
discovered that there seems to be some confusion, in the audio industry,
about certain aspects of his inventions. This seems mainly due to the fact
that the names of the various techniques he pioneered have been changed,
or misquoted, from the names that he originally gave. Alan Blumlein delivered
a patent specification in 1931 (Blumlein, 1931) that both recognised the
problems with the Bell Labs approach and defined a method for converting
spaced microphone feeds to a signal suitable for loudspeaker reproduction.
Blumlein called his invention Binaural Reproduction. This recording technique

comprised of two omni-directional microphones spaced at a distance similar

to that found between the ears, with a round panel baffle in between them.
This technigue was known to work well for headphone listening, but did not
perform as accurately when replayed on loudspeakers. Blumlein realised that
for loudspeaker reproduction, phase differences at the speakers (i.e. in the
spaced microphone recording) did not reproduce phase differences at the
listener’s ears. This was due to the unavoidable crosstalk between the two

speakers and the two ears of the listener, as shown in Figure 3.3.

Figure 3.3 Standard “stereo triangle” with the speakers at +/-30° to the listener (x
denotes the crosstalk path).

Blumlein had discovered that in order to reproduce phase differences at the
ears of a listener, level differences needed to be presented by the speakers.
His invention included the description of a ‘Shuffling’ circuit, which is a device
that converts the phase differences, present in spaced microphone
recordings, to amplitude differences at low frequencies (as at higher
frequencies the amplitude differences would already be present due to the

sound shadow presented by the disk between the two microphones).

If we consider the stereo pair of loudspeakers shown in Figure 3.3, it can be
seen that there are two paths from each speaker to each ear of the listener. If
the sound that is recorded from the Blumlein stereo pair of microphones is to
the left of centre, then the left channel’s signal will be greater in amplitude
than the right channel’s signal. Four signals will then be transmitted to the
ears:

1. The left speaker to the left ear.

2. The left speaker to the right ear.

3. The right speaker to the right ear.

4. The right speaker to the left ear.
If we take the case of a low frequency sound (where the interaural phase
difference is the major cue), as the paths from the speaker to the contralateral
ear is longer than from the speaker to the ipsilateral ear, the signal will appear
delayed in time (but not changed in amplitude, due to the wave diffracting
around the head, see Chapter 2). The resulting signals that arrive at each ear

are shown in Figure 3.4.

— Left Speaker
— Right Speaker | |

Arnplitude

1 1 1 1 1
0 200 400 600 800 1000 1200
Samples

—— Left Ear
— Right Ear ||

Arnplitude

1 1 1 1 1
1] 200 400 B00 a00 1000 1200

Samples
Figure 3.4 Low frequency simulation of a source recorded in Blumlein Stereo and

replayed over a pair of loudspeakers. The source is to the left of centre.

It can be clearly seen that low frequency phase cues can be encoded into a
stereo signal using just amplitude differences and once the head starts to
become a physical obstacle for the reproduced signals (at higher

frequencies), a level difference between the ears will also become apparent.

It may seem strange that Blumlein used a spaced microphone array to model
what seems to be a coincident, amplitude weighted, microphone technique,
but only omnidirectional microphones were available at this time. However,
less than a year later a directional, ribbon microphone appeared that had a
figure of eight polar response. This microphone was better suited to

Blumlein’s Binaural Reproduction technique.

1 — Left Speaker
—— Right Speaker

B4
180

. - ~

EREN . v . Y

-

! . - . - N
210) - - ’ 330

3 v s Tl o5 - e

5, W P #

B e

270

Figure 3.5 Polar pickup patterns for Blumlein Stereo technique

Blumlein’s coincident microphone technique involved the use of two
coincident microphones with figure of eight pickup patterns (Blumlein, 1931)
(as shown in Figure 3.5) and has a number of advantages over the spaced
microphone set-up shown in Figure 3.2. Firstly, this system is mono
compatible, whereas spaced microphone techniques are generally not (if not
shuffled). If we again consider the microphone arrangement given in Figure
3.2 then each of the microphones receives the same signal, but changed in
delay and amplitude. As there are delays involved, adding up the different
channels will produce comb-filtering effects (as different frequencies will
cancel out and reinforce each other depending on their wavelengths).
However, this will not be the case using Blumlein’s binaural sound as the two
microphones will pick up the same signal, differing only in amplitude. A mono
signal can be constructed by adding the left and right signals together
resulting in a forward facing figure of eight response. The Blumlein approach
also has the added advantage that the actual signals that are presented from
each loudspeaker can be altered after the recording process. For example,
the apparent width of the sound stage can be altered using various mixtures
of the sum and difference signals (see spatial equalisation, later in this

section). Also, Blumlein based his work on what the ear would hear, and

described how a stereo image, made up of amplitude differences alone, could

create low frequency phase cues at the ears of a listener (Blumlein, 1931).

Blumlein did foresee one problem with his two microphone arrangement,
however. This was that the amplitude and phase cues for mid and low
frequencies, respectively, would not be in agreement (Blumlein, 1931;
Glasgal, 2003a). It was possible to solve this problem using the fact that the
signals fed to each speaker could be altered after recording using the sum
and difference signals. This technique is now known as spatial equalisation
(Gerzon, 1994), and consisted of changing the low frequency signals that fed
the left and right speaker by boosting the difference signal and cutting the
sum signal by the same amount (usually around 4dB). This has the effect of
altering the pickup pattern for the recorded material in a manner shown in
Figure 3.6. This technique is still used today, and is a basis for parts of the
Lexicon Logic 7™ (Surround Sound Mailing List Archive, 2001) and
Ambisonic systems (Gerzon, 1974), the principles of which will be discussed

in detail later in this chapter.

— Low Frequency Pickup
80 4 | — High Freguency Pickup

180 |-+

270

Figure 3.6 Graph showing the pick up patterns of the left speaker’s feed after
spatial equalisation.

Blumlein’s binaural reproduction technique is one of the few that truly
separates the encoding of the signal from the decoding, which allows for the
various post recording steps that can be carried out in a clearly defined,

mathematically elegant way. Blumlein was soon employed by the military to
work on radar, amongst other things. It may be because of this that
Blumlein’s work was not openly recognised for a number of years (Alexander,
1997), but his principles were later used in the formulation of a three

dimensional sound system (see Ambisonics, later in this chapter).

3.2.3 Stereo Spaced Microphone Techniques

Although the Blumlein Stereo technique has many advantages as a recording
format when used for reproduction over loudspeakers, there is another school
of thought on this matter. This is that such ‘summation localisation theories’
cannot hope to accurately reproduce recorded material as no onset time delay
is introduced into the equation, and if this is the case, then although steady
state (continuous) signals can be reproduced faithfully, the onset of sounds
cannot be reproduced with strong enough cues present to successfully fool
the ear/brain system. To this end, a number of spaced microphone
techniques were developed that circumvented some of the problems
associated with Bell Labs wave front reconstruction technique described
above. It must be noted, however, that Blumlein did use spaced microphone
techniques to record sound as he was well aware that, for headphone
listening, this produced the best results. However, in order to replay these
recordings over speakers, to achieve externalisation, a Blumlein shuffler was
used, that converted the signals, at low frequencies, to consist of only

amplitude differences.

If we recall from the Bell Labs system, anomalies occurred because of the
potentially large spacing between the microphones that were picking up the
sound sources. A more logical approach is a near-coincident microphone
technique that will limit the time of arrival errors so that the maximum time
difference experienced by a listener will not be perceived as an echo. The
ORTF method uses a pair of spaced directional microphones usually spaced
by around 17 cm (roughly equal to the diameter of a human head) and at an
angle of separation of 110° (as shown in Figure 3.7). This means that the
largest possible time difference between the two channels is comparable with

the largest time of arrival difference experienced by a real listener. Directional

microphones are used to simulate the shadowing effect of the head. This
arrangement is a trade off between spaced and coincident microphone
techniques as it has the increased spaciousness of spaced microphones (due
to the increased de-correlation of the two signals) but also has reasonably

good mono compatibility due to the close proximity of the microphone

capsules.
110°
| / 17cm \ [
Figure 3.7 ORTF near-coincident microphone technique.

Another widely used technique is the Decca Tree (Rumsey and McCormick,
1994). This is a group of three microphones matrixed together to create two
loudspeaker feeds. An example of the Decca Tree arrangement is shown in
Figure 3.8. In this arrangement the centre microphone feed is sent to both
channels, the left microphone feed is sent to the left channel and the right
microphone is sent to the right channel. In this way, the differences between
the two channels outputs are lessened, giving a more stable central image,
and alleviating the ‘hole in the middle’ type effect of a spaced omni technique
(the sound always seeming to originate from a specific speaker, as in the Bell
Labs set-up).

1O

1.5m

| 2m |

Figure 3.8 Typical Decca Tree microphone arrangement (using omni-directional
capsules).

3.2.4 Pan-potted Stereo

The systems that have been discussed thus far have been able to record
events for multiple speaker playback, but a system was needed that could be
used to artificially place sources in the desired location to create the illusion of
a recorded situation. Due to the simplicity of Blumlein stereo, as opposed to
spaced microphone techniques, creating a system where individual sources
could be artificially positioned was based on amplitude panning (Rumsey and
McCormick, 1994). So, a simulation of the Blumlein coincident microphone
system was needed. As the coincident microphones were figure of eight
responses the gains needed to artificially pan a sound from the left speaker to
the right speaker are given in equation (3.1). The SPos offset parameter is
basically to ‘steer’ the virtual figure-of-eight responses so that a signal at one
speaker position will have no gain at the opposite speaker, i.e. a virtual source

at the speaker position is an actual source at the speaker position.

LeftGain =sin(@ + SPos)
RightGain = cos(& + SPos)

(3.1)

where: SPos is the absolute angular position of the speaker.

6 is the desired source position (from SPos® to —SPos”).

—

-
0
T
1

— Left Gain
— Right Gain]

=)
[n]
T

Arplitude Gain
I e o o
] (o] E=] [n7] -l
T T T T T T
1 1 1 1 1 1

=
.
T
1

!

30

[
[
]
(]
'
—
=
]
—
=
]
]

Desired Source Angle

Figure 3.9 A stereo panning law based on Blumlein stereo.

This is, however, really a simplification of Blumlein’s stereo technique as his
spatial equalisation circuit is generally not used in amplitude stereo panning

techniques.

Simple amplitude (or pair-wise panning) has now been used for many years,
but does suffer from a few problems. It has been shown that the maximum
speaker separation that can be successfully utilised is +/- 30° and that side-
imaging is very hard to achieve using this method (Glasgal, 2003b). Both of
these facts are not necessarily detrimental to simple two-speaker stereo
reproduction, but will present a larger problem with surround sound
techniques as this would mean a minimum of six equally spaced speakers
placed around the speaker would need to be used (based on only the angular

spacing assumption).

In summary, there are basically two schools of thought when it comes to the
recording of live situations for replay over a stereo speaker array (pan-potted,
stereo, material is almost always amplitude panned, although artificial
reverberation devices often mimic a spaced microphone array rather than a
coincident setup). There are those that abide by spaced microphone

techniques, reasoning that the time onset cues are very important to the

ear/brain system (i.e. the precedence effect) and these are impossible to
recreate using a coincident microphone arrangement. On the other side there
are those who prefer the mathematical simplicity of coincident microphone
arrangements, believing that the potential phase/time misalignment of the
signals originating from the speakers in spaced microphone techniques to be
detrimental to both the timbre and accuracy of the recorded material. Of
course, both are correct to a certain degree and both coincident and spaced
techniques can produce very pleasing results. However, the main problem
with spaced microphone techniques is that, because potentially unknown time
differences will be present between the two channels, the practical
reprocessing of new signal feeds becomes much more difficult, while not an
issue for two-speaker stereo, will become an issue for larger arrays of

speakers.

3.2.5 Enhanced Stereo

As can be deduced from both Blumlein and Bell Labs early work, stereo
sound (which, incidentally, neither Blumlein or Bell Labs referred to their work
as ‘Stereo’ sound) was never limited, theoretically, to just two speakers, as
their work was mainly geared towards film sound reproduction that needed to
encompass large audiences. Three speakers was a good minimum for such
a situation as it was soon found that angular distortion was not too detrimental
to the experience, except when it came to dialogue (Blumlein’s original idea of
the dialogue following the actors was not widely taken up). Dialogue needed
to always sound as if it was coming from the screen and not the nearest
speaker to the listener, which could happen due to the precedence effect. To
this end the centre speaker was useful for both fixing dialogue to the centre of
the sound stage, and also for increasing the useful listening area of the room.
If a source is panned between two speakers, then a mixture of the time
difference and the level difference between the ears will be used to calculate
where the sound source is originating from. So, if the listener is in the centre
of the two speakers the time (phase) cues will be constructed from the level
differences between the speakers. However, as the listener moves off-centre
the time delay from the two speakers will change the perceived direction of

the sound source. This time difference can be counteracted by the amplitude

differences between the two speakers, but angular distortion will always
occur, and once the listener is much closer to one speaker than the other, all
but the hardest panned material will tend to emanate from the closer of the
two loudspeakers. Hence, having a centre speaker not only fixed dialogue to
the screen, but also lessened the maximum time difference that could be

experienced between two speakers at any one time.

3.2.6 Dolby Stereo

Much of the motivation for early surround sound implementations was the
cinema, and early multi-channel playback was attempted as early as 1939 in
the Disney film, Fantasia (Kay et al. 1998). However, although a magnetic
multi-channel standard had been available since the 1950’s (Dolby Labs,
2002), it was not as robust or long lasting as the mono optical track that was
used at this time. Dolby was to change this in 1975 mainly due to the use of
their noise reduction techniques that had revolutionised the professional
recording industry since the 1960’s. The optical system in use at that time
had a number of problems associated with it. The standard for the mono
track’s frequency response was developed in the 1930’s which, although
making the soundtrack replayable in almost any cinema in the world, reduced
the bandwidth to that of a telephone. This response, called the Academy
characteristic (Dolby Labs, 2002), also meant that the soundtracks were
recorded with so much high frequency pre-emphasis that considerable
distortion was also present in the audio. Dolby’s research found that most of
these problems were because of the low signal to noise ratio of the optical
transmission medium, and in the late 1960’s looked at using their type A noise
reduction systems in order to improve the response of the sound. Although
this worked very well, the noise reduction was not embraced as
enthusiastically as for the professional audio industry and Dolby decided that
if it was to make serious ground in the film industry it was the number of
channels available, and not solely the sound quality that would gain success.
In 1975 Dolby made public their film sound breakthrough. Using the same
optical technology as was already in place, a new four-channel stereo system
was introduced (Dolby Labs, 2002). It worked by storing just two channels of

audio which represented the left and right speaker feeds. Then, the sum of

these two channels represented the centre channel, and the difference
between these two signals represented the surround feed. These principles
were updated slightly due to the nature of the storage mechanism and replay
situations.

1. Due to the potential phase misalignment and other analogue
imperfections in the replay medium, high frequency sounds intended
for the centre front speaker could leak back into the surround speakers.
For this reason, the surround channels were band limited to around 7
kHz.

2. The surround speakers found in cinemas were often closer to the
listener than the front speakers were. To make sure that the
precedence effect didn’t pull much of the imaging to the back and
sides, the surround feeds were delayed.

3. The surround feed was phase shifted by +/- 90° prior to being added to
the left and right channels. This meant that any material added to the
surround channel would be summed, equally out of phase, with the left
and right channels (as opposed to one in phase, one out of phase).

A simplified block diagram of the Dolby encode/decode process is shown in
Figure 3.10. This, matrix, surround sound technique had a number of points
in its favour:

1. It could be distributed using just two channels of audio

2. It was still an optical, and therefore cheap and robust, recording
method.

3. The stereo track was mono compatible.

4. A new curve characteristic was used which, when coupled with Dolby
noise reduction, greatly improved the fidelity of cinema sound.

For these reasons, the film industry took to the new Dolby Stereo format.

Left + +

-Centre »

+ ﬂ + t

Right . +
Bandpass 100Hz — J

P

Dolby Stereo Encoding Process

— >—surten |
LT Lot |

+ 0 +
20ms 90° Phase
_ M Delay | shifter [| + » Centre

Rt | [Right

Dolby Stereo Decoding Process

H

2

Figure 3.10 Simplified block diagram of the Dolby Stereo encode/decode process

3.2.7 Quadraphonics

While Dolby was concentrating on film sound reproduction, surround sound
techniques were being developed for a wider audience (in the home) and the
first of these systems was termed Quadraphonics. Quadraphonics worked on
the principle that if the listener wanted to be surrounded by sound then all that
would be needed was an extension of the stereo panning law described
above, but moving between four loudspeakers. The loudspeakers were setup
in a square (usually) and sounds could theoretically be pair-wise panned to
any azimuth around the listener. However, it was soon shown that +/- 45°
was too wide a panning angle at the front and back, and side images could
not be formed satisfactorily using pair-wise panning techniques (Gerzon,
1974b & 1985). This, coupled with a number of incompatible formats, the
extra expense needed for more speakers/amplifiers and the poor performance
of early Quadraphonic matrix decoders meant that Quadraphonics was not a

commercial success.

3.3 Review of Present Surround Sound Techniques

This section describes systems that are now still generating work and interest
within the surround sound community (not necessarily any newer than some

systems mentioned in section 3.2).

Systems in use today can be separated into two distinct categories:

1. Systems that define a speaker layout and/or carrier medium but
with no reference to how signals are captured and/recorded for the
system. Examples include

o Dolby Digital - Ac-3 (Dolby Labs, 2004)
o DTS (Kramer, N.D.)
o0 Meridian Lossless packaging (De Lancie, 1998)

2. Systems that define how material is captured and/or panned for
replay over a specified speaker layout. Examples include

0 Ambisonics

0 Wavefield Synthesis

0 Ambiophonics
This thesis will concentrate on the systems in the 2" of these categories, that
define how material is captured and replayed over a system as the 1% type of
system is just defining a standard for which the 2" category of system could
be applied to (for example, both DTS and Dolby Digital are both lossy,
perceptual codecs used to efficiently store 6 discrete channels to be played

over a standard, ITU, 5.1 speaker array)

3.3.1 Ambisonics

3.3.1.1 Theory

Ambisonics was a system pioneered mainly by Michael Gerzon and is based
on the spherical harmonic decomposition of a sound field (Gerzon, 1974). In
order to understand this last statement the fundamentals of Ambisonics are

reviewed.

A definition for what makes a decoder Ambisonic can be found in Gerzon &

Barton (1992) and their equivalent U.S. patent regarding Ambisonic decoders

for irregular arrays (Gerzon & Barton, 1998), and states (slightly adapted to
remove equations):

A decoder or reproduction system is defined to be Ambisonic if, for a centrally
seated listening position, it is designed such that:
e The decoded velocity and energy vector angles agree and are
substantially unchanged with frequency.
e At low frequencies (below around 400 Hz) the low frequency
velocity vector magnitude is equal to 1 for all reproduced azimuths.
e At mid/high frequencies (between around 700 Hz and 4 kHz) the
energy vector magnitude is substantially maximised across as large
a part of the 360° sound stage as possible.

To understand these statements, the underlying concepts of Ambisonics will
be explained, leading into a description of the velocity and energy vectors and

their relevance to multi-speaker surround sound systems.

Ambisonics is a logical extension of Blumlein’s binaural reproduction system
(at least, after it's conception). Probably one of the most forward looking
features of the Blumlein technique is that when using the two figure of eight
capsules positioned perpendicular to each other, any other figure of eight
response could be created (it was this fact that was utilised in Blumlein’s
spatial equalisation technique). For example, if we take the two figure of eight
microphones shown in Figure 3.5, then any figure of eight microphone
response can be constructed using the equations shown in Equation (3.2).

Some example microphone responses have been plotted in Figure 3.11.

sum=(L+R)/+2
Dif =(L-R)/~2
Figure8 = (cos(@)x Sum)+ (sin(@)x Dif)

(3.2)

where: 0 is the desired response angle.
L is the left facing figure of eight microphone.
R is the right facing figure of eight microphone.

Figure8 is the reconstructed figure of eight microphone.

o — 0 Deg Feed
A —— 45 Deg Feed

—— 90 Deg Feed

—— 135 Deg Feed

Figure 3.11 Plot of microphone responses derived from two figure of eight
microphones.

This approach is very similar to Gerzon’s in that the encoding (recording) side
is independent from the decoding (reproduction) process. That is, Blumlein
stereo could be replayed over 1, 2 or more speakers. Where Gerzon’s
Ambisonics improves upon this idea is as follows:

e Ambisonics can be used to recreate a full three dimensional sound field
(i.e. height information can also be extracted from the Ambisonics
system).

e The decoded polar pattern can be changed, that is, you are not fixed to
using a figure of eight response.

As an example, 1% order Ambisonics can represent a sound field using four
signals (collectively known as B-Format). The W signal is an omni-directional
pressure signal that represents the zero™ order component of the sound field
and X, Y and Z are figure of eight microphones used to record the particle
velocity in any one of the three dimensions. Graphical representations of
these four B-Format microphone signal responses are given in Figure 3.12.

Z

Figure 3.12 The four microphone pickup patterns needed to record first order
Ambisonics (note, red represents in-phase, and blue represents out-of-
phase pickup).

Ambisonics is a hierarchical format so that although four channels are needed
for full three-dimensional reproduction, only three channels are needed if the
final replay system is a horizontal only system. The mathematical equations
representing the four microphone responses shown in Figure 3.12 are shown
in equation (3.3). These equations can also be used to encode a sound
source and represent the gains applied to the sound for each channel of the

B-format signal.

W =1/42
X = cos(6)x cos(e)
Y =sin(6)x cos(c)
Z =sin(a)

(3.3)

where: o = elevation angle of the source.

6 = azimuth angle of the source.

In order to replay a B-Format signal, virtual microphone responses are
calculated and fed to each speaker. That is, using the B-format signals, any
1% order microphone response can be obtained pointing in any direction. As
mentioned before, this is very much like the theory behind Blumlein Stereo,

except that you can choose the virtual microphone response from any first

order pattern (and not just a figure of eight), from omni to figure of eight. This
is possible using the simple equation shown in equation (3.4) (Farina et al.,
2001)

S=05x[2—d)g,W +d(g,X +9,Y +9,Z)|

(3.4
where: W, XY & Z are the B-format signals given in equation (3.3)
S = speaker output
0 = speaker azimuth
o = speaker elevation

d = directivity factor (0 to 2)

This gives us the flexibility to alter the polar pattern for each speaker in a
decoder. Example patterns are shown in Figure 3.13.

To clarify the Ambisonic encode/decode process, let us encode a mono
source at an azimuth of 35° and an elevation of 0° and replay this over a six

speaker, hexagonal rig.

m

—_

[e B e Y e

[T 1
[y |

= =00

180 Feeeeheee e

270

Figure 3.13 Graphical representation of the variable polar patterns available using
first order Ambisonics (in 2 dimensions, in this case).

From equation (3.3) the B-format (W, X, Y and Z) signals will consist of the

amplitude weighted signals shown in equation (3.5).

W =0.7071 x mono
X = co0s(35)cos(0) x mono = 0.8192 x mono
Y = sin(35)cos(0) x mono = 0.5736 x mono
Z = sin(0) x mono =0 x mono
(3.5)

Where: mono is the sound source to be panned
W, X, Y & Z are the resulting B-Format signals after mono has had the

directionally dependant amplitude weightings applied.

Equation (3.4) can now be used to decode this B-format signal. In this case a
cardioid response will be used for each speaker’s decoded feed, which
equates to a directivity factor of 1 (see Figure 3.13). Equation (3.6) shows an

example speaker feed for a speaker located at 150° azimuth and 0° elevation.

S = 0.5 x [(1.414 X W) + (-0.866 x X) + (0.5 X Y) + (0 x Z)]
(3.6)

where: W, X & Y are the encoded B-Format signals.

S = resulting speaker feed

The polar pattern used for the decoder can be decided either by personal
preference, that is, by some form of empirically derived setting, or by a

theoretical calculation which obtains the optimum decoding scheme.

This leads us back to the original statement of what makes a system
Ambisonic. Although the B-format input signal is the simplest to use for the
Ambisonic system, the term Ambisonics is actually more associated with how
a multi-channel decode can be obtained that maximises the accuracy of the
reproduced sound field. The three statements given at the beginning of this
section mention the energy and velocity vectors associated with a multi-
speaker presentation, and it is using these that an Ambisonic decoder can be
designed.

3.3.1.2 Psychoacoustic Decoder Design Using the Energy and Velocity

Vectors.

Although Gerzon defined what makes a system Ambisonic, a number of
different decoding types have been suggested both by Gerzon himself and by
others (see Malham, 1998 and Farino & Uglotti, 1998). However, the theory
behind Ambisonics is, as already mentioned, similar to Blumlein’s original idea
that in order to design a psychoacoustically correct reproduction system the
two lateralisation parameters must be optimised with respect to a centrally

seated listener (Gerzon, 1974).

Originally, Gerzon’s work concentrated on regularly spaced arrays in two and
three dimensions (such as square and cuboid arrays) where the virtual
microphone responses chosen for the decoders were based on the system
being quantified using the principles of energy and velocity vectors calculated
at the centre of the array to be designed. These two vectors have been

shown to estimate the perceived localisation and quality of a virtual source

when reproduced using multiple speakers (Gerzon, 1992c). The equations

used to calculate the energy and velocity vectors are shown in Equation (3.7)
with the vector lengths representing a measure of the ‘quality’ of localisation,
and the vector angle representing the direction that the sound is perceived to

originate from, with a vector length of one indicating a good localisation effect.

n

P:Zgi E:Zgi2
i i1

n

=1
Vx = Zn:g,cos 6,)/P Ex=> g/ cos(6,)/E

i=0 i=0

Zn:g sin(6,)/P Ey= Zg,sm)/E

i=0

3.7)

Where:
gi represents the gain of the i" speaker (assumed real for simplicity).
n is the number of speakers.

0; is the angular position of the i"" speaker.

These equations use the gain of the speakers in the array, when decoding a
virtual source from many directions around the unit circle (each speaker’s gain
can be calculated using the B-Format encoding equations given in Equation

(3.3) combined with the decoding equation given in Equation (3.4)).

For regular arrays, as long as the virtual microphone responses used to feed
the speakers were the same for all, the following points can be observed:

e The reproduced angle would always be the same as the source’s
encoded angle.

e The energy (E) and pressure (P) values (which indicate the
perceived volume of a reproduced source) would always be the
same for any reproduced angle.

This meant that when optimising a decoder designed to feed a regular array
of speakers:

e Only the length of the velocity and energy vectors had to be
optimised (made as close to 1 as possible).

e This could be achieved by simply changing the pattern control (d) in
equation (3.4) differently for low (<700Hz) and high (>700Hz)
frequencies.

As an example Figure 3.14 shows the velocity and energy vector plots of an
eight speaker horizontal Ambisonic array using virtual cardioid responses for

each speaker feed.
Dlow=1:Dhigh=1

11| Encode Angles , Decode Angles
l / 5
0.5¢ X T4 &1 Unit Circle
o 1 R
‘ \ / Energy
\\ / 4— Vectors
-0.5 I
Velocity -
Vectors T Speakers
1 =R
-15 -1 0.5 0 0.5 1 15

Figure 3.14 Velocity and Energy Vector plot of an eight-speaker array using virtual
cardioids (low and high frequency directivity of d=1).

In order to maximise the performance of this decoder according to Gerzon's
methods, the low frequency (velocity) vector length should be 1, and the high
frequency (energy) vector length should be as close to 1 as possible (it is
impossible to realise a virtual source with a energy vector of one, as more
than one source is reproducing it). This can be achieved by using a low
frequency directivity pattern of d=1.33 and a high frequency directivity pattern
of d=1.15. This produces the virtual microphone patterns as shown in Figure
3.15 (showing the low frequency pattern for a speaker at 0° and a high
frequency pattern for a speaker at 180° in order to make each pattern easier
to observe) and has a corresponding velocity and energy vector plot as shown
in Figure 3.16.

Virtual microphone responses for a 1st order, eight speaker rig
90

21 D S 330

—— HF Polar Response
—— LF Polar Response

Figure 3.15 Virtual microphone responses that maximise the energy and velocity
vector responses for an eight speaker rig (shown at 0° and 180° for
clarity).

D low =1.33: D high = 1.15

0.5-

-1.5 -1 -0.5 0 0.5 1 15

Figure 3.16 Velocity and Energy Vector plot of an eight speaker Ambisonic decode
using the low and high frequency polar patterns shown in Figure 3.16.

As can be seen in Equation (3.4), a change of polar pattern in the decoding
equation will result in two gain offsets; one applied to the W signal, and
another applied to the X, Y and Z signals. This could be realised,

algorithmically, by the use of shelving filters boosting and cutting the W, X, Y

and Z signals by the desired amount prior to decoding, which simplified the

design of, what was at the time, an analogue decoder.

It soon became apparent that, due to both the cinema and proposals for high
definition television, the standard speaker layout for use in the home was not
going to be a regular array. Gerzon had always had difficulty in solving the
velocity and energy vector equations for irregular arrays because irregular
arrays would generally need optimising, not only for the vector lengths, but
also for the decoded source angles and the perceived volume of the decoder
(for example, more speakers in the front hemisphere, when compared to the
rear, would cause sources to be louder when in that hemisphere). This meant
that a set of non-linear simultaneous equations needed to be solved. Also,
the shelving filter technique used for regular decoders could not be used for
irregular decoders as it was not just the polar pattern of the virtual
microphones that needed to be altered. To this end a paper was published in
1992 (Gerzon & Barton, 1992) describing how a cross-over filter technique
could be used along with two decoder designs, one for the low frequency and

one for the high frequencies, in order to solve the irregular speaker problem.

In the Gerzon & Barton (1992) paper, a number of irregular Ambisonic
decoders were designed, however, although many five speaker decoder
examples were given, none were as irregular as the ITU finally specified. For
example, the front and rear spacing of the ITU layout are +/- 30° from straight
ahead and +/- 70° from directly behind the listener, respectively, but the
decoders Gerzon designed always had a front and rear spacing that were
similar to each other (e.g. +/-35° front and +/- 45° rear) and although much
work has been carried out on Ambisonics, a psychoacoustically correct
‘Vienna style’ decoder (named after the AES conference in Vienna where the
Gerzon & Barton paper was presented) has not yet been calculated. It must
also be noted that Gerzon’s method for solving these equations was, by his
own admission, are “very tedious and messy” (Gerzon & Barton, 1992) and it
can be observed, by visualising the velocity and vector responses, in a similar

manner to Figure 3.16, that this paper does not solve the equations optimally.

This is due to the splitting of the encoding and the decoding by Gerzon. An

example of a decoder optimised by Gerzon & Barton is shown in Figure 3.17

Velocity
Speakers Vector

0,12.25,22.5,

45,90 & 135
degrees
reproduced
--------------------------------- angles
Energy
Vector

Figure 3.17 Energy and velocity vector analysis of an irregular speaker decode
optimised by Gerzon & Barton (1992).

It can be clearly seen, in Figure 3.17, that the high frequency decode (green
line representing the energy vector) has reproduced angles that do not match
up with the low frequency velocity vector response. This is due to the fact that
the Gerzon & Barton paper suggests that although the vector length and
reproduced angle parameters should be optimised simultaneously for the high
frequency energy vector, a forward dominance adjustment (transformation of
the B-format input signal) should then be carried out to ensure that perceived
volume of the high frequency decoder is not biased towards the back of the
speaker array. This, inevitably, causes the reproduced angles to be shifted

forward.

3.3.1.3 B-Format Encoding

The encoding equations (3.3) are basically a simulation of a B-format
microphone (such as the SoundField Microphone, SoundField Ltd., n.d.)
which has a four-channel response as shown in Figure 3.12. However,
recording coincidentally in three dimensions proves to be extremely difficult.
Coincident microphone techniques in two dimensions (see 3.2.2, Blumlein’s ,

page 36) are possible where the microphones can be made coincident in the

X =Y axis but not in the Z axis (although this still causes some mis-alignment

problems); however, in three dimensions this is not desirable as recording

needs to be equally accurate in all three dimensions. This problem was

solved by Gerzon and Craven (Craven & Gerzon, 1977) by the use of four sub

cardioid microphone capsules mounted in a tetrahedral arrangement. This

arrangement is shown in Figure 3.18.

Figure 3.18 Four microphone capsules in a tetrahedral arrangement.

The capsules are not exactly coincident, but they are equally non-coincident

in each axis’ direction, which is important as this will simplify the correction of

the non-coincident response. However, to aid in the explanation of the

principles of operation of this microphone the capsule responses will, for now,

be assumed to be exactly coincident and of cardioid response. As shown in

Figure 3.18, each of the four microphone capsules faces in a different

direction:
Capsule Azimuth Elevation
A 45° 35.3°
B 135° -35.3°
C -45° -35.3°
D -135° 35.3°
Table 3.1 SoundField Microphone Capsule Orientation

As each of the capsules has a cardioid pattern (in this example) all sound that

the capsules pick up will be in phase. Simple manipulations can be

performed on these four capsules (know collectively as A-format) so as to

construct the four pick-up patterns of B-format as shown in equation (3.8). A

graphical representation of the four cardioid capsule responses and the four

first order components derived from these are shown in Figure 3.19.

W =05x(A+B+C+D)
X =(A+C)-(B+D)
Y =(A+B)-(C+D)
Z=(A+D)-(B+C)

=Y X
+x><,Y

(3.8)

A-Format W from A
X from A 8 Z from A

Y from A

Figure 3.19 B-Format spherical harmonics derived from the four cardioid capsules
of an A-format microphone (assuming perfect coincidence). Red
represents in-phase and blue represents out-of-phase pickup.

As is evident from Figure 3.19, four perfectly coincident cardioid microphone
capsules arranged as described above can perfectly recreate a first order, B-
format, signal. However, as mentioned earlier, the four capsules providing
the A-format signals are not perfectly coincident. This has the effect of
misaligning the capsules in time/phase (they are so close that they do not
significantly affect the amplitude response of the capsules), which results in
colouration (filtering) of the resulting B-format signals. As all of the capsules
are equally non-coincident then any colouration will be the same for each
order, i.e. the 0™ order component will be filtered in one way, and the 1% order
components will be filtered in another way. However, using cardioid
microphone pickup patterns causes the frequency response of the B-format
signals to fluctuate too much, and so for the actual implementation of the

microphone, sub-cardioid polar patterns were used (as shown in Figure 3.20).

To illustrate the frequency response characteristics of an Ambisonic
microphone, it is simpler to assume that the microphone only works
horizontally. Each of the four sub-cardioid capsules has no elevation angle,
only an azimuth as described earlier. The equations that construct W, X, and
Y will still be the same (3.8), but the Z component will not be constructed.
Figure 3.20 shows a number of representations of a sound being recorded
from four different directions, 0°, 15°, 30° and 45° and indicates what
amplitude each capsule will record, what timing mismatches will be present
(although, note that the sample scaling of this figure is over-sampled many
times), and finally a frequency response for the W and X signals. It can be
seen that the two channels not only have different frequency responses, but
also these responses change as the source moves around the microphone. It
must be remembered that the overall amplitude of the X channel will change
due to the fact that the X channel has a figure of eight response. Looking at
Figure 3.20 shows a clear problem with having the capsules spaced in this
way, and that is the fact that the frequency response of the B-format signals
changes as the source moves around the microphone. The smaller the
spacing, the less of a problem it becomes (as the changes move up in
frequency due to the shortening of the wavelengths when compared to the
spacing of the capsules), and Figure 3.20 is based on the approximate
spacing that it part of the SoundField MKV microphone (Farrah, 1979a).

Figure 3.20 Simulated frequency responses of a two-dimensional, multi-capsule A-
format to B-format processing using a capsule spacing radius of 1.2cm.

These responses can be corrected using filtering techniques, but only the
average response will be correct, with the sound changing timbrally as it is

moved around the microphone.

Although the frequency response deviations sound like a large problem, they
are not noticed and are combined with other errors in the signal chain such as
microphone capsule imperfections and loudspeaker responses. Also Farrah
(1979b) claims that similar coincident stereo techniques have a far greater
error than the SoundField microphone anyway — “Closeness of the array
allows compensations to be applied to produce B-format signal components
effectively coincident up to about 10 kHz. This contrasts vividly with
conventional stereo microphones where capsule spacing restricts coincident
signals up to about 1.5 kHz”. What is being referred to here is the frequency
at which the filtering becomes non-constant. If the graphs in the omni-
directional signal response are observed, it can be seen that its frequency
response remains constant up to around 15 kHz, and it is the spacing of the
capsules that defines this frequency. The closer the capsules, the higher the

frequency until non-uniformity is observed.

The SoundField microphone has many advantages over other multi-channel
microphone techniques, with the main advantage being the obvious one in
that it is just one microphone, and therefore needs no lining up with other
microphones. Also, any combination of coincident first order microphones
can be extracted from the B-format signals, which implies that the B-format
signal itself can be manipulated, and this is indeed true. Manipulations
including rotation, tumble and tilt are possible (Malham, 1998) along with
being able to zoom (Malham 1998) into a part of the sound field, which alters
the balance along any axis. Equations for these manipulations are given in
(3.9).

X —Zoom Rotation about Z Rotation about X

W =W+ .d-X

J2 W' =W W’ =W
X' =X +2-d-W X'=X-cos(@)+Y -sin(@) X'=X
N s Y'=Y .cos(f)- X -sin(6) Y'=Y-cos(6)-Z-sin(6)
Yi=Nlmd Y 2'=2 Z'=2Z-cos(0)+Y -sin(9)

Z'=+1-d’z
(3.9)

where d is the dominance parameter (from —1 to 1).

0 is the angle of rotation.

A graphical representation of the effect that the zoom, or dominance, control

has on the horizontal B-format polar patterns is shown in Figure 3.21.

d=-0.5 d=0 d=0.5

Figure 3.21 Effect of B-format zoom parameter on W, X, and Y signals.

As is evident from Figure 3.21 and Equation (3.9), the dominance parameter
works by contaminating the W signal with the X signal and visa versa, which
means that any speaker feeds taking in X and W will have these signals
exaggerated if both are in phase, or cancelled out, if both are out of phase
with each other. This coupled with the attenuation of the Y and Z channels
means that any derived speaker feeds/virtual microphone patterns will be
biased towards the X axis. Dominance in the Y and Z directions can also be

achieved in the same way.

3.3.1.4 Higher Order Ambisonics

Ambisonics is a very flexible system with its only main drawback being that

only a first order microphone system is commercially available (however, it

must be noted that all commercially available microphones have a first order
polar pattern at present). However, as the name first order suggests, higher
order signals can be used in the Ambisonics system, and the theory needed
to record higher order circular harmonics has been discussed in a paper by
Mark Poletti (Poletti, 2000). A 2" order system has nine channels for full
periphony (as opposed to the four channels of 1* order) and five channels for
horizontal only recording and reproduction (as opposed to three channels for

st order). The equations for the nine 2" order channels are given in (3.10)
(Furse, n.d.).

W =1/y2

X = cos(6)x cos(ex)

Y =sin(6)x cos(e)

Z =sin(a)

R=15xsin’(a)-0.5

S =cos(@)xsin(2a) S

T =sin(6)xsin(2a)
U = cos(260)x cos?(ex)
V =sin(26)x cos?(a)

X
o

(3.10)

where: o = elevation angle of the source.

6 = azimuth angle of the source.

For horizontal only work « is fixed at zero which makes the Z, R, S, & T
channels hold at zero, meaning that only W, X, Y, U & V are used. To
demonstrate the difference in polar patterns (horizontally) between 1%, 2", 3™
and 4™ order polar patterns (using equal weightings of each order), see Figure
3.22.

90 speaker decode of a point source at az =180, el =0
a0

15t Order
2nd Order
3rd Order
dth Order

30

180 [oorrbor oo Y] 0

a0

270

Figure 3.22 Four different decodes of a point source polar patterns of 1%, 2", 3" &
4™ order systems (using virtual cardioid pattern as a 1° order reference
and equal weightings of each order). Calculated using formula based
on equation (3.4), using an azimuth of 180° and an elevation of 0° and a
directivity factor (d) of 1.

Higher order polar patterns, when decoded, do not imply that fewer speakers
are working at the same time; they are just working in a different way to
reconstruct the original sound field. Figure 3.23 shows the decoded levels for
an infinite number of speakers placed on the unit circle. The virtual source is
placed at 180° and the virtual decoder polar pattern is set to that shown in
Figure 3.22. The multiple lobes can clearly be seen at 180° for the second
order decode and at approximately 130° and 250° for the third order decode.
Note that the peak at the source position is not necessarily the same for each
Ambisonic order (the responses were scaled in Figure 3.22, but this is a
decoder issue), but the sum of all the decoder feeds (divided by the number of
speakers) is equal to 1 for each order. This means that the measured

pressure value at the middle of the speaker array will be consistent.

90 speaker decode of a point source at az =180, el =0

12 T T T T T T T
= ot Crder
O Order
1 m Jrd Order |H
Atk Order
0.8 -
[k}
g
=
= 0E .
=
T
o
= (.4 .
[ak]
=
i3]
0.2 -
|:| -
_I:Iz 1 1 1 1 1 1 1
] a0 100 150 200 2680 300 350 400

Decode Angle (degrees)

Figure 3.23 An infinite speaker decoding of a 1%, 2", 3" & 4™ order Ambisonic
source at 180°. The decoder’s virtual microphone pattern for each order
is shown in Figure 3.22.

One point not mentioned so far is that there are a minimum number of
speakers needed to successfully reproduce each Ambisonic order, which is
always greater than the number of transmission channels available for the
decoder (Gerzon, 1985). This problem can be compared with the aliasing
problem in digital audio, that is, enough ‘samples’ must be used in the
reproduction array in order to reproduce the curves shown in Figure 3.23. For
example, if we take a 1% and a 2" order signal and reproduce this over four
speakers (knowing that a 2" order signal will need at least six speakers to be
reproduced correctly) then the amplitude of the signals at the four speakers is
shown in Figure 3.24. It can clearly be seen that speakers two and four (at
90° and 270° respectively) have no output, whereas speaker 3 (positioned at
180°) has an amplitude of 1, coupled with the opposite speaker (at 0°) having

an output amplitude of 1/3.

4 speaker decode of & point source at az = 180, el =10

1 . 2 T T T T T T T
B st Order
B Znd Order
1} A :
o,
q.""": "‘"f
08F R pd ',‘ B : 4
o oS -t
= e » Lo
-E ‘,* : L ’4
= 06 » » L ** a
= - » A A
Z - o
i * -
E 04k ‘ﬁ. :. ".L ’4. .
e + " - '+
- * [
E% nﬁ." “‘ :‘ l'- ‘0‘ ‘F
f‘ *‘ >] “‘ "‘
02k 2. X = - 4
» *e e - Ot
‘i‘ ‘Q‘ :‘ ‘-_ "1 “‘
* o L] -
i | L] = [
_|:|2 1 1 1 1 1 1 1
0 ad 100 150 200 2580 300 350 400

Decode Angle (degrees)

Figure 3.24 Graph of the speaker outputs for a 1 and 2" order signal, using four
speakers (last point is a repeat of the first, i.e. 0%360° and a source
position of 180°.

This will result in the image pulling towards one speaker when the source
position is near that direction. This is also shown in the research by Gerzon
(1985) and will cause the decoding to favour the directions at the speaker
locations. This is detrimental to the reproduced sound field as one of the
resounding features of Ambisonics is that all directions are given a constant
error, making the speakers ‘disappear’, which is one reason as to why

Ambisonics can give such a natural sounding reproduction.

Recent work by Craven (2003) has now described a panning law (as
described in the paper, which is analogous to an Ambisonic decoder) for
irregular speaker arrays using 4™ order circular harmonics. This uses the
velocity and energy vector theories mentioned above to optimise the decoder
for the ITU irregular 5-speaker array. What is interesting about this decoder is
that although 4™ order circular harmonics are used, the polar patterns used for
the virtual microphone signals are not strictly 4" order (as shown in Figure
3.22) but are ‘contaminated’ with 2", 3" and 4™ order components in order to

steer the virtual microphone polar patterns so that the performance of the

decoder is maximised (which means having a high order front and low order
rear decode, dependant on speaker density). The velocity and energy vector
analysis of the 4™ order decoder used by Craven (2003) can be found in
Figure 3.25 and the corresponding virtual microphone patterns can be seen in
Figure 3.26.

Plot of 4th Order Irregular Decoder

.
tu,

08

04r

02r

.....

04

OB+

Figure 3.25 Energy and Velocity Vector Analysis of a 4™ Order Ambisonic decoder
for use with the ITU irregular speaker array, as proposed by Craven
(2003).

Yitual microphone patterns used for 4th order decoder

180

270

Figure 3.26 Virtual microphone patterns used for the irregular Ambisonic decoder
as shown in Figure 3.25.

It must also be noted that a number of researchers have now started to work

on much higher orders of Ambisonics (for example, 18" order) and it is at

these orders that Ambisonics does, indeed, tend towards a system similar to

wavefield synthesis (see Sontacchi & Holdrich, 2003 and Daniel et al., 2003)

and although these, much higher order systems, will not be utilised in this

report, the underlying principles remain the same.

3.3.1.5 Summary

Ambisonics is an ideal system to work with for a number of reasons:

It has both a well defined storage format and simple synthesis equations,
making it useful for both recording/mixing and real-time synthesis.

The encoding is separated from the decoding resulting in a system where
decoders can be designed for different speaker arrays.

The design of a decoder is based on approximations to what a centrally
seated listener will receive, in terms of phase and level differences
between the ears at low and high frequencies. This makes it an ideal
choice for a system that can be converted to binaural and transaural

reproduction.

However, a number of issues are apparent:

The optimisation of a frequency dependant 1 order decoder for use with
the ITU 5 speaker array has not been achieved with the technique of
solving the non-linear simultaneous equations representing the velocity
and energy vectors being both laborious and leading to non-ideal results.
This process will only become more complicated when more speakers are
added (Gerzon & Barton, 1992 and Gerzon & Barton, 1998).

The energy and velocity vectors are low order approximations to the actual
head related signals arriving at the ear of the listener. The analysis and
design of Ambisonic decoders could, potentially, be improved through the

use of head related data directly.

3.3.2 Wavefield Synthesis

3.3.2.1 Theory

Although this research concentrates on the Ambisonic form of speaker
surround sound, it is not necessarily because it is the most realistic in its
listening experience. One of the most accurate forms of surround sound
(from a multiple listener point-of-view) is termed Wavefield Synthesis. In its
simplest form Wavefield Synthesis is the system first tried by Bell Labs
mentioned at the beginning of this chapter (Rumsey and McCormick, 1994);
however, the theory and underlying principles of Wavefield Synthesis have
been studied, the mathematical transfer functions calculated and a theoretical
understanding of the necessary signal processing involved in such a system
have been developed. The result is that individual sources can be
synthesised, simulating both angular placement and distance (with distance
being the cue that is, perhaps, hardest to recreate using other multi-speaker

reproduction systems).

Wavefield synthesis is different from most other multi-speaker surround sound
systems in a number of ways:
e |tis a volume solution, that is, there is no ‘sweet spot’, with an equal
reproduction quality experienced over a wide listening area.
e Distance simulation is very well suited to Wavefield Synthesis. This is
a difficult cue to simulate using other forms of multi-channel sound.
e The resulting acoustic waves, rather than the source itself, are
synthesised.
Wavefield Synthesis (and the Bell Labs version before it) is based on
Huygen’s principle!. Put simply this states that any wave front can be
recreated by using any number of point sources that lie on the original wave.
This implies that to recreate a plane wave (i.e. a source at an infinite distance

from the listener) a line-array of speakers must be used, but to create a

! The principle that any point on a wave front of light may be regarded as the source of
secondary waves and that the surface that is tangent to the secondary waves can be used to

determine the future position of the wave front.

spherical wave (more like the waves heard in real life) an arc of speakers
must be used. However, where Wavefield Synthesis’ innovation lies is that
the necessary transfer functions have been calculated, and a line array of
speakers can synthesise both of these situations using a mixture of time
delays and amplitude scaling (a transfer function). It is often thought that
Ambisonics is spherical Wavefield Synthesis on a lesser scale, and Bamford
(1995) has analysed it in this way (that is, as a volume solution, looking at
how the well the sound waves are reconstructed); however, this is not strictly
the case as no time differences are recorded (assuming perfectly coincident
microphone capsules), or necessarily needed, and so it is more accurate to
think of Ambisonics as more of an amplitude panning scheme (albeit, one
based on more solid foundations than simple pair-wise schemes). This also
suggests that the results from Bamford (1995) that state that first order
Ambisonics is only ‘correct’ up to 216Hz (in a sweet spot 25cm wide) may be
a simplification (and under-estimation) of the system’s performance. In other
words, this is a measure of an Ambisonics wavefield synthesis performance.
Clearly, if Ambisonics only had a useable (spatially speaking) frequency of up
to 216Hz, and a sweet spot 25cm wide, it would not be very useful for

surround sound.

So what is the limiting factor for Wavefield Synthesis? Due to the finite
number of points used to recreate a sound wave, this system is limited by its
‘Spatial Aliasing Frequency’ (Berkhout et al., 1992). The equation for this
(although note that this is for a plane wave) is given in Equation (3.11)
(Verheijen et al., 1995).

fo-_C
W 2Axsin(0)

(3.11)
where: fayg = Limiting Nyquist Frequency.
AX = Speaker spacing.
0 = Angle of radiation.

c = Speed of sound in air (+342ms™)

It must be noted that although Wavefield Synthesis has a limiting frequency,
this is its Spatial Aliasing limit. That is, the system can reproduce sounds of
full bandwidth, however, accurate reproduction can only be correctly achieved
(theoretically) below this frequency (which is, incidentally, the reason Bell
Labs early simplification of their original multi-mike, multi-speaker array did
not work as hoped when the number of speakers was reduced). It can also
be seen that the limiting frequency is inversely proportional to the angle of
radiation. To understand the reasons behind this, an example is shown in
Figure 3.27.

Source

At=AX.sin(0)

a AX b

Figure 3.27 The effect that the angle of radiation has on the synthesis of a plane
wave using Wavefield Synthesis.

Once the angle of radiation is changed to an off-centre value (i.e. non-zero)
then the amount of time delay that is needed to correctly simulate the plane
wave is increased, proportional to the distance between the speakers
multiplied by the sine of the angle, 6. Once this time delay becomes more
than half the wavelength of the source the superposition of the wave fronts
creates artefacts that manifest themselves as interference patterns (Verheijen
et al., 1995). Filtering the transfer functions used to recreate the wave front
(or using more directional loudspeakers (Verheijen et al., 1995)) counteracts
this.

3.3.2.2 Summary

Wavefield Synthesis is reported as being one of the most accurate forms of
multi-channel sound available, but it does have some problems that make it
an undesirable solution for this project:

e Huge amount of transducers needed to recreate horizontal surround
sound (for example, the University of Erlangen-Nuremberg’s
experimental setup uses 24 speakers (University of Erlangen-
Nuremberg, N.D) arranged as three sides of a square).

e The reproduction of three-dimensional sound is not yet possible using
Wavefield Synthesis.

e Recording a sound field for reproduction using Wavefield Synthesis is
difficult due to the high rejection needed for each direction.
Synthesised material works much better (Verheijen et al., 1995).

e Large amount of storage channels and processing power needed to
provide loudspeakers with appropriate signals.

Also, there is not, as yet, a standard protocol for the storage and distribution
of such material; although this is being worked on as part of the MPEG
Carusso Project (Ircam, 2002). This lack of storage standard is not an issue,
of course, for applications that calculate their acoustical source information on

the fly, such as virtual reality systems.

3.3.3 Vector Based Amplitude Panning

3.3.3.1 Theory

Vector based amplitude panning (or V.B.A.P.) is an amplitude panning law for
two or three dimensional speaker rigs, and was developed by Ville Pulkki.
Once the speaker positions are known, the V.B.A.P. algorithm can then be
used to decode the speaker rig using pair-wise (two dimensions) or triple-wise
(three dimensions) panning techniques. An example of the two dimensional
algorithm is shown in Figure 3.28 (Pulkki, 1997).

gl @l

Figure 3.28 Graphical representation of the V.B.A.P. algorithm.

As can be seen in Figure 3.28, horizontal V.B.A.P. divides the source into its
two component gains, in the direction of the loudspeakers, which are then
used as the gains for the amount of the source that it supplied to each of the
speakers. It must be noted, however, that the sources are limited to existing
on the path between speakers by normalising the gain coefficients g; and gs.
To extend the system to three dimensions, triple-wise panning is used. An
example decode of a source travelling from an angle of 0° to an angle of 120°
is shown in Figure 3.29, along with the four un-normalised speaker gains.
This system can work very well, mainly because the largest possible
localisation error cannot be any more than one speaker away from where the
source should be. However, as can be observed from Figure 3.29, a speaker
detent effect will be noticed when a source position is in the same direction as
a speaker as only that speaker will be replaying sound. This will create a
more stable, and psychoacoustically correct virtual source (as it is now a real
source) which will mean that the individual speakers will be heard with the

sources potentially jumping from speaker to speaker if the spacing between
the speakers it too great.

Speaker Amplitude Source at 0° Source at 30°
Source at 60° Source at 90° Source at 120°

Figure 3.29 Simulation of a V.B.A.P. decode. Red squares — speakers, Blue
pentagram — Source, Red lines — speaker gains.

3.3.3.2 Summary

VBAP is based around the simple pair-wise panning of standard stereo,
although using the VBAP technique it can be easily used as a triple-wise,
with-height system. To this end, a VBAP system comprising of a low number
of speakers will suffer the same problems as other pair-wise panned systems
(see Quadraphonics, section 3.2.7). However, as the number of speakers are
increased, the accuracy of the system will improve, although side images will
always suffer when compared to frontal images due to pair-wise panning
techniques failing for speakers placed to the side of a listener (although the

error will, again, lessen with increased speaker density).

For this project, however, VBAP is unsuitable as:

e VBAP has no storage format — all panning information is calculated when
the material is replayed, as information regarding the speaker layout must
be known.

e Any pre-decoded material can not have additional speaker feeds
calculated according to the rules of VBAP.

e The decoded material is not optimised for a centrally seated listener,
making the system sub-optimal if conversion to headphone or transaural

systems is required.

3.3.4 Two Channel, Binaural, Surround Sound

Although all of the surround sound systems discussed so far have used more
than two channels (many more, in some cases), it is possible to use only two
channels. Such a system is termed binaural reproduction. As we only have
two ears, then it seems reasonable that only two channels of audio are
necessary to successfully fool the ear/brain system into thinking that it is
experiencing a realistic, immersive, three dimensional sound experience. All
of the speaker reproduction systems discussed so far have a number of
marked limitations:

e System performance is normally proportional to the number of

speakers used. The more speakers, the better the result.
e The sound from each speaker will reach both ears, making it a more
involved task to control exactly what is being perceived by the listener.

e The final system is usually a compromise due to the above limitations.
Binaural sound circumvents these limitations with the use of headphones. As
there is a one to one mapping of the ears to the transducers it is very easy to
provide the ears with the signals necessary to provide convincing surround
sound. Binaural sound reproduction works on the simple principle that if the
ears are supplied with the same acoustical pressure that would have been
present in real-life due to a real source, then the ear/brain system will be
fooled into perceiving that a real source is actually there. As discussed in
chapter 2, there are a number of auditory cues that the ear/brain system uses
to localise a sound source, a number of which can be simulated using a head
related transfer function (HRTF). An example pair of HRTFs are shown in
Figure 3.30, and are taken from a KEMAR dummy head in an anechoic
chamber by Gardner & Martin (1994). The source was at an angle of 45°

from the centre of the head, and at a distance of 1 m.

o
™
X
=}

o
@™

ra

==]

=l
=
i
=]

Magnitude (dB)

o
%]

i i i i i i
0.1 0.2 0.3 04 05 0B 07 08 09 1
Normslized Frequency (< radfsample)

o

Amplitude

=l
b

o
-

06t

08
]

n n n n n " y i i i i i i i
20 40 B0 80 100 120 0 0.1 02 03 04 0.5 0.6 07 08 08 1
Sample Number Mormalized Freguency (=<nradfsample)

Figure 3.30 Pair of HRTFs taken from a KEMAR dummy head from an angle of 45° to
the left and a distance of 1 metre from the centre of the head. Green —
Left Ear, Blue — Right Ear.

The three lateralisation cues can be clearly seen in this figure. These are:

e Amplitude differences — amplitude is highest at the nearer ear.

e Time differences — farther ear signal being delayed compared to the
closer ear (seen in both the time domain plot, and the phase response
plot, by observing the larger [negative] gradient).

e Pinna and head filtering — as the sound has two different physical paths
to travel to the ears, due to the pinna and the head, resulting in

frequency dependent filtering (seen in the frequency response plot).

It is the head related transfer function that forms the basis on which binaural
sound reproduction is founded, although through the use of anechoic HRTF
data alone, only simple lateralisation is possible. This will be discussed
shortly.

There are two ways in which to create a binaural reproduction, it can be
recorded using in-ear microphones, or it can be synthesised using HRTF
data. As far as the recording side of binaural sound is concerned, the theory
is as simple as placing a pair of microphones into the ear of the recordist (or
dummy head). The parts of the outer ear that filter the incoming sound wave
are the pinna and the ear canal. If the recorded material is taken from a
subject with an open ear canal (i.e. microphones placed in the ear of the
subject) then the recording will possess the ear canal resonance, which lies at

about 3 kHz (a 3 cm closed pipe has a fundamental resonant frequency of

2850 Hz). Then, when the listener replays the recording over headphones,
the recording will be subjected to another ear canal resonance, meaning that
the musical content will be perceived as having a large resonance at around 3
kHz. This, therefore, must be corrected with the use of equalisation; although
the blocking of the ear canal of the recordist prior to recording is another
solution (Kleiner, 1978). The actual positioning of the microphones within the
outer ear of the subject has an effect on the system where the most robust
positioning of the microphone is usually found to be inside the ear canal
(Ryan & Furlong, 1995), (although the blocking of the ear canal is not really a
desirable solution to the last problem). There are two other difficulties in
using recorded binaural material and they are pinna individualism and head
movements. As discussed in Chapter 2, everyone’s pinnae are different,
which in turn means that the complex filtering patterns that the pinnae apply to
the incoming sound waves are also different. The binaural recording process
means that the listener will be experiencing the sound field by listening
through somebody else’s ears. The results of this will be discussed later in

this section.

When it comes to synthesising a binaural sound field, HRTF data is used. As
the HRTF is a measure of the response of the ear due to a source, then it will
suffer the same difficulties mentioned for the recorded material. However,
some differences are apparent. The HRTF data used to synthesise sources
is normally recorded in an anechoic chamber (Gardner and Martin, 1994) as
this gives the greatest flexibility in source position synthesis as it is possible to
add reverberation, but very difficult to take it away again. Also, HRTFs are
usually recorded in pairs at a set distance from the centre of the head (say,
one metre), but this is not necessarily the most versatile solution. As a
demonstration of this, consider the situation shown in Figure 3.31.

~Source

HRTF
ctions from
1 metre

1 Metre

Listeners
Ears

Figure 3.31 Example of a binaural synthesis problem.

If distance is to be simulated correctly, then recording and storing the HRTFs
in pairs centred on the head actually complicates the situation. This is
because the pair of HRTFs will have an amplitude difference, time difference,
and pinna filtering that is not only due to the angle of incidence of the source,
but also its distance, as discussed in Chapter 2. This means that if a source
is to be synthesised at a distance that is different than the one that was
measured then the point at which the source intersects the measured
distance needs to be obtained. Extra delay also needs to be added to the
HRTF filters, with a different value added to the left and right HRTFs. This
adds extra, avoidable, calculations to the synthesis model, and is undesirable
in real-time applications. To combat this problem it is far better that the
HRTFs be recorded taking each ear as the centre point for the measurements
as this means that the angle from source to each of the listener’s ears needs
to be calculated, which is simpler than the scheme detailed above (although

extra delay does still need to be added for each response separately).

Once the problem of angle of incidence has been resolved (with one of the
two methods suggested above) then one of the main advantages of binaural
theory can come into play, and that is the simulation of distance cues.
However, obtaining sources that are localisable outside of the head (i.e. not

just resulting in source lateralisation) is not usually possible using anechoic

simulation of the source (McKeag & McGrath, 1997). This, in some respects,
is to be expected, as one of the psychological effects of being in an anechoic
chamber is that sources tend to be perceived much closer than they actually
are. One of the mechanisms that the brain utilises in the perception of source
distance is in the direct to reverberant ratio of sounds (see Chapter 2).
Sounds that are very close to the head have a very low (if any) reverberation
perceived with them, so if a sound is heard in an anechoic chamber then the
brain may assume that this source is close to us because of this. However,
when listening to synthesised binaural sources it is unlikely that true, or even
any, distance information will be perceived. This is due, mainly, to the
reasons given below:

e In nearly all listening situations the ear/brain system uses small head
rotations to resolve the position of a source within the cone of
confusion.

e The shape and, therefore, filtering of the sound due to the pinna of the
recording subject will be different than that of the listener.

A number of people (including Moller et al., 1996) suggest that individualised
HRTFs are needed for the accurate reproduction of binaural sound, while
others suggest that head tracking is the most important aspect of the
localisation process (Inanaga et al., 1995). However, it can be seen that
neither or these are necessarily needed, and depth perception can be
achieved by creating multiple, coherent auditory cues for the listener (McKeag
& McGrath, 1997). Again, depending on the application, there are two
methods of achieving this. Firstly, for the simulation of sources that are in a
fixed position, the HRTFs can be measured in a real room, thereby recording
the room’s actual response to a source, in this position, at the two ears of a
subject. This, when convolved with the source material, will create the illusion
of a source outside the head of the listener (McKeag & McGrath, 1997).
Secondly, if dynamic source movement is needed, such as in 3D gaming, and
virtual reality applications, then a model of the room in which the source is
placed must be realised separately from the source, and then all of the
images synthesised using anechoic HRTF data. The binaural synthesis of

material in this way can lead to a very convincing surround sound experience

using a limited number of channels, which is probably why all 3D computer

gaming cards use this form of modelling.

As mentioned in Chapter 1, it is now widely recognised that binaural
headphone reproduction techniques can be used as a method of auralising
multi-speaker arrays. This technique was pioneered by Lake DSP (for
example, see McKeag & McGrath (1997) and McKeag & McGrath (1996) as
an example of their later work), and more recently has been used by others
(for example, see Leitner et al., 2000 and Noisternig et al, 2003) as a method
of simulating both discrete speaker feeds and, in the case of Ambisonics,
realising an Ambisonic decoder efficiently as three or four HRTF filters (see
Chapters 4 and 5 for more details on this).

Interestingly, although three of the four papers mentioned above discuss
Ambisonics to binaural conversion, none use psychoacoustically optimised
decoders as discussed in section 3.3.1.2. This will result in sub-optimal
lateralisation parameters being reproduced at the listeners ears, as shown in

the non-optimised decoders discussed in section 5.2.

3.3.5 Transaural Surround Sound

Transaural surround sound techniques were first proposed in the 1960’s by
Atal, Hill and Schroeder (Atal, 1966) and, although based on a relatively
simple and understandable principle, were difficult to realise at this time.
Transaural sound is a process by which Binaural reproduction can be realised
over loudspeakers. Loudspeaker reproduction differs from headphone
reproduction in that the sound from one loudspeaker reaches both ears (a fact
that is the basis of Blumlein’s stereo reproduction technique, see earlier in this
chapter), and binaural reproduction over headphones relies on the fact that
the signal from one transducer only reaches one ear, that is, there is no
crosstalk between the ears of the listener. The Transaural system is easier to
explain if the following problem is considered. If a pulse is emitted from one
of a pair of loudspeakers, what must happen for that pulse to only appear at
one ear of the listener? This situation is shown in Figure 3.32, but is

simplified by taking each ear as a microphone in a free field (i.e. no filtering of

the sound will be present due to the head of the listener). Each of the two
speakers are equidistant from the centre of the two microphones, and subtend

an angle of 60 degrees (+/- 30°).

Time Domain Representation

— Mic1
—=-= Mic2

=
m

Arnplitude

Mic2 Micl L34 x 0] a0 T 0

Sample Number

Figure 3.32 Graphical representation of the crosstalk cancellation problem.

It can be noted that Mic1l receives the pulse first, closely followed by Mic2
which receives the same pulse, except that the amplitude has attenuated and
it arrives later in time due to the extra distance travelled. In order to cancel
the sound arriving at Mic2, the left loudspeaker can be made to emit a sound
so that the same amplitude as the signal arriving at Mic2 is achieved, but
inverted (180° out of phase) as shown in Figure 3.33. This signal now
cancels out the first sound picked up by Mic2 (see the microhpones response
to each speaker’s output in Figure 3.33), but then the crosstalk produces
another signal, again amplitude reduced, at Micl. So another, amplitude
reduced and phase inverted, signal is produced from the right loudspeaker to
counteract the Micl crosstalk signal, and so on. As the amplitude of these
pulses is always diminishing, a realisable and stable filter results, as shown in
Figure 3.34. Also shown in Figure 3.34 is the block diagram for a typical
implementation of a crosstalk cancellation system, note that this system will
crosstalk cancel for both speakers, that is, the Left input signal will only
appear at Mic2 and the Right input signal will only appear at Micl. These two
filters can be realised using a pair of I.I.R. filters*. However, this structure is
not used, in practice, as the response of the listener’s head is not taken into
account and so this form of crosstalk cancellation will be sub-optimal.

! Infinite Impulse Response filters using a feedforward/back loop and attenuating gain factors
(typically).

Response to Right Speaker QNLY Speaker Signals
T T T T

T T T T T T T T
— Mic1 — R Speaker
T i -—— Mic2 [] 1 --— L Speaker
0eF H A k:] k!
H
06t H 06
i
A
0.4 H 0.4
1]
o 02f H o 0.2H
= " =
= 11 =
0 5 0
3 £ 0
< .02F < 02+ ::
1
0.4} 4 o4
u
08t 4 osF 4
Qx-S q RIR: g
1 1
L L L L ! ! L L L ! L L
il 20 40 60 80 100 120 0 20 40 0 80 100 120
Sample Number Sample Number
Response to Left Speaker ONLY Response at Mics to BOTH Speakers
T T T T T T T T T T T T
— Mic1 — Mic?
r -== Mic2 [] Tr -==- Mic2
0eF A 0er k!
06 q 06r
04F A 0.4r
o 02} o 021
= =
= 2
s z 0
£ £
L .02F <02
0.4 A 0.4+
061 A 06+
0ar A 0ar
1 1
L L L L . . L L L . n n
0 20 40 60 =] 100 120] 20 40 &0 80 100 120
Sample Number Sample Number

Figure 3.33 Simulation of Figure 3.32 using the left loudspeaker to cancel the first
sound arriving at Mic2.

A graph showing Two Free Field Dipole Filters
T T T T T

=

[<3

Left
Speaker

Amplitude

s

e

Left

0 50 100 150 200 250 300 350 400 450
Time (samples)

T [Rigne |

$or L L l] Right
Eop] Speaker
of —» H2

Time (samples)

Figure 3.34 Example of free-field crosstalk cancellation filters and an example
implementation block diagram.

Although this particular filtering model would never be used in practice, it will
be used here to demonstrate the type of frequency response changes that
occur due to the crosstalk cancellation filtering process. In theory, of course,
the sounds heard at the two microphone positions will be as desired, but for
off centre listening (and also, to some extent, listening in the sweet spot in a

non-anechoic room) will have a response similar to that shown in Figure 3.35.

Although this seems slightly irrelevant for crosstalk cancellation filters
designed with HRTF data, it does show some of the extreme filtering that can

occur due to the system inversion process.

20

1

)
0.8

06

0.4H

02H

04

Amplitude

02

Amplitude (dB)
w

0.4

0.6

&
RUAY

-1

1 1 1 1 1 L L 1 1 1 R 1 L L 1
o 100 200 300 400 500 600 700 800 200 1000 0 045 1 148 2
Sample Mumber (at 48kHz, ¢ = 342ms-1) Frequency (Hz) “

Figure 3.35 Frequency response of free field crosstalk cancellation filters

The process above, described as filter inversion is, in fact, slightly more
complicated than this. Although the example above (crosstalk cancellation in
the free field) is a good starting point for gaining an understanding of the
processes involved in crosstalk cancellation algorithms, the equation has not
yet been defined. If we again look at the problem shown in Figure 3.36, it
can be seen that, for a symmetrical setup, only two transfer functions are
present, c; — the response of the microphone to the near speaker, and c;, —

the response of the microphone to the far speaker.

Mic2 Micl

Figure 3.36 The Crosstalk cancellation problem, with responses shown.

The relationship between the signals emanating from the speakers, and what

arrives at the two microphones is given in Equation (3.12).

Micl| |c, ¢, ||V
Mic2| |c, ¢, ||v,

Therefore, if we wish to present to the system the signals that we wish to

(3.12)

receive at Micl and Mic2, then the inverse of the transfer function matrix
needs to be applied to the two signals, prior to transmission (Nelson et al.,
1997) (which is what is happening in the system described in Figure 3.34) and
is shown in Equation (3.13). The simplification to two filters, h; and h, can be
made due to the crosstalk cancellation meaning that the signal at Mic2 will be

forced to zero and the signal at Micl will be the desired signal at unity gain.

e o il

: —-C : C
V, = ——— - Micl+ ——2— - Mic2 h =———
¢, -G ¢, -G ¢, -G
C = C
V, =———Mic2+——2—-Micl h, =——
¢, -G ¢, -G ¢, -G
(3.13)
where: v1 & v, are the speaker signals shown in Figure 3.36

c1 & c; are the transfer functions from Figure 3.36.

h; & h; are the transfer functions used in Figure 3.34.

The final filters are shown in Equation (3.14) (the multiplying of c1 + ¢,? to
both the numerator and denominator of the equation is also shown for
compatibility with the frequency dependent inversion procedure) and is carried
out in the frequency domain, adapted from Farina, et al. (2001), as inverting
this system in the time domain can take a long time, even on fast computers.
As an example, the calculation of the these filters in the frequency domain,
using Matlab® and a filter size of 1024 points takes less than a second,
however, using time domain signals coupled with the simple multiplications
and divisions turning into convolutions and de-convolutions means that the

same algorithm can take around half an hour to complete.

2 2 2 2
c, +C c, +C
h =c x| 1—2 h,=—c, x| 2—2
o (J T (
where: c1 & C; are the transfer functions from Figure 3.36.
h; & h; are the transfer functions used in Figure 3.34.

(3.14)

It must also be noted that Equation (3.14) shows the inversion procedure for
the symmetrical case (that is, the diagonals of the transfer function matrix are
identical), and is not the general solution for this problem. Now that the
mathematical equation has been defined, any transfer function can be used
for c; and ¢, and a non-free field situation simulated. For example, if two
speakers were spaced at +/- 30, as in a normal stereo triangle, then the
corresponding crosstalk cancellation filters will be the same as shown in
Figure 3.37.

o
=)

o o
S 2]

o
[X]

Amplitude
Amplitude

=]

=]
=

=]
.

06 L I L L ! ! L L L L
0 20 40 B0 a0 100 120 140 0 500 1000 1500 2000 2600

Sample Mumber Sample Mumber

Figure 3.37 Transfer functions c; and c, for a speaker pair placed at +/- 30°, and
their corresponding crosstalk cancelling filters.

As can be seen in the right hand graph of Figure 3.37, the crosstalk
cancellation filters actually have samples that are valued greater than one
(which denotes potential clipping in many audio applications); however, in this
case, they will not clip themselves (so long as storing these filters is not a
problem). Nevertheless, when they are applied to a signal, much
amplification will arise. The frequency responses of the two crosstalk

cancellation filters are given in Figure 3.38.

Armplitude (dB)
Arnplitude (dB)

I I I I L
1 1.5 2 0 0s 1 15 2
Frequency (Hz) w0t Freguency (Hz) w10t

L
1k}

Figure 3.38 Frequency response of the two speaker to ear transfer functions (c; &
C,) and the two crosstalk cancellation filters (h; & h,) given in figure
3.31.

It can clearly be seen that any dip in the response of the original transfer
functions, ¢, and c,, creates an almost corresponding boost in the inverse
response (this sounds obvious, but h; and h, are not the inverse of ¢; and c;
directly). In this case, the response is particularly troublesome at around 8
kHz, very low and very high frequencies. This is due partly to the ears’
response (pinna etc.), the speaker response and the anti-aliasing filters in the
recording of the HRTF responses respectively. To alleviate this problem a
technique known as ‘frequency dependent regularisation’ has been developed
(Kirkby et al., 1999). As the peaks in the crosstalk cancellation filters are due
to the filter inversion at a particular frequency, making the inversion ‘sub-
optimal’ at these frequencies will flatten out the response at these points. The
crosstalk cancellation equations using frequency dependent regularisation are
given in Equation (3.15) (all transfer functions have been converted into the

frequency domain).

2 2 2 2
c/+¢C c, +¢C
hy =c¢ x| ———F*— h, =—C, x| /——>—
C, —C,+& C, —C,+¢&
(3.15)
where: c1 & c; are the transfer functions from figure 3.30.

h; & h; are the transfer functions used in figure 3.28.
¢ is the frequency dependant regularisation parameter (0 — full

inversion, 1 — no inversion)

Figure 3.39 shows the effect on the frequency response of the two crosstalk
cancellation filters using a regularisation parameter of 1 above 18 kHz. If the
responses of ¢; and ¢, are observed (from Figure 3.38) it can be seen that
having a regularisation parameter of 1 actually causes the resulting crosstalk
cancellation filters to be the convolution of ¢; and c¢,, which is why the high

frequency roll-off is actually steeper in hy and h, than in c; and c,.

40

— h1 with reg
30 F | — h2with reg
1r ---- h1without reg
--- h2 without reg

0&F B 10

06}

04F

Regularisation Factor
Amplitude (dB)
S

02t - 30

0z L L L n &0 L I L .
] 0s 1 15 2] 05 1 15 2

Frequency (Hz) T Frequency (Hz) *

Figure 3.39 The regularisation parameter (left figure) and its effect on the frequency
response of the crosstalk cancellation filters h; & h, (right figure).

Using this regularisation parameter, the response of the system can be
tailored so that clipping is avoided, at the expense of sub-optimal cancellation
at these frequencies. Figure 3.40 shows the crosstalk cancellation of a pulse
emitted from the left speaker both with and without regularisation applied.
The corresponding speaker feeds after the crosstalk cancellation filters have

been applied so as to simulate the signals received by a listener.

With Regularisation

Left Speaker Right Speaker
148 1.8
1 1
0.5 0.5
In -
0 = 0
0.5 0.5
1 1
1.5 1.5
o 1000 2000 3000 4000 o 1000 2000 3000 4000
Left Ear Right Ear
1 1
0.5 } 0.5
0 0
1
oA 05
- -
3500 4000 4500 5000 3500 4000 4500 5000

Without Regularisation

Left Speaker Right Speaker
15 15
1 1
05 05
o 0 *
05 0.5
1 1
15 215
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Left Ear Right Ear
1 1
05 05
a 0
0.5 0.5
El -1
3500 4000 4500 5000 3500 4000 4500 5000

Figure 3.40 Simulation of crosstalk cancellation using a unit pulse from the left
channel both with and without frequency dependent regularisation
applied (as in Figure 3.39).

Assuming that any value greater than one will cause clipping of the signal
then it can be clearly seen that when regularisation is applied to the crosstalk
cancellation filters the system outputs much lower signals while still
maintaining almost the same signal level at the ears of the listener (it must be
noted that in this simulation the same HRTF data was used for both the

simulation and the calculation of the crosstalk cancellation filters, and this will

not be true in a real-life situation).

Apart from the frequency dependent regularisation parameter introduced
above, much of the theory behind Transaural sound reproduction has not
changed since its invention in 1962 (Atal, 1966). However, spacing the
speakers as a standard stereo pair meant that the sweet spot (the area where
crosstalk cancellation occurs) is small and very susceptible to errors due to
head movement. To combat this, researchers at Southampton University
discovered that this problem, and to a certain extent, that of excessive signal
colouration, could be alleviated by moving the speakers closer together to
span around 10°. If a small speaker span is used then the area of successful
crosstalk cancellation becomes larger as a line of crosstalk cancellation is
created. This means that the position of the listener with respect to the
distance from the loudspeakers is not so important, making the system more
robust. Also, to demonstrate the signal colouration changes we will again
consider the system shown in Figure 3.36. As the angular separation of the
speakers becomes smaller, the more identical the transfer functions between
each ear and the speakers (particularly at low frequencies) and hence, the
greater the amplitude of the cancellation filters at these frequencies. This
means that the angular separation of the speakers is limited by the amount of
boost that must be applied to the low frequencies of the system (assuming
regularisation is not used). An example of filters taking into account the HRTF
of the listener is shown in Figure 3.42. This, to some extent, shows the
‘swings and roundabouts’ situation that can occur when dealing with the
speaker placement of a Transaural system. Moving the speakers closer
together makes for a more robust system, and moves much of the sound
colouration into a higher frequency range, but creates a wider range of bass
boost, which speakers generally find more difficult to recreate. Optimisation
of this technique to alleviate some of these problems will be discussed in
Chapter 5.

w-talk filters at +- 30 degrees Frequency Response at +~ 30 degrees

T T T T T T T T T T 20 T T T
1o o ||
ey o h2
06t — 1}
04r +
0.2r e o
z =
z TTTTTTTTT?????¢ =
0
= E]
g l' IPEEEEE =
LI
=<
0.4 A
0.6 q
0.8 B
- Il Il Il Il 1 Il Il Il Il |
10 L I I L
u] 1000 200 300 400 500 ®OO 700 800 900 1000 [u] 0.5 1 15 2
Sample Number (at 36kHz, ¢ = 342ms-1) Frequency (Hz) ot
w-talk filters at +- 15 degrees Frequency Response at +- 15 degrees
16 T T T T T T T T T T 20 T T T T
o
0.8 _
2 15
0.6
0.4 0
» 02 g
=
E] @
= 04 ER:h 5
£ =
< £
0.2 £z
0.4 or 4
08
5t 4
0.8
4]
Rl L L L L L L L L L | .10 L L L L
0 100 200 300 400 &S00 GO0 700 800 900 1000 0 0.5 1 148 2
Sarmple Number (at S6kHz, © = 342ms-1) Frequency (Hz) . 104
w-talk filters at +~ 5 degrees Frequency Response at +- 5 degrees
T T T T T T T 20 T T T T

16 T T T

Amplitude
Amplitude (dB)
o

! ! ! ! L ! ! ! ! | R
0 100 200 300 400 800 BOO 700 800 900 1000 0 1k} 1 15 2

Sample Number (at 36kHz, ¢ = 342ms-1) Frequency (Hz) ot

Figure 3.41 Example of the effect of changing the angular separation of a pair of
speakers used for crosstalk cancellation.

Speaker Span = & degrees Speaker Span = 30 degrees

Armplitude (dB)
Arnplitude (dB)

. . L . .
ilis 1 0* 0* 1 10*
Frequency (Hz) Fregquency (Hz)

Figure 3.42 Example of the effect of changing the angular separation of the
speakers using HRTF data.

3.3.6 Ambiophonics

The methods for recreating surround sound described above cover the
current state of the art; however, there are now a number of emerging
techniques that combine the virtues of more than one of these techniques in
order to improve upon the usefulness of any one of these theories. Such a
system is Ambiophonics (Glasgal, 2001). Ambiophonics differs from most of
the systems described above as it does not attempt to be a general solution;
that is, it is only designed for the listening of recorded material in a concert
hall. It tries to recreate the ‘I am there’ situation. Ambiophonics is really a
hybrid of binaural/transaural reproduction coupled with a more
psychoacoustically correct reverb algorithm, so as to fool the ear/brain system
into thinking that it is immersed within a real hall. However, this is also, to a
certain extent, the remit for the Ambisonics system, so what are the main
differences? The main difference is that Ambisonics uses a generic panning
law so as to give equal priority (or localisation quality) to every direction,
whereas Ambiophonics always assumes that the stage is in front of the
listener and the ambience will be all around the listener. Therefore
Ambisonics is a much more general surround sound solution, whereas
Ambiophonics is limited in this way. However, due to this limiting factor a
number of issues can be addressed. The front stage signal is recorded using
(ideally) a pinna-less dummy head microphone (however, any stereo
recording method will work, to some extent (Glasgal, 2001)). Also, it is a good
idea to limit the amount of rear/side reflections that reach these microphones

(which is normally done for stereo recordings, anyway, in order to avoid a

recording that is too reverberant (Glasgal, 2003c)). Limiting the rear and side
reflections picked up by this stereo recording is necessary due to the fact that
these signals will be generated using convolution during the decoding stage.
This stereo signal can then be replayed using a crosstalk cancellation system
such as the system described in section 3.3.5. The surrounding ambience is
then created and distributed using a number of speakers surrounding the
listener. The main innovation here is that each speaker represents an early
reflection direction. This means that, as these early reflections are being
emitted from an actual source (rather than a panned position), all of the
psychoacoustic cues associated with the angular directional aspect of these
reflections will be absolutely correct, including the pinna cues, which are
almost impossible to replicate using any other system (except Wavefield

Synthesis). A typical layout for such a system is shown in Figure 3.43.

Figure 3.43 Example Ambiophonics layout.

As the crosstalk cancelled pair of speakers (typically set at +/- 5%, which
means multiple listeners sat in a line can experience the system) is
reproducing the frontal hemisphere of the concert hall, fewer speakers are
needed in front of the listener. The surround speakers are then fed with the
stereo signal convolved with a stereo pair of impulse responses which contain

no direct sound, a number of discrete reflections (one or more) and a diffuse,

uncorrelated (compared to the other speakers) tail. The speakers need not
be in an exact position as no exact inter-speaker imagery is to be taken into
account; in fact, repositioning the speakers until the most desirable response
is found is a good technique for the creation of the best sounding concert hall.

Using the Ambiophonics technique many of the cues needed for the
localisation of sound and perception of a real space are met, with particular
attention paid to the accuracy of the reverberation. That is not to say that the
system must sound exactly like a real hall, but that the auditory cues present
in the reverberation of the material are psychoacoustically very accurate and

will sound like a realistic hall.

3.4 Summary

In this chapter, a number of techniques for the recording and reproduction of
spatial sound have been investigated and discussed. It must be noted that
the most popular panning algorithm, as far as the ITU 5 speaker layout is
concerned, is a version of the V.B.A.P. algorithm, or pair-wise panned system.
This method can work very well for frontal sources. However, at the sides of
the listener, it has been shown (Gerzon, 1985) that pair-wise panning does
not work correctly, with the ear/brain system finding it very difficult to decode
such a system. This causes ‘holes’ in the recreated sound field, which is not
too detrimental for film material, which is the medium this layout was designed
for (as most material will come from the front, with occasional effects or
ambience using the rear speakers). Also, it is not a particularly well defined
system in that there is no agreed technique in the recording of pair-wise
panned material, and recording for the ITU 5 speaker layout is quite often
based upon extended Decca Tree arrangements (Theile, 2001) for a number
of reasons:

e The decorrelation of low frequency components is thought to be very
important in the perception of spaciousness in a sound field. Spacing
the microphones that feed the array almost guarantees this
decorrelation.

e The precedence effect can only be simulated using spaced microphone
techniques. This is not to say that coincident microphone techniques

do not encode phase information (see Chapter 3), they just cannot

represent time of arrival differences correctly as the microphone picks

up sound from one point in space (theoretically).
However, these techniques do not lend themselves well to different speaker
arrangements (that is, they are not hierarchical based formats), and now, as
the media and technology for multi-channel sound reproduction is becoming
more readily available, the industry is starting to realise that they do not want
to rerecord/remix an album every time a new speaker layout is presented to
them. For this reason this research focuses on the Ambisonics system, which
is the only hierarchical system defined at this moment in time (although
MPEG-4 is now being specified to address this, to some extent (MIT Media
Lab, 2000)). If Ambisonics hierarchical system is used as a carrier format (in
its 1%, 2" or higher order variants) then the system can be decoded for any
multi-speaker system. However, currently, a number of limitations are present
using this system:

e Although Gerzon and Barton (1992) suggested a number of
optimisation equations for use with irregular speaker arrangements, the
equations are difficult to solve, and so no further research seems to
have been published in this area giving optimal coefficients for use with
the standard ITU five speaker layout.

e Although a method of converting Ambisonics and five speaker ITU
surround sound to binaural reproduction has been suggested by
McKeag & McGrath (1996 & 1997 respectively), no work has been
carried out on the optimisation of these multi speaker systems in order
to reproduce the correct psychoacoustic cues at the ears of the
listener. This has been shown to be a trivial optimisation for a regular
speaker array, but will rely on the work mentioned in the point above
for the optimal auralisation of material if distributed on a medium
carrying the standard 5.1 channels as specified by the ITU standard.

¢ Only a handful of software utilities for the encoding and decoding of
Ambisonic material is available (McGriffy, 2002), and no
psychoacoustically correct decoding software for irregular arrays

exists.

These current limitations will be addressed in the following chapters of this

thesis.

Chapter 4 - Development of a Hierarchical Surround

Sound Format

4.1 Introduction

Although many surround sound decoding techniques are available, a number
of problems are evident. For the majority of multi-speaker presentations, the
material is composed specifically for a particular speaker layout, and
Binaural/Transaural systems suffer from this same, inherent, problem. This
does not, of course, create a problem initially, but as soon as the speaker
layout becomes obsolete, or a Binaural or Transaural production needs to be
replayed on a multi-speaker platform, a complete reworking of the sound
piece is needed. For these reasons, this chapter will concentrate on the
description of a hierarchical surround sound format, based on an
amalgamation of currently available systems, in order to maximise the number
of replay situations that the system is capable of satisfying. The benefits of
this system are:

e The created piece will be much more portable in that, as long as a
decoder is available, many different speaker layouts can be used.

e The recordings will become more future-proof as, if a speaker layout
changes, just a re-decode is needed, rather than a whole remix of the
piece.

e The composition/recording/monitoring of the piece will become more
flexible as headphones, or just a few speakers can be used. This will
result in less space being needed. This is particularly useful for on-
location recordings, or small studios, where space may be limited.

4.2 Description of System

Such a system can be described diagrammatically as shown in Figure 4.1.

n-channel
carrier

A 4

Sound-field
Manipulations.
Rotations etc.

Recorded/ —) Encoding
Panned —» Block

Signals :

VYVVYY

v

A 4

n-speaker output
decoder

Figure 4.1 Ideal surround sound encoding/decoding scheme.

A 4

2-speaker trans-
aural decoder

A 4

A 4

2-channel
binaural decoder

As can be seen in Figure 4.1, this ideal surround sound system should

conform to the following criteria in order to maximise its flexibility and

usefulness:

e A hierarchical carrier signal should be used. That is, a carrier system

should be able to be understated (channels ignored, reducing

localisation accuracy) or overstated (extra channels added later,

increasing localisation accuracy).

e This encoded signal should be able to be manipulated after encoding,

i.e. rotations about the x, y and z axis etc..

e The encoded signal should be able to be easily replayed over multiple

listening situations including:

o0 A number of different speaker arrangements, as almost no-one

can place their speakers in the ITU or future speaker positions.

o0 Over headphones.

o Over a standard stereo pair (and other placement widths) of

speakers.

e Efficient means of transferring from the carrier to one of the above

systems.

If we take the current ‘state of the art’ surround standard as an example, and

try to apply the above criteria to it, a number of shortcomings can be

observed. In Dolby Digital 5.1, the carrier signal is six discrete channels, each

one representing a speaker signal directly. Each speaker is assumed to be

at the speaker locations specified in the ITU standard as shown in Figure 4.2.

»
80“%"80
L

Figure 4.2 Standard speaker layout as specified in the ITU standard.

To listen to this system over headphones is not a difficult task and has been
achieved by a number of companies (Mackerson et al., 1999; McKeag &
McGrath, 1997). It is achieved by binaurally simulating speakers using HRTF
data, and replaying the resulting two channels over headphones. As
discussed in Chapter 3, the binaural reproduction of surround sound material
needs to contain some form of psychoacoustically tangible reverb involved if a

realistic, out-of-head experience is to be delivered.

When auralising 5.1 surround two approaches can be taken. The first
approach assumes that the 5.1 surround system is trying to simulate an
acoustic space where each speaker can be rendered using a pair of anechoic
HRTFs, normally between 128 and 1024 samples in length. This approach
will rely on the 5.1 decode to supply the ear/brain system with the appropriate
reverberation, and is the most computationally efficient solution. However,
the qualities and amount of the reverberation used on each recording may be
psychoacoustically confusing and, therefore, not convincing enough to
promote the out-of-head imaging possible with the binaural approach. The
better approach (and the one used by Lake (McKeag & McGrath, 1997) and
Studer (Mackerson, et al., 1999)) is where the speakers are simulated in a
‘good’ listening room, that is, each speaker will have its own reverb
associated with it, on top of anything that is already recorded within the
surround sound material. This can be done in one of two ways:

e Simulate the individual speakers using a pair of head related transfer

functions per speaker, and then simulate the listening room using a

binaural reverb algorithm (perhaps using discrete first order room
reflections, again a pair of HRTFs per reflection, followed by a short,
diffuse tail).

e Simulate the individual speakers and room together using a much

longer pair of head related transfer functions per speaker.

The decision of which of the two approaches to use is really a question of
processing power available. The difference in efficiency between the two
methods can be quite high depending on the implementation used. Ideally
the second method would be used, as this would provide a closer match to a
real environment, and therefore maximising the performance of the binaural

decode.

This method has been shown to work very well, especially when carried out
with head-tracking (Makerson, et al., 1999), although a good interpolation
algorithm is then needed to stop the creation of clicks and pops due to the
changing filter structures (in fact, the development and implementation of
interpolation algorithms can be the most time consuming part of such a piece
of professional audio hardware). Once the binaural version has been created
it is then a relatively easy task to convert this recording for a 2 speaker,
transaural reproduction by using a 2 x 2 matrix of correctly designed crosstalk

cancellation filters.

However, what if the (real) speakers were not placed in the correct, ITU

specified, positions in the listening room? Calculating new speaker feeds for
a system that is defined by discrete channels is not necessarily an easy task
(Gerzon, 1992a) when the encoding system cannot necessarily be assumed

to be simple pair-wise panning.

A better technique would be to use Ambisonic B-format, or similar, to drive the
system, or at least use a standard B-format decoding algorithm to derive the 6
discrete channels on a DVD and then, if desired, work out the B-format
signals from these speaker feeds. Using a hierarchical carrier, such as B-

format would result in the advantages given at the start of this section.

For example, if we were to take horizontal only B-format as the carrier signal
then decoding this B-format carrier for the various different presentation
methods can be carried out as shown in Equation (4.1) (it should be noted

that this is a sub optimal decoder but this will be discussed in Chapter 5).
S, (n) = (V2 xW)+ (cos(8) x cos(g) x X)+ (sin(6) x cos(#) x Y)+ (sin(#) x Z)
(4.1)

where S, is the signal sent to the n™ speaker positioned at azimuth 6 and

elevation ¢.

This simple decoding would produce the virtual microphone configuration

shown in Figure 4.3.

Figure 4.3 Virtual Microphone Configuration for Simple Ambisonic Decoding

4.3 B-Format to Binaural Reproduction

All multi-speaker formats can be converted to a Binaural signal, but B-Format
to binaural conversion can be achieved very efficiently due to its hierarchical

nature. The system can be summarized as shown in Figure 4.4.

Left Ear
Ambisonic HRTF .

R

Decoder Sirulation ﬂ’

38

Figure 4.4 Horizontal B-Format to binaural conversion process.

As the system takes in 3 channels of audio and outputs two channels of
audio, the actual Ambisonic decoding process can be contained within a pair
of HRTFs representing each of W,X and Y. This means that any number of
speakers can be simulated using just six HRTFs (three pairs). The equations

describing this process for an eight speaker array are given in Equation (4.2).

Wi = (23 (s

X Zizl (COS(ek)sin(¢k)X SErtf)
o 5 o ()1
Zht _ Zi:l(cos(qﬁk)>< SEM)

(4.2)

Where

0 = source azimuth

¢ = source elevation (0 for horizontal only)

S™" = Pair of HRTFs measured at speaker position, k.

The signals then required to be fed to each ear are given in Equation (4.3).

Left = (W @W,"™)+ (X ® X)+ (v @Y ")
Right = (W ®W,™)+ (X ® X)+ (Y @Y,)

(4.3)

Another optimisation that can be applied is that of assuming a left/right
symmetrical room. For example, if the B-Format HRTFs shown in Figure 4.5
are studied it can be seen that both the left and right W HRTFs are the same,
the left and right X HRTFs are the same, and the left and right Y HRTFs are
the same, but phase inverted. So, in this symmetrical case only three HRTFs
are needed to simulate a multi-speaker Ambisonic system with the new Left

and Right ear feeds given in Equation (4.4).

Left = (W @W ™)+ (X ® X "™)+(y @y ™")
Right = (W ®@W ™")+ (X ® X ™) (v @Y "")

(4.4)

140

0z | | | | | |
0 20 40 B0 50 100 120 140

20 40 60 80 100 120 140

Figure 4.5 Example W, X and Y HRTFs Assuming a Symmetrical Room.

As can be seen from Equation (4.4), a symmetrical room will result in a total of
three convolutions to be computed, as opposed to six for an unsymmetrical
room, resulting in a 50% processing time saving (and, incidentally, this
compares very favourably to the ten convolutions needed to auralise a

standard five speaker when not driven by B-format).

Once the material has been ‘binauralised’, a two speaker Transaural
presentation can then be created with the use of standard crosstalk

cancellation filters.

For a four speaker configuration two options are available.
e If the speakers are arranged in a near square formation as shown in
Figure 4.6, then the B-format signal can be decoded Ambisonically to

feed these four speakers.

e |If the speakers are arranged so that the speakers are placed close
together (e.g. either side of a computer monitor) as shown in Figure

4.7, then a double crosstalk cancellation system would be best suited.

Both options can be utilised for most four speaker configurations, these two
figures (Figure 4.6 and Figure 4.7) just show the ideal setup for each system.
The system chosen would be dependant upon the listening situation and
processing power available. A four speaker crosstalk cancellation has the
advantage over a two speaker crosstalk cancellation system in that both front
and rear hemispheres can be reproduced creating a more accurate,
enveloping sound with much less noticeable front/back ambiguity, particularly
if the speakers are arranged in a manner similar to Figure 4.7. This system,
however, although delivering much better results than frontal crosstalk
cancellation alone, is, potentially, the most processor intensive of all of the
reproduction methods described in this report (although it will be shown, in
Chapter 6, that this is not always the case). It can be seen from the block
diagram shown in Figure 4.8 that this method of reproduction will require twice

as many FIR filters than frontal crosstalk cancellation alone.

4 ==

(o
O @ =a

Figure 4.6 Ideal, 4-Speaker, Ambisonic Figure 4.7 Ideal Double Crosstalk
Layout Cancellation Speaker Layout

To Front Left

W Front HRTE Front Cross- Speaker
. . . . talk
X Ambisonic Simulation Cancellation To Front Right
Y Decoder (3 FIRs) (4 FIRs) Speaker
To Rear Left
Rear HRTF Rea;;ﬁioss‘ Speaker
Ambisonic Simulation Cancellation _ I
Decoder (3 FIRS) (4 FIRs) To Rear Right
m
Figure 4.8 Double Crosstalk Cancellation System

The dual crosstalk cancelling system described by Figure 4.8, or the two
speaker crosstalk cancellation system, can be made more efficient by
changing the length of a number of the FIR filters when converting the B-
format carrier to the Binaural signal since, as was mentioned above, non-
anechoic HRTFs were utilised in order to help sound externalisation. When
replaying binaural material over a crosstalk cancellation system, this is not
necessary, as the sound will normally be perceived at a distance equal to the
distance of the speakers. This can be observed by playing unprocessed,
stereo material over a crosstalk cancelled system. In such a situation the
sounds are perceived as coming from a hemisphere around the front of the
listener as shown in Figure 4.9. Therefore, longer HRTFs that include some
form of room response are not needed during the B-format to binaural
conversion stage (as out of head localisation is already present), reducing the
size of the HRTFs from over 8192 points to less than 1024 as shown in Figure
4.10, making B-format to Transaural conversion in real-time a viable option for

most modern processors.

/* ,\
/ \
/ \

I Panned Panned
Full Left Full Right

Figure 4.9 Perceived localisation hemisphere when replaying stereophonic

material over a crosstalk cancelled speaker pair.

The four-speaker transaural system is particularly well suited to this type of
speaker simulation system as standard binaural material (that is, recorded as
two channels) cannot successfully be replayed on a four speaker Transaural
system. It is obvious that once a binaural recording has been made, it can be
played back over both the front and rear pairs of a four speaker, crosstalk
cancellation system, but it is then up to the listener’s ear/brain system to
decide which sounds are coming from the front or the back as the same signal
must be replayed from both crosstalk cancelling pairs, unless a ‘four ear’
dummy head recording is used. This gives many conflicting cues due to the
imperfect manner in which Transaural systems crosstalk cancellation occurs.
However, using the system mentioned above, total separation of the front and
rear hemisphere’s audio is possible resulting in a much less ambiguous

listening situation, where the best possible use of each pair of speakers can

be realised.
Reverberant HRTFs
0.4 ‘ ‘ ‘ ‘
—— Right Ear
—— Left Ear |7
% it A0 s Dt o - _
3 4 B T b
=
£ J
<
_06 L 1 1 1 1 1 L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Anechoic HRTFs
1 T T T
—— Right Ear
—— Left Ear
q) -
©
=2
=
S
Z _ J
_05 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Sample Number (sampled at 44.1kHz)

Figure 4.10 Example of Anechoic and non-Anechoic HRTFs at a position of 30° from
the listener.

All of the above equations assume that the carrier signal for this hierarchical
system is first order B-format. However, as DVD players already expect to
see six channels, this is not the best use of the already available outputs.

Ideally, a 2" Order Ambisonic carrier would be used.

8%
e ix e

Figure 4.11 Spherical Harmonics up to the 2" Order.

+Y

Second order Ambisonics, as mentioned in Chapter 3, would consist of nine
channels to fully represent the three dimensional sound field: the four
channels of 1* Order B-format, plus another five channels representing the
sound field’s 2" Order components (as shown in Figure 4.11). The use of
these extra harmonics increases the directionality of the virtual pickup
patterns that can be constructed by combining the signals in various
proportions. Figure 4.12 shows the difference between a 1% and 2" order
virtual polar pattern. At the present time, the ITU standard specifies 6 full
bandwidth audio channels (note that even the .1 channel is actually stored as
full bandwidth on the DVD Audio and Super Audio CD disks), and so a
standard to be adopted that uses to a maximum of six channels would be

preferable.

1 —— 2nd Order
—— 1st Order

270

Figure 4.12 2D polar graph showing an example of a 1% and 2" order virtual pickup
pattern (0° point source decoded to a 360 speaker array).

The most logical way of achieving this is by specifying the horizontal plane to
2" order resolution and the vertical plane to 1% order, resulting in a total of 6
channels (W, X, Y, Z, U & V) where most people with a horizontal five
speaker, or less, system would utilise channels W, X and Y. Systems with
height capability would use the Z channel and users with a higher number of
speakers on the horizontal plane would also use the U and V signals. This six
channel system has the advantage that the best possible resolution can be
achieved on the horizontal plane (i.e. 2" order). While the equations for
tumbling and tilting the sound field will now only be fully utilisable when using
the first order signals, rotating will still function, as only the horizontal
Ambisonic channels are altered.

4.4 Conclusions

With the use of three existing systems, a system has been proposed that
overcomes the weaknesses of the individual systems in isolation. This
system has the benefit of future-proofing in terms of speaker layout and can
be decoded to headphones or two or more speakers whilst still retaining
spatial information. Basic algorithms for the conversion processes have been

described and will be analysed, discussed and optimised in Chapter 5.

Chapter 5 - Surround Sound Optimisation Techniques

5.1 Introduction

In this chapter a number of optimisation methods will be discussed and
demonstrated so as to maximise the performance of the hierarchical system
discussed in Chapter 4. A large part of this research was based upon the use
of HRTF data collected by Gardner & Martin (1994) which was used in order
to help quantify and optimise the various decoding stages that are present in
the proposed hierarchical system. The research was carried out in a number
of stages which also corresponds to the layout of this chapter, as detailed
below:

e Investigation into the use of HRTF data in the analysis of multi-channel

sound reproduction algorithms.
e Optimisation of the Ambisonics decoding signal processing techniques.
e Optimisation of the binaural decoding signal processing techniques.

e Optimisation of the Transaural decoding signal processing techniques.

To this end, the first part of this investigation, documented in section 5.2, was
to carry out a listening test, using the Multi-Channel Research Lab designed
and installed as part of this research (Schillebeeckx et al., 2001), to try and
measure the potential strengths and weaknesses of the proposed HRTF
analysis technique. As the listening tests were executed before the research
into the Ambisonic optimisation methods were carried out, sub-optimal
Ambisonic decodes were used in these tests. Also, as work had only just
begun on the Transaural processing techniques, and due to the extremely

sub-optimal performance of the designed filters, this work is not included.

Section 5.3 represents the bulk of this chapter, and concentrates on the
optimisation of the Ambisonics system, as this is the base system from which
the binaural and transaural representations will be derived from. Although it
would be preferable to always derive the binaural/transaural feeds from the
original B-format (or higher order) carrier, due to the standards used in current

consumer and professional audio equipment (i.e. 5, 6 or 7 channel

presentation for a 5, 6 or 7 speaker, irregular array) it is necessary to realise
optimised Ambisonic decoders for irregular arrays not only to maximise the
performance of the speaker decode, but to also make sure that the correct
psychoacoustic cues are presented to a listener after this irregular decode is

converted to a binaural or transaural reproduction.

The original optimisation, as proposed by Gerzon & Barton (1992) is an
extension of the original Ambisonic energy and velocity vector theory used to
optimise regular decoders (Gerzon, 1977a) but with the added suggestion of
using one decoder for low frequencies and another for high frequencies.
However, although Gerzon and Barton (1992) did solve these equations for a
number of irregular speaker arrays, none of the arrays were similar to the ITU
standard array that was finally proposed. No decoders optimised in this way
have ever been produced for the ITU standard speaker array since that time,
as was evident in the recent Project Verdi Listening Tests (Multi Media Projekt
Verdi, 2002). The equations, a set of non-linear simultaneous equations,
were difficult to solve, and only got more difficult when more speakers were
added (Gerzon & Barton, 1992). For this reason one of the main aims of this
work was to devise a system so that Ambisonic decoders for irregular speaker
arrays could be easily designed via some form of automated system. After
this was successfully implemented, the analysis method suggested in earlier
work (see Wiggins et al, 2001) was used as the basis of new optimisation
criterion for irregular Ambisonic decoders. As no method of differentiation
between decoders optimised using the energy/velocity vector model currently
exists (there are multiple solutions), this new method could then be used as a
method to differentiate between already designed velocity/energy vector

decoders.

Section 5.4 documents the work carried out on both Binaural and Transaural
reproduction techniques. The work on binaural reproduction is used as an
introduction to inverse filtering techniques, which are then applied to the
Transaural reproduction system in order to improve its performance using the
freely available HRTF data from MIT Media Lab (Gardner & Martin, 1994).

5.2 The Analysis of Multi-channel Sound Reproduction
Algorithms Using HRTF Data

5.2.1 The Analysis of Surround Sound Systems

Much research has been carried out into the performance of multi-channel
sound reproduction algorithms, both subjectively and objectively. Much of the
guantitative data available on the subject has been calculated by
mathematically simulating acoustical waves emitting from a number of fixed
sources (speakers) (Bamford, 1995) or using mathematical functions that give
an indication of the signals reaching the listener (Gerzon, 1992b). The
resulting sound field can then be observed. In this section of Chapter 5, a
new method of analysis will be described using Head Related Transfer
Functions as a reference for the localisation cues needed to successfully
localise a sound in space. This method will then be compared to results
obtained from a listening test carried out at the University of Derby’s Multi-

Channel Sound Research Laboratory.

5.2.2 Analysis Using HRTF Data

The underlying theory behind this method of analysis is that of simple
comparison. If a real source travels through 360° around the head
(horizontally) and the sound pressure level at both ears is recorded, then the
three widely accepted psychoacoustic localisation cues (Gulick et al., 1989;
Rossing, 1990) can be observed. These consist of the time difference
between the sounds arriving at each ear due to different path lengths, the
level difference between the sounds arriving at each ear due to different path
lengths and body shadowing/pinna filtering, a combination of complex level
and time differences due to the listeners own pinna and body. The most
accurate way to analyse and/or reproduce these cues is with the use of Head

Related Transfer Functions.

For the purpose of this analysis technique, the binaural synthesis of virtual
sound sources is taken as the reference system, as the impulse responses
used for this system are of real sources in real locations. The HRTF set used

does not necessarily need to be optimal for all listeners (which can be an

issue for binaural listening) so long as all of the various localisation cues can
be easily identified. This is the case because this form of analysis compares
the difference between real and virtual sources and as all systems will be
synthesised using the same set of HRTFs, their performance when compared

to another set of HRTFs should not be of great importance.

Once the system has been synthesised using HRTFs, impulse responses can
be calculated for virtual sources from any angle so long as the panning laws
for the system to be tested are known. Once these impulse responses have
been created the three parameters used for localisation can be viewed and
compared, with estimations made as to how well a particular system is able to

produce accurate virtual images.

Advantages of this technique include:

e All forms of multi-channel sound can potentially be analysed meaningfully
using this technique.

e Direct comparisons can be made between very different multi-channel
systems as long as the HRTFs used to analyse the systems are the same.

e Systems can be auditioned over headphones.

5.2.3 Listening Tests

In order to have a set of results to use as a comparison for this form of
analysis, a listening test was carried out. The listening test comprised of a set

of ten tests for five different forms of surround sound:

e 1% Order Ambisonics over 8 speakers (horizontal only)
e 2" Order Ambisonics over 8 speakers (horizontal only)
e 1% Order Ambisonics over a standard 5 speaker layout.
e Amplitude panned over a standard 5 speaker layout.

e Transaural reproduction using two speakers at +/- 5°.

The tests were carried out in the University of Derby’s Multi Channel Sound

Research Laboratory with the speakers arranged as shown in Figure 5.1.

Dipole (& 5.1 Centre)

a0

& .

140°

& &

Figure 5.1 Speaker Arrangement of Multi-channel Sound Research Lab.

Ambisoni¢s array

The listing room has been acoustically treated and a measurement of the
ambient noise in the room gave around 43 dBA in most 1/3-octave bands,
with a peak at 100 Hz of 52.1 dBA and a small peak at 8 kHz of 44.4 dBA.
The RT60 of the room is 0.42 seconds on average, but is shown in 1/3-octave

bands in Figure 5.17.

Using a PC and a multi-channel soundcard (Soundscape Mixtreme) all of the
speakers could be accessed simultaneously (Schillebeeckx et al., 2001), if
needed, and so tests on all of the systems could be carried out in a single
session without any pauses or equipment changes/repatching.

A flexible framework was devised using Matlab and Simulink (The Mathworks,
2003) so that listening test variables could be changed with minimal effort,
with the added bonus that the framework would be reusable for future tests.
A Simulink ‘template’ file was created for each of the five systems that could
take variables from the Matlab workspace, such as input signal, overall gain
and panning angle, as shown in Figure 5.2. Then a GUI was created where
all of the variables could be entered and the individual tests run. A screen

shot of the final GUI is shown in Figure 5.3.

[0 IOl

Fle Edt “ew Smulation Format Tools Help Ele Edt Vew Smulation Formst Tools Help

DEHS| S 2R REL® > - el L e

Horizomal Angle

Signal Horizontald Deg to Rad

“ertical Angle

Signal From Gain
‘il

DOeg Rad

Mono Audia

[+ Fwweonmn

Offset for
Soreen

Signal

Horizontal g to Rag| -C- s‘;?n“.z: From W Gonstart usinh;nn:rnctnnn;am simn:::zlifnier?:?:r:t.
W Constant hong 1o B-Format 2nd Order 5) orepace ain nafelisek
(Horizontal) W Gain ©0.1788)
- 2nd Order Decoder
T002
W G ain
Ready 100% I [|FixedstepDiscrete /| Ready [1a0%. [I |FixadStepDiscrete i
Figure 5.2 Screen shot of two Simulink models used in the listening tests.
=10l =]
SPARG Listening
Tests
{15t Order Ambisonics
A [e S ey Y Y B ey e
sl [N R PR PR PR RS T BT BT N] T
2nd Order Ambisonics
Y Y Y NP N [[N Y[R [T [e
se [FIEE B IS FEE FEE PR P FES - B B B
| BOAmbisonics
Py [[180 NN N N EN R N ENES
7 o ol o ol s ol o] o] +] s s s
Sigral e Sall s Sl suir Sml ver mull o mml sur Sall suie Enfl o Sl sul Eul e st &)
| SlereoDipole
04 jr érﬂvjrﬂl' Llr\?ﬂri'ﬁﬂrllw ﬂvilr
sigrel [N sior Gl i Eall s Gl coir G SigP [l
| 5.0 Aplitude Panned |
N Y B [[y By R Y (Y Y TR

Figure 5.3 Screen shot of listening test GUI.

The overall gain parameter was included so each of the different systems
could be configured to have a similar subjective gain, with the angle of the
virtual source specified in degrees. The only exception to this was the 5.0
Amplitude panned system where the speaker feeds were calculated off line
using the Mixtreme soundcards internal mixing feature. The extra parameter
(tick box) in the Stereo Dipole (transaural) section was used to indicate which
side of the listener the virtual source would be placed as the HRTF set used
(Gardner & Martin, 1994) only had impulse responses for the right
hemisphere and must be reversed in order to simulate sounds originating

from the left (indicated by a tick).

After consulting papers documenting listening tests of various multi-channel
sound systems, it was found that noise (band-limited and wide-band) was
often used as a testing source (see Moller et al., 1999, Kahana et al., 1997,
Nielsen, 1991 Orduna et al., 1995 and Zacharov et al, 1999, as typical
examples). The noise signals used in this test were band limited and pulsed,
three pulses per signal, with each pulse lasting two seconds with one second
of silence between each pulse. The pulsed noise was chosen as it was more
easily localised in the listening room when compared to steady state noise.
Each signal was band limited according to one of the three localisation
frequency ranges taken from two texts (Gulick et al., 1989; Rossing, 1990).
These frequencies are not to be taken as absolutes, just a starting point for
this line of research. A plot of the frequency ranges for each of the three

signals is shown in Figure 5.4.

Magnitude

10 10 1ot

Freguency

Figure 5.4 Filters used for listening test signals.

Twenty eight test subjects were used, most of whom had never taken part in a
listening test before. The test subjects were all enrolled on the 3" year of the
University’s Music Technology and Audio System Design course, and so
knew the theory behind some surround sound systems, but had little or no
listening experience of the systems at this point. Each listener was asked to
try to move their head as little as possible while listening (i.e. don’t face the
source), and to indicate the direction of the source by writing the angle, in
degrees, on an answer paper provided. It must be noted that the head of the

listeners were not fixed and so small head movements would have been

available to the listeners as a potential localisation cue (as it would be when
listening anyway). Listeners could ask to hear a signal again if they needed
to, and the operator only started the next signal after an answer had been
recorded. The listeners were given a sheet of paper to help them with angle
locations with all of the speaker positions marked in a similar fashion to Figure
5.5 (although the sheet presented to the test subjects was labelled in 5°
intervals with a tick size of 1°, not 15° intervals with a tick size of 3° as shown
in Figure 5.5).

180

Figure 5.5 Figure indicating the layout of the listening room given to the testees as
a guide to estimating source position.

5.2.4 HRTF Simulation

As described in section 5.1 three of the five systems will be analysed using
the HRTF method described above:

e 1st Order Ambisonics

e 2nd Order Ambisonics

e 1st Order Ambisonics over 5 speakers.

The listening test results for the amplitude panned 5 speaker system are also
included.

The set of HRTFs used for this analysis were the MIT media lab set of

HRTFs, specifically the compact set (Gardner & Martin, 1994). As mentioned

earlier, it is not necessarily important that these are not the best HRTF set

available, just that all of the localisation cues are easily identifiable.

All systems can be simulated binaurally but Ambisonics is a slightly special

case as it is a matrixed system comprising the steps shown in Figure 5.6.

Left Ear l
Ambisonic HRTF _
Decoder Simulation R'g_htEar>

i)

Figure 5.6 The Ambisonic to binaural conversion process.

Because the system takes in three channels which are decoded to eight
speaker feeds, which are then decoded again to two channels, the
intermediate decoding to eight speakers can be incorporated into the HRTFs
calculated for W, X and Y meaning that only six individual HRTFs are needed
for any speaker arrangement, Equation (5.1). If the head is assumed to be
symmetrical (which it is in the MIT set of compact HRTFs) then even fewer
HRTFs are needed as Wleft and Wright will be the same (Ambisonics omni-
directional component), Xleft and Xright will be the same (Ambisonics
front/back component) and Yleft will be phase inverted with respect to Yright.
This means a complete 1% order Ambisonic system comprising any number of
speakers can be simulated using just three HRTF filters, as shown in equation
(5.12).

W =(2h 3 s)

Xt = Zizl (c:os(é’k)sin(g,)x ™)

Y =S (sino),)sin(g,)x i)

Where

0 = source azimuth

¢ = source elevation (0 for horizontal only)
S™ = Pair of Speakers positional HRTFs.

(5.1)

Once the HRTFs for W, X and Y are known, a virtual source can be simulated
by using the first order Ambisonics encoding equations shown in Equation
(5.2), (Malham, 1998).
W = (1/¥2 Jx x(n)
X =cos(8) xsin(¢) x x(n)
Y =sin(@) xsin(¢g) x x(n)
Where x(n) is the signal to

be placed in virtual space.

(5.2)

Using two sets of the W, X and Y HRTFs (one for eight and one for five
speaker 1% order Ambisonics) and one set of W, X, Y, U and V (Bamford,
1995; Furse, n.d.) for the 2" order Ambisonics, sources were simulated from
0% to 360° in 5° intervals. The 5° interval was dictated by the HRTF set used
since, although the speaker systems could now be simulated for any source
angle, the real sources (used for comparison) could only be simulated at 5°
intervals (without the need for interpolation). An example pair of HRTFs for a

real and a virtual source are shown in Figure 5.7.

1st Order Ambisonics, Source at 45 degrees (Left Ear) 1st Order Ambisonics, Source at 45 degrees (Right Ear)
T T v T v T v T T T

1 1
— Real Source — Real Source
—— Ambisonic Source —— Ambisonic Source
05 1 05F
0 —‘\%WW&W 0
05 1 05
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Figure 5.7 Example left and right HRTFs for a real and virtual source (1st Order

Ambisonics) at 45° clockwise from centre front.

5.2.5 Impulse Response Analysis

As mentioned in Section 5.2.2, three localisation cues were analysed,
interaural level difference, interaural time difference, and pinna filtering
effects. The impulse responses contain all three of these cues together
meaning that although a clear filter delay and level difference can be seen by

inspection; the pinna filtering will make both the time and level differences

frequency dependant. These three cues were extracted from the HRTF data

using the following methods:

e Interaural Amplitude Difference — Mean amplitude difference between the
two ears, taken from an FFT of the impulse responses.

e Interaural Time Difference — Mean time difference between the two ears,
taken from the group delay of the impulse responses.

e Pinna filtering — Actual time and amplitude values, taken from the group

delay and an FFT of the impulse responses.

Once the various psychoacoustic cues had been separated, comparisons
were made between the cues present in a multi-speaker decode compared
with the cues of an actual source (i.e. the individual HRTFs) and estimations
of where the sounds may appear to come from can be made using each of
the localisation parameters in turn. As the analysis is carried out in the
frequency domain, band limiting the results (to coincide with the source
material used in the listening tests) is simply the case of ignoring any data that

is outside the range to be tested.

As an example, Figure 5.8 shows the low, mid and high frequency results for
real sources and the three Ambisonic systems for averaged time and

amplitude differences between the ears.

These graphs show a number of interesting points about the various
Ambisonic systems. Firstly, the 2" order system actually has a greater
amplitude difference between the ears at low frequencies when compared to
a real source, and this is also the frequency range where all of the systems
seem to correlate best with real sources. However, the ear tends to use
amplitude cues more in the mid frequency range, and another unexpected
result was also discovered here. It seems that the 1% order, five speaker
system actually outperforms the 1% order, eight speaker system at mid
frequencies, and seems to be equally as good as the eight speaker, second
order system. This is not evident in the listening tests, but if the average time
difference graphs are observed it can be seen that the five speaker system

has a number of major errors around the 90° and 270° source positions and

shows the 2" order system to hold the best correlation. The time difference
plots all show that the five speaker system still outperforms the 1% order, eight
speaker system, apart from the major disparities, mentioned above, at low
frequencies. It can be seen from the listening test results (Figure 5.12) that
the five speaker system does seem to be at least as good as the eight
speaker system over all three of the frequency ranges, which was not
expected. The mid and high frequency range graphs are a little too
complicated to analyse by inspection and so will be considered later in this
chapter using a different technique. It must also be noted that, due to the
frequency ranges originally chosen, interaural level differences at low
frequencies are comparable to the interaural level differences at mid
frequencies. Had a lower cut off frequency been chosen (as shown later in
this Chapter) this would not have been the case and this suggests that the

original frequency ranges were not ideal.

Low Frequency Amplitude Difference (Average) Mid Frequency Amplitude Difference (Average)

15 — . 15 . .
e A
/> \
1 - 1 4
© 05 R ® 0.5 R
o o
c c
L o
g o 1 £ 0 1
a a
@ @
T -05 4 =] -0.5 4
2 2
g 1 Actual g 1 — Actual
< “r — 5.0 Ambi 1 < - — 5.0 Ambi
/// —— 8 Speak Ambi —— 8 Speak Ambi
\\ , — — 2nd Order — — 2nd Order
15 T I I I 1 1 15 I I I I I T T
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Source Angle (degrees) Source Angle (degrees)
High Frequency Amplitude Difference (Average) Low Frequency Time Difference (Average)
15 T T T T T T T 80 T T T T T T T
® 4
e 4
g 8
D c
E f o 1
a £
8 | 5]
=])
= £]
e Actual Ll — Actual
< — 5.0 Ambi ol — 5.0 Ambi i
—— 8 Speak Ambi —— 8 Speak Ambi
— — 2nd Order — — 2nd Order
15 T T 80 T T
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Source Angle (degrees) Source Angle (degrees)
Mid Frequency Time Difference (Average) High Frequency Time Difference (Average)
80 T T T T T T T 40 T T T T T T T
|
@) @)
3] Q
c c
o] o -]
£ £ &
5 I B el]
@ @ v
£ } £ :
= — Actual = — Actual
60l —— 5.0 Ambi i —— 5.0 Ambi i
—— 8 Speak Ambi —— 8 Speak Ambi
— — 2nd Order — — 2nd Order
80 I I . . . T T 40 n n
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Source Angle (degrees) Source Angle (degrees)
Figure 5.8 The average amplitude and time differences between the ears for low,

mid and high frequency ranges.

Left Ear Frequency Responses - Angle of Incedance = 30 degrees

Left Ear Frequency Responses - Angle of Incedance = 45 degrees

30 T 30 T
A —— Real Source I —— Real Source | |
o el ! .' W — - Tst Order o el)) — - Tst Order
= ot : i s Ao 2nd Order = ot Sk Ao+ 2nd Order
o I S ~ FR PN WA s
2 | = W S - £ 1T Y - 4 S
g-10F ‘.u| AT ¥ou 210 [EPEN th
<t ' <t i
=0 L L L L a0 L . L .
[u] 0s 1 15 2 [u] 05 1 15 2
4 4
Right Ear Frequency Responses w10 Right Ear Frequency Responses w10
40 T T T 20 = ™ T T
— Real Source H | — Real Source
o 20+ i — - st Order o I J|— - 18t Order
= . A\ W 4 ---- 2nd Order = ,' “— ---- 2nd Order
- S S 1N Lol o 2 P SRR SEEE——r
= L T N T TN T = LA ' A
g v TTTNY LT S Y 201 - R
= 20 y [Ed h
A0 L L L L 40 L L L L
0 05 1 15 2 0 05 1 15 2
Frequency (Hz) T Frequency (Hz) vt
Left Ear Frequency Responses - Angle of Incedance = 75 degrees Left Ear Frequency Responses - Angle of Incedance = 90 degrees
30 T T T T 30 — T T T
— Real Source 4 — Real Saurce
5207 }\ —- st Order] 5207 Flaey H4 —- st Order]
= ot PN - 2nd Order 1 = ol LA N ---- Znd Order [
o T B - o ST e = =
ERR YA K i r——— o = ER P BEr SR T SRS
= s = J = em BN =
E-m = H ¥ E-m
20t ! i 20t
0 L L L L 50 L . L .
0 0s 1 148 2 0 05 1 15 2
4 4
Right Ear Frequency Responses x10 Right Ear Frequency Responses x 10
40 T T T 40 — T T T
— Real Source . — Real Source
= E —- st Order = E — - st Order
=, ') ! ---- 2nd Order =, \ <A | ---- 2nd Order
% St J‘ii hd ooy ‘!j‘\ “'"";”‘f" ﬁ/\‘ o % ST o N t\ ’ \1
£ ol - 5 o £ .nf - R N o
2 M- e g ~ L ~«_\-"\"
< gt ' < gt g ‘I—
=) 1 1 1 1 l 50 1 L 1 L
0 048 1 148 2 0 05 1 14 2
Freguency (Hz) w0 Frequency (Hz) w0t
. st
Figure 5.9 The difference in pinna amplitude filtering of a real source and 1° and

2"! order Ambisonics (eight speaker) when compared to areal source.

One attribute that has not really been touched on yet, when discussing multi-
speaker systems, which is one of the major consequences of the phantom
imaging scenario, is pinna cue errors. When an image is created with more
than one speaker, although it is possible to create a correct level and phase
difference at the ears of a listener, for a panned source, it will be far more
difficult to create correct pinna cues due to the direction dependant filtering
that the pinnae apply to real sound sources. Instead, the pinna cues from the
speakers creating the phantom image will be summed and weighted
dependant on the speakers’ contributions. As everyone’s pinnae are different,
it is impossible to correct for this in a generic way (and even from an
individual's response point of view, only one listener orientation could be
corrected for, i.e., facing straight ahead). The pinna filtering can be clearly
seen in the simulation, but is a more complex attribute to analyse directly,
although it has been useful to look at for a number of reasons. For example,
if the non-averaged amplitude or group delay parameters are looked at over

the full 360° (the non-averaged amplitude responses are shown in Figure 5.9)

it can be seen that they both change radically due to virtual source position
(as does a source in reality). However, the virtual sources change differently
when compared to real sources. This change will also occur if the head is
rotated (in the same way as a source moving for a regular rig, or a slightly
more complex way for an irregular five speaker set-up) and this could be part
of the ‘phasiness’ parameter that Gerzon often mentioned in his papers
regarding the problems of Ambisonics (Gerzon, 1992b). This problem,
however, is not strictly apparent as a timbral change (at least, not straight
away) when a source or the listener’'s head moves, but instead probably just
aids in confusing the brain as to the sound source’s real location, increasing
source location ambiguity and source movement when the listener’s head is
turned. This parameter is more easily observed using an animated graph, but
it is shown as a number of stills in Figure 5.9. These graphs show the
differences between the three systems, which is why the ‘real source’ is just a

0dB line, as it has no amplitude difference with itself.

Due to the complexity of the results obtained using the HRTF simulation for
the pinna filtering, it is difficult to utilise these results in any estimation of
localisation error, although further work will be carried out to make use of this
information. However, using the average time and amplitude differences to
estimate the perceived direction of the virtual sound source is a relatively
trivial task using simple correlation between the actual and virtual sources. In
order to plot these results, a Matlab routine was constructed that gave a
localisation estimation using the HRTFs derived from the various decoders
and compared these to the figures obtained from the real HRTFs. This was
carried out for both amplitude and time differences in the various frequency
bands tested. Because no pinna filtering effects were taken into account,
each value of amplitude and time/phase difference will have two
corresponding possible localisation angles (see the cone of confusion in
chapter 2.2.1). Figure 5.10, Figure 5.11 and Figure 5.12 show the listening
test results with the estimated localisations also shown, using the average
amplitude and the average time differences at low and mid frequencies.

The listening tests themselves gave reasonably expected results as far as to
the system that performed best (the 2" Order Ambisonics system). However
the other three systems (1% order eight and five speaker, and amplitude
panned 5.0) all seemed to perform equally as well, which was not expected.
Although it must be noted, that all of these listening tests were carried out
using ‘unoptimised’ decoders, with only the five speaker irregular decoder
having been empirically adjusted regarding the amplitude levels of the three
speaker sets (centre, front pair and rear pair). Nevertheless, the empirically
derived gain settings reasonably matched the optimised sets described later
(quiet centre speaker with additional gain applied to the rear pair) but with all

speakers using a cardioid pattern feed.

The speakers used for the eight and five speaker systems were different, but
as all listeners had the speakers pointed directly at them, and were tested
using band-limited noise, the frequency response and dispersion patterns of
the speakers should not have been critical in this experiment. Also, the HRTF
simulation and comparison should be a valid one as long as the speakers
used in each system are matched (as opposed to the speakers across all

systems being the same).

The frequency content of the sounds did not seem to make any significant
difference to the perceived localisation of the sound sources, although a more
extensive test would have to be undertaken to confirm this, as the purpose of
this test was to test between any large differences between the three
localisation frequency ranges. Another interesting result was the virtual
source at 0° on the amplitude panned system (see Figure 5.13). As there is a
centre front speaker, a virtual source at 0° just radiates from the centre
speaker, i.e. it is a real source at 0°. However, around 30% of the subjects
recorded that the source came from behind them. Front/back reversals were
actually less common in all of the other systems (at 0°), apart from 2" order

Ambisonics (the system that performed best).

The source position estimation gave reasonably good results when compared

with the results taken from the listening tests, with any trends above or below

the diagonal, representing a perfect score, being estimated successfully. If
the graphs represented truly what is expected from the different types of
psychoacoustic sound localisation, then the low frequency time graph and the
mid frequency amplitude graph should be the best indicator of where the
source is coming from. However it is well known (Gulick et al., 1989) that if
one localisation cue points to one direction, and the other cue points to
another, then it may be some direction between these two localisation angles
that the sound is actually perceived to originate from. The HRTF analysis
does not take this into account at the moment and so some error is expected.
Also, the compact set of HRTFs used is the minimum phase versions of the
actual HRTFs recorded which may contribute to the time difference estimation
results (although the cues seem reasonable when looked at for the actual
sources). As mentioned, there was no major difference between the three
different signals in terms of localisation error. Because of this the plots
showing the estimated localisation using the whole frequency range are
shown in Figure 5.14 - Figure 5.16 which also show the interaural amplitude

difference as a better localisation approximation.

5.2.6 Summary

The HRTF analysis of the three surround systems described in this section
seems to work well giving a reasonably good indication as to the possible
localisation that a listener will attach to a sound object. This method is
definitely worth pursuing as a technique that can be used to evaluate and
compare all forms of surround sound systems equally. Although the errors
seen in the estimation when compared to the listening test results can be
quite large, the general trends were shown accurately, even with such a

simple correlation model used.

1st Order Ambisonics
' ‘ ’ . Low Pass Filtered Signal
. 8
300
o Band Pass Filtered Signal
¢ N :
() o
Qo 5 L High Pass Filtered Signal
o) v [+ o
C Q °
< [)
8 o * y
= (6] o
[0 [
3] - s ° °
= ° o o}
() ° ° o
o .
o
e
. ° [¢]
(<]
o
50
é
Q
o
o &
A4
-50 50 100 150 200 250 300 350
Actual Source Angle
Source Localisation Estimates using Interaural Amplitude | ”
. Mid Frequency
Low Freauency | differences
= ' g
s o
o
256 280
o
sevesene
(5] o 0 M
.l. (Y 't‘t
9 S e, 0
o o o PACTITD (T} ~
., . o .
s
oo o)
. e« o o o
8" [
e
%0 . —
' e
.ll {JXXTTXFY XY
» " - 0 3 beeesia
s 109 150 L 0 300 ¥ 5 %0 00 180 k2 2 *
Source Localisation Estimates using Interaural Time differences
Low Frequency | | Mid Frequency |
= ' - .
o
[] 6 8. ¥
° ° L4, '_";
° ° H
13
)
® oo
o 0 " Mruee
8 &
r = 2 .
II—.I.. et
s
l- 0
.
e g vebe
156 28 % P 0

Figure 5.10

Listening Test results and estimated source localisation for 1% Order
Ambisonics

o|oo0o0

Y 1)
@e

oo

Perceived Anale

Je}
[T X1

Actual Source Anale

Source Localisation Estimates using Interaural Amplitude

2nd Order Ambisonics

. Low Pass Filtered Signal
. Band Pass Filtered Signal

D High Pass Filtered Signal

Low Frequency

differences

Mid Frequency

Source Localisation Estimates using Interaural Time differences

Low Frequency

Mid Frequency

7%

@ o |o@oo

r oReete

L
b4 o @resenens
. S o o

TP
. .
K .
P .
* e

L T .
<
10 10 20 20 o 30 o w

Figure 5.11

Listening Test results and estimated source localisation for 2" Order

Ambisonics

5.0 Ambisonics
. Low Pass Filtered Signal
L]
°
° 5 . Band Pass Filtered Signal
o °
= . [[] Hioh Pass Fiered Signal
<
°
q) o
2 (] o
8 ®
8 o] ¢ o
() ° <]
o o ° ° o
L) o [) o
o
¢ 33 :
[] o
L3 o
[
L]
o
o
8
-50 150 ~ 200 250 300 350
Actual Source Angle
Source Localisation Estimates using Interaural Amplitude
Low Frequency differences Mid Frequency

. o
o' % eeelereeened’dt
.
0 ° é
.
.
. [e10]
4
Jogreens®
o ° s RUAR
. AAARYS
R%1 . 2
Se
]
" " 0 o |*
.
©
o 9 | o | & o
v
° *+ve0es O] " o
vees Ol0u0d
o o o
o o
° o 3 °
° H 4 °
9 [
.
® ®
o) °
. N AL ST
-y R OS] R
O &4
200 2 3 3% 0 bl 1 K 240 0 350

Source Localisation Estimates using Interaural Time differences

Low Frequency Mid Frequency

. . aggrnns
. .
o g
e o
0 e . Dol Lagee
$ 3 . A N
§ e .
TR .
H
29 : 8 o0
fH o
Lt S 7Y 8
° e o o 0 ot
. @
b1 . o R BT AR .
. . [T g e
angagn . o e
. . ¥ foovegrres RN
o e . ° . e ;e B
g
. 9| o g CretiD)
MRS 7 °
° 2 e o o'ty
° o
o8 3 8 3
[J °
o o
e -0 ° . ‘s °
°
.o
.
(e e udle Tegee
® [o L2 .
. ° . H 3 . .
it e .'6 . H a v
\=4 A4
: : Z 3 3 # E 10 o £ B £ E

Figure 5.12 Listening Test results and estimated source localisation for five
speaker 1% Order Ambisonics

Amplitude Panned 5.0

- Low Pass Filtered Signal

- Band Pass Filtered Signal

0000000

300 -
|:| High Pass Filtered Signal
250 -

200 +

150 -

Perceived Source

Actual Source Angle

Figure 5.13 Listening test results for Amplitude Panned five speaker system.

360 L1 Ry II’Q\
' A F L] ...ll L] AA
A’ IYY Y ;“
. o
- =] g
o
e o
20 .
200 ‘ Pl aakaaaat ot 1}
p o M SR T) .
ettt £ e g A Average Time difference
.l A AAjAAAL 6]
150 LY A7 A e L]
° " llllllug T
° ¢ . Average Amplitude difference
o
- . °)
<] a o
Y'Y A
¢ *é --::é;, “
71 (1] o an ..‘ N
0 100 150 200 250 300 350

Figure 5.14 Average Time and Frequency Localisation Estimate for 1* Order
Ambisonics.

2nd Order Ambisonics

. Low Pass Filtered Signal

. Band Pass Filtered Signal

D High Pass Filtered Signal

Average Time difference

A

. Average Amplitude difference

Figure 5.15

40
250 o[y e
an A " AA A
° AA: Allll A‘AA .‘A
d
? ...llll // °
20
° ,
9
Q o o
o
250 :
amm
o .ll .g. l.
o l.
200 :. Y N G Wil |
D IYRyY T %
1"‘ AdA AdAA 2 AA ;AA t t;‘t t‘ ifu
T i { N TV VY L ame
sl gtte s o W
° [] [)
100
]
s T
d
A AA A..‘A.A Ad
AA A.. A A ll., A
' 7YY 1""nimaf
©
50 100 150 20 %0 0 30

Average Time and Frequency Localisation Estimate for 2" Order

Ambisonics.
350 3 usny, .
St e
° []
® e 9 yd
300 4 §
[[
[]
. ;/;0
250 ‘ !.
° ﬁl 'l'uu'.
L 1) an s
200 e MR . g,
. AR RIT 1t} 12t |t
iR tn w0 5
LLI°M Y YT YY) °
150 . . " °
---""9 ".".- o
M P | :
100 o /é . :
° o ° o
o} []
[]
ol L i T .
uippgge" o "y - @ \
n " .
N\ 50 100 150 200 2% P %0
(-]
]

Figure 5.16

5.0 Ambisonics

7. Low Pass Filtered Signal

. Band Pass Filtered Signal

D High Pass Filtered Signal

A Average Time difference

. Average Amplitude difference

Average Time and Frequency Localisation Estimate for five speaker 1%
Order Ambisonics.

RT60 For Multi-channel SoundResearch Laboratory.

1.00

0.90

0.80

0.70 -

0.60 -

0.50 -

RT60 (seconds)

0.40

0.30 -

0.20 -

0.10 -

0.00 -

0.125] 0.160 | 0.200 | 0.250 | 0.315 | 0.400 [0.500 | 0.630 | 0.800 | 1.000 | 1.250 | 1.600 | 2.000 | 2.500 | 3.150 | 4.000 | 5.000 | 6.300 | 8.000 [10.000
RT60 Time ()| 0.65 | 0.65 | 0.65 | 0.50 | 0.45 | 0.30 | 0.30 | 0.30 | 0.35 | 0.35 | 0.35 | 0.35 | 0.40 | 0.55 | 0.45 | 0.40 | 0.35 | 0.30 | 0.35 | 0.30

Frequency (kHz)

Figure 5.17 RT60 Measurement of the University of Derby’s multi-channel sound
research laboratory, shown in /5 octave bands.

5.3 Optimisation of the Ambisonics system

5.3.1 Introduction

In this part of the chapter the decoding techniques that have been utilised in
the system described in Chapter 4 (Ambisonics, binaural and transaural) will
be discussed and optimised so as to both maximise their spatial performance
and sound quality. Some of these optimisations are more logically formulated
than others, with the optimisation of the Ambisonics system being the most
involved, both mathematically and perceptually, so this system will be

considered first.

As discussed in Chapter 4, the Ambisonics system will be the basis for the
proposed hierarchical multi-channel system, but while the encoding process is
a fixed standard (using the spherical harmonics described in Chapter 3) the
decoding process is not necessarily as straightforward. As the Ambisonics
system is very flexible, any 1% order microphone response can be chosen,
along with the virtual microphone’s direction. Gerzon'’s original theory stated
that the virtual microphone response for the decoder (he concentrated on
regular setups initially) should be chosen according to a number of

mathematical approximations to the signals that would reach the ear of a
listener (Gerzon, 1974) and, for regular speaker arrays, this was a relatively
straightforward optimisation to perform (see section 3.3.1.2). However, since
the introduction of the DVD, the standard speaker layout as specified by the
ITU is a five speaker layout as shown in Figure 5.18. This is likely to be
expanded upon in the near future, and other, larger, venues are likely to have

more speakers to cover a larger listening area.

2%%

Figure 5.18 Recommended loudspeaker layout, as specified by the ITU.

Due to the likelihood of ever changing reproduction layouts a more portable
approach should be used in the creation of multi-channel material, and such a

system has been around since the 1960s (Borwick, 1981).

Ambisonic systems are based on a spherical decomposition of the sound field
to a set order (typically 1% or 2" order (Malham, 2002; Leese, n.d.)). The
main benefit of the Ambisonic system is that it is a hierarchical system, that is,
once the sound field is encoded in this way (into four channels for 1% order,
and 9 channels for 2" order) it is the decoder that decides how this sound
field is reconstructed using the Ambisonic decoding equations (Gerzon,
1977b). This system has been researched, mainly by Gerzon, and in 1992
papers were published suggesting a method of optimising Ambisonic
decoders for irregular speaker arrays (Gerzon & Barton, 1992) as the original
decoding equations were difficult to solve for irregular speaker arrays in the

conventional way (use of shelving filters (Gerzon, 1974)).

5.3.2 Irregular Ambisonic Decoding

In order to quantify decoder designs Gerzon decided on two main criteria for
designing and evaluating multi-speaker surround sound systems in terms of
their localisation performance. These represent the energy and velocity
vector components of the sound field (Gerzon, 1992c). The vector lengths
represent a measure of the ‘quality’ of localisation, with the vector angle
representing the direction that the sound is perceived to originate from, with a
vector length of one indicating a good localisation effect. These are evaluated
as shown in Equation (5.3)

(5.3)

Where:
gi represents the gain of a speaker (assumed real for simplicity).
n is the number of speakers.

0; is the angular position of the i speaker.

For regular speaker arrays, this was simply a case of using one virtual
microphone response for low frequencies and a slightly different virtual
microphone response for the mid and high frequencies by the use of shelving
filters (Farino & Uglotti, 1998) as shown in Figure 5.19 and Figure 5.20. This
is extremely similar to the theory and techniques used by Blumlein’s spatial

equalisation described in Chapter 2.

Virtual microphone responses for a 1st order, eight speaker rig
90

180 |- - -

210N\ o L 330

—— HF Polar Response
—— LF Polar Response

Figure 5.19 Virtual microphone polar plots that bring the vector lengths in Equation

(5.3) as close to unity as possible (as shown in Figure 5.21), for a 1st
order, eight speaker rig.

Dlow=1:Dhigh=1

1t [
X 1 2
/N | // \\
0.5 / N S L N
/ N Vi \
! N 7 \
/ \
/ \
] \ |
1 ‘ \‘ |
0 S k T 2
w\ \ / |
\ 1
\ \\ /
\ /
-0.5 \\ — //
o, o
1 B
| | | | | | |
-1.5 -1 -0.5 0 0.5 1 1.5

Figure 5.20 Velocity and energy localisation vectors. Magnitude plotted over 360°
and angle plotted at five discrete values. Inner circle represents energy
vector, outer circle represents velocity vector. Using virtual cardioids.

As long as the virtual microphone patterns were the same for each speaker,
the localisation angle was always the same as the encoded source angle, just

the localisation quality (length of the vector) was affected by changing the
polar patterns.

Dlow=1.33: D high=1.15

0.5+

-0.5¢

-1.5 -1 -0.5 0 0.5 1 15

Figure 5.21 Velocity and energy localisation vectors. Magnitude plotted over 360°
and angle plotted at five discrete values. Inner circle represents energy
vector, outer circle represents velocity vector. Using virtual patterns
from Figure 5.19.

However, when non-regular speaker arrays are used, not only do the vector
magnitudes need to be compensated for, but the replay angle and overall
volume of the decoded sound need to be taken into account. This results
from the non-uniformity of the speaker layout. For example, if all of the
speakers had the same polar pattern then a sound encoded to the front of a
listener would be louder over an ITU five speaker system than a sound
emanating from the rear, due to the higher density of speakers at the front of
the speaker array. Also, the perceived direction of the reproduced sound

would also be distorted, as shown in Figure 5.22.

Velocity

Speakers Vector

0,12.25,22.5,
Energy 45,90 & 135
Vector degrees

reproduced

angles

Figure 5.22 Energy and velocity vector response of an ITU 5-speaker system, using
virtual cardioids.

These artefacts are not a problem when you are producing audio for a fixed
setup (i.e. amplitude panned 5.1) as material is mixed so it sounds correct on
the chosen speaker layout. However, as the point of using a hierarchical
surround sound format is that an audio piece should sound as similar as
possible on as many speaker layouts as possible, these artefacts must be

corrected after the encoding has occured, that is, during the decoding stage.

Due to the added complexity of the speaker array’s response to an Ambisonic
system, Gerzon and Barton (1992) proposed that two separate decoders be
used, one for low frequency (<~700Hz) and another for high frequencies
(>~700 Hz). This can be achieved using a simple cross-over network feeding
low and high passed versions of the Ambisonic B-format signals to the two
decoders. lItis also important that the cross-over filters are perfectly phase
matched so that the reinforcement and cancellation principles used by

Ambisonics still function correctly.

5.3.3 Decoder system

1% order Ambisonics is comprised of four different signals, as shown in Figure

5.23, and comprises of an omni-directional pressure signal (W), a front-back

figure of eight (X), a left-right figure of eight (Y), and an up-down figure of
eight (2).

Z

Figure 5.23 Polar patterns of the four B-format signals used in 1st order
Ambisonics.

As the 5-speaker system shown in Figure 5.18 is a horizontal only system,
only three of the four available B-format signals are needed to feed the
decoder (W, X and Y). Also, as the speaker array in Figure 5.18 is left/right
symmetric, we can also assume that the decoder coefficients work in pairs
(i.e. sums and differences). The Ambisonic encoding equations are given in
Equation (5.4).

W=

X =cos(0)
Y =sin(6)

(5.4)

where 0 is the encoded angle, taken anti-clockwise from straight ahead.

As another tool in the decoding of the sound field, it will be seen that the use
of a ‘frontal dominance’ parameter is useful, as shown in Equation (5.5). This
is not the best form of the frontal dominance equation (it has a non-linear
response to the dominance parameter), but it is used to keep compatibility
with Gerzon’s previous paper on this subject (Gerzon & Barton, 1992).

W' =051+ AW +8_%(/”t — X
X'=05(4+)X + 2’%(1 —
Y =Y
(5.5)

where A is the forward dominance parameter (>1 for front, and <1 for rear

dominance).

These encoding equations are then substituted into the decoding equations to
give a numerical value for each speaker’s output to a particular signal as
given in Equation (5.6). In this equation it can be seen that what were
previously sine and cosine (i.e. directionally dependant) weightings are now
arbitrary values (nominally to be chosen between 0 and 1), denoted by kW,
kX and kY.

Cr = (KW xW") + (kKX x X)
L. = (KWe xW") + (kX x X") + (kY. xY')
Re = (KWp xW ") + (kX x X") = (kY. xY")
Ly = (KW xW") + (kX 5 x X") + (kY5 xY”)
Ry = (KWy xW ') + (kX 5 x X ") — (kY xY")
(5.6)

where k denotes a decoding coefficient (e.g. kW, represents the weighting
given to the W channel for centre front speaker).
r, s and ¢ denote front, back and centre speakers respectively.
W', X" and Y’ represent the incoming B-format signals after potential
transformation by the forward dominance equation.

C, L and R denote centre, left and right speakers

The values for A and the ‘k’ values are to be chosen to optimise the decoder’s
output, with A having possible values between 0 and 2, and ‘K’ values having

a nominal range between 0 and 1.

Equation (5.7) shows the conditions which are used to assess the

performance of a given solution. The conditions that must be met are:

Radius of the localisation vector lengths (Ry and Rg) should be as close to 1
as possible for all values of 6.
6 = By=0¢ for all values of 0.

Pv=Pge and must be constant for all values of 0.

N

> g, xcos(SPos;)/R,

i=1

VX

N
Vy = Z g; xsin(SPos;)/P,,
i=1

N
Ex =) g7 xcos(SPos,)/P;

i=1

N
Ey = > g/ xsin(SPos,)/P

i=1

Re =E; +E; O, :tan’l(Ey/Ex)
R, =V, +V/ 0, =tan"{v, V,)

(5.7)

where:
gi = Gain of the i speaker
SPos; = Angular position of the it speaker.
V denotes velocity vector
E denotes energy vector

The reason that these equations are difficult to solve is that the best result
must be found over the whole listening area, spanning 360°. Even Gerzon
admitted that these equations were laborious to solve for five speakers, and
the more speakers present, i.e. the more values that must be optimised, the
more laborious and time consuming finding the solution becomes. Also, there
is more than one valid solution for each decoder (low frequency and high
frequency) meaning that a group of solutions need to be found, and then

auditioned, to determine the best set of coefficients.

A system that can automatically calculate decoder coefficients is needed, and
possibly one that can distinguish between sets of coefficients that meet the

criteria set out by the energy and velocity vector theories. This system does
not need to be particularly fast, as once a group of solutions are found the
program should not need to be used again, unless the speaker layout
changes.

5.3.4 The Heuristic Search Methods

As a result of the fact that each parameter in the Ambisonic decoding
eqguations will have a value within a well defined range, 0to 1 or0to 2, a
search method offers an effective solution to the array optimisation problem.
However, if we wish to determine the settings to two decimal places there are
2 x 10 possible solutions (given that there are 9 search parameters) and an
exhaustive search is not feasible (Wiggins et al, 2003). When deciding on
the type of heuristic method, an empirical approach was used. The most
important part of any heuristic search method is the development of the
fithess equations. These are the functions that give the heuristic search
method the measure of the success of its choice. Care must be taken when
choosing these functions to make sure that it is not possible for different error
conditions to cancel each other out with the most logical solution to this
problem being to ensure that any error in the decode results in a positive
number. The fitness equations developed for this project are described later
in this chapter. The first avenue of research taken was that of a Genetic
Algorithm approach, as this is one of the better known heuristic methods.
This was first implemented as a Matlab script and did not seem to converge to
a good result, so the next system to try was one using an algorithm based on
the Tabu search as this has been shown to converge more accurately when
used in a small search space (Berry, S. & Lowndes V., 2001). It was while
developing this algorithm that it was discovered that the initial velocity and
energy vector calculations contained errors, and once corrected, the Tabu
search algorithm performed as expected. As this tabu algorithm performed
well, the genetic algorithm was not tried again at this point due to its known
convergence problems as described above (Genetic Algorithms are better

suited to a very large search space, which this problem did not have).

This adapted form of Tabu search works by having the decoder coefficients
initialised at random values (or values of a previous decoder, if these values
are to be optimised further). Then the Tabu search program tries changing
each of the ‘tweakable’ values, plus or minus the step size. The best result is
then kept and the parameter changed is then restricted to only move in the
successful direction for a set number of iterations (which, of course, will only
happen if this parameter, again, is the best one to move). It must be noted
that the random start position is of great importance, as it is this that helps in

the search for a wide range of solutions.

The most important part of the Tabu search algorithm is the equations used to
measure the fitness of the decoder coefficients, as it is this one numerical
value that will determine the course that the Tabu search takes. As
mentioned above, three parameters must be used in an equation that
represents the overall fitness of the decoder coefficients presented. These
are:

e Localisation measure (vector lengths, Ry & Rg).

e Localisation Angle (vector angles, 6y & Og).

e Volume (Sound pressure gain, Py & energy gain, Pg) of each encoded

direction.

As each of the parameters must be as good a fit as possible for the whole
360° sound stage, the three parameters must be evaluated for a number of
different encoded source positions. Gerzon evaluated these parameters at 14
points around the unit circle (7 around a semi-circle assuming left/right
symmetry), but as computers can calculate these results so quickly, an
encoded source resolution of 4° intervals would be used (90 points around the
unit circle). Due to the large number of results for each of the fitness values
an average was taken for each fithess parameter using a root mean square
approach. If we take the example of the fithess of the vector lengths
(localisation quality parameter), then if a mean average is taken, a less than
one vector length in one part of the circle could be compensated for by a
greater than one vector length elsewhere. However, if we take a good fit to
be zero, and use a root mean square approach then a non-perfect fit around

the circle will always give a positive error value, meaning that it is a true

measure of the fitness. The equations used for each of the fitness

parameters are shown in Equation (5.8).

(5.8)

where:
P, is the pressure at an encoded direction of 0°.
R represents the length of the vector at a direction, i.

n is the number of points taken around the unit circle.

Enc

@ is the encoded source angle and 6 is the localisation angle.
V, M and AFit are the numerical fitness parameters used to measure
the performance of a particular decoder (Volume, Magnitude and

Angle).

Given the three measures of fitness in Equation (5.8), the overall fitness for
the high and low frequency versions of the decoder are actually calculated
slightly differently. The low frequency decoder can achieve a near perfect fit,
but the best fit that the high frequency decoder can expect to achieve is
shown in Figure 5.32. The best results were obtained from the Tabu search
algorithm if the overall fitness was weighted more towards the angle fitness,

Afit from Equation (5.8), as shown in Equation (5.9).

LFFitness = AFit + MFit +VFit
HFFitness = AFit + (MFit + VFit)/2

(5.9)

A block diagram of the tabu search algorithm used in this research is shown in
Figure 5.24.

The main benefit of the Tabu search method is that all three of the conditions
to be met can be optimised simultaneously, which had not been accomplished
in Gerzon’s Vienna paper (Gerzon & Barton, 1992). For example if we take
the speaker layout used in the Vienna paper, which is not the ITU standard
but is reasonably similar (it is a more regular layout than the one the ITU
specified after Gerzon’s paper was published), then the coefficients derived
by Gerzon and Barton would give an energy and velocity vector response as
shown in Figure 5.25. Several points are apparent from this figure. There is a
high/low localisation angle mismatch due to the forward dominance being
applied to the high frequency decoder’s input after the localisation parameters
were used to calculate the values of the coefficients (as first reported in
Wiggins et al., 2003). If the frontal dominance is applied to both the high and
low frequency decoders, a perceived volume mismatch occurs with the low
frequency decoder replaying sounds that are louder in the frontal hemisphere
than in the rear. Also, even if these mismatches were not present (that is, the
frontal dominance is not applied) every set of results presented in the Vienna
paper showed a distortion of the decoder’s reproduced angles. Figure 5.25
shows a set of coefficients calculated using the Tabu search algorithm
described in Figure 5.24 and demonstrates that if all three criteria are
optimised simultaneously a decoder can be designed that has no angle or
volume mismatches, and should reproduce a recording more faithfully than

has been achieved in previous Ambisonic decoders for irregular arrays.

Initial Decoder Coefs
Nenurrber of iterations

/ b/
Tabu List

Y
If allowed, add and
Stepsize sublract stepsize
fromeach decoder
ccefficient
\
Store best local
best reslt.
A 4
i
z Undbate Tabu'd
i) coefficients and
= directiors.
o
3
kY Is newresult
best?
¥es
Store best
overall result.
Figure 5.24 A simple Tabu Search application.
Velocity Velocity
Speakers Ve/ctor Speakers Vector
V Sound Sound
B, Pressure : ‘ Pressure
; Level Level
0,12.25,22.5, : 1
45,90 & 135 | 01225225
degrees | 45,90&135
. = " reproduced el o~ degrees
angles reproduced
Energy Energy angles
Vector Vector
Gerzon/Barton Decode Wiggins Decode

Figure 5.25 Graphical plot of the Gerzon/Barton coefficients published in the Vienna
paper and the Wiggins coefficients derived using a Tabu search
algorithm. Encoded/decoded direction angles shown are 0°, 12.25°,
22.5°, 45° 90°, 135° and 180°.

Tabu Search Path for W Coefficients
T T T T

Tabu Search Path for X Coefficients
T T T T

— W ‘Cenlre ‘ —_ X‘Centre
—— W Front |4 0.9 —— XFront
— — W Back — — XBack
I 0.8
-a, ,
N P s 0.7+

© o 0.6F

;f ? 0.5

8 8 04l

BN 0.3
0.2
0.1

DZ‘S 00 lb 1‘5 2‘0 2‘5 36 3‘5 40

Iteration Number (x 50) Iteration Number (x 50)
Tabu Search Path for Y Coefficients Overall Fitness Values during Tabu Search
1 T T T 1 T T T T T T
0.8} \ \ / \ 0.8}
0.7} / 07t
N

o 06 _ 2 0.6

s °

g 0.5} Z 0.5F

S o4l \ % 041

0.3} 0.3F
0.2 \ 0.2
0.1t 0.1}
0 P R 0 ‘ ‘ ‘
0 10 15 20 25 10 15 20 25 30 35 40
Iteration Number (x 50) Iteration Number (x 50)

Figure 5.26 The transition of the eight coefficients in a typical low frequency Tabu
search run (2000 iterations). The square markers indicate the three
most accurate sets of decoder coefficients (low fitness).

Figure 5.27 The virtual microphone patterns obtained from the three optimum

solutions indicated by the squares in figure 5.25.

While writing up this research thesis, Craven (2003) released a paper

detailing how 4™ order circular harmonics (i.e. Ambisonic, spherical harmonics

without the height information) could be used to create an improved panning

law for irregular speaker arrays. The example decoder Craven includes in his

paper has the velocity/energy vector representation and virtual microphone

patterns as shown in Figure 5.28 and Figure 5.29 respectively.

Figure 5.28

Figure 5.29

Plot of 4th Order Irregular Decoder

.
tu,

08

04r

02r

.....

04

OB+

Energy and Velocity Vector Analysis of a 4™ Order Ambisonic decoder
for use with the ITU irregular speaker array, as proposed by Craven
(2003).

Yitual microphone patterns used for 4th order decoder

180

270

Virtual microphone patterns used for the irregular Ambisonic decoder
as shown in Figure 5.28.

The method Craven used to derive this new decoder is not detailed in his

paper, and he has opted for a frequency independent decoder, no doubt, in

order to make the panning law easily realisable on current software/hardware

platforms. It can be seen that the performance of the high frequency energy

vector analysis is very good, with respect to the vector length, however, the
matching of the high and low frequency vector angles is not ideal, and also
the vector length of the low frequency velocity vector should be designed as
close to 1 as possible (Gerzon & Barton, 1992). These problems are mostly
due to the fact that a frequency independent decoder has been presented, so
any decoder will always be a compromise between optimising for the energy
vector and optimising for the velocity vector’s three fithess parameters of
length, perceived direction, and perceived amplitude. However, using the
Tabu method just described, it is a simple matter of changing the weightings
of the fitness equations, as shown in equations (5.8) and (5.9), in order to

design a decoder with more coherent lateralisation cues.

In order to experiment with higher order decoder optimisation, a new Tabu
search application was developed, using the same fitness criterion as before,
but with user editable weighting functions. A Screenshot of this can be seen
in Figure 5.30.

. Form FBX

000 00 000 0 0 0 0 00 000 0 00 0 0 0 StartT abu
TS S Y Y Y Y

L | ol
I O e 5 5 5
I L e) e e R B P s

[o1 oz oz oq foo [o1 oz oz [oofoz [oofoo foofoo o3 [03fo4 [00fat{oo {0000 00
D 0 00 0 000D D00 000 0 000 0000070 Buttont

Fitness Calculation
1.00 ﬁ el Mag + oo i *Welvol + o0 ﬁ el Ang +

edMagy/ edyvoldY eddngy W
0.00 ﬁ ¥EnMag + [100 ﬂ % Envol + [0 ﬁ ¥ EnAng +
edhiagE edyolEY eddngE

Figure 5.30 Screenshot of the 4™ Order Ambisonic Decoder Optimisation using a
Tabu Search Algorithm application.
The sets of up/down arrows in the ‘Fitness Calculation’ box are where the

user can set the weightings of each of the individual fitness values, in order to

influence the performance of the Tabu search algorithm. It can be seen, in
Figure 5.30, that the perceived volume fitness is governed by the Energy (‘En
Vol’, high frequency) rather than the pressure (‘Vel Vo', low frequency). Due
to the frequency independent nature of these decoders, one or the other must
be chosen, and as the energy vector covers a much wider frequency band for
a centre listener (>700 Hz) and an even larger frequency band for off-centre
listeners, it is always advisable to use the average energy as an indicator for
the perceived amplitude of a decoded source (Gerzon, 1977a).

“Yirtual microphone patterns used for 4th order decoder Plat of 4th Order lrregular Decoder
1 T T

08r

06F

04r

02r

ot

02F

a4t

0B

081

Ak

Figure 5.31 Graph showing polar pattern and velocity/energy vector analysis of a 4™
order decoder optimised for the 5 speaker ITU array using a tabu search
algorithm.

Figure 5.31 shows a 4™ order decoder optimised by the Tabu search
application shown in Figure 5.30. It can clearly be seen that although the
length (and therefore, shape) of the energy vector plot is very similar to that of
Craven’s decoder shown in Figure 5.28, showing a similar performance, this
Tabu search optimised decoder shows improvements in other aspects:
e The low frequency velocity vector has a length much closer to 1 for
a source panned in any direction.
e The low and high frequency perceived directions are in better
agreement.
The optimisation of a 4™ order decoder as proposed by Craven (2003) shows
the robust and extensible nature of the tabu search algorithm described in this
report, as over double the number of alterable parameters (23 as opposed to

9) were used in this program.

5.3.5 Validation of the Energy and Velocity Vector

It can be seen in Figure 5.26 and Figure 5.27 that, according to the velocity
vector, it is possible to design a low frequency decoder that satisfies all of the
fitness parameters discussed in the previous section. This is even possible
when the ITU standard speaker layout is used (although the high frequency
decode suffers, theoretically, in this configuration) as shown in Figure 5.32. If
we take the velocity vector as a measure of the low frequency localisation,
which is dominated by time/phase differences between the ears, and the
energy vector as a measure of the mid frequency localisation, which is
dominated by level differences between the ears, then this theory can be
tested using head related transfer functions (Wiggins et al., 2001). The HRTF
data is used from (Gardner & Martin, 1994). Assuming the head will remain
pointing straight ahead, the speakers will remain in a fixed position in relation

to the head and time and level difference plots can be obtained.

Figure 5.32 A decoder optimised for the ITU speaker standard.

Using the average group delay between 0 and 700Hz to obtain the time
differences between the ears and the average magnitude between 700Hz and
3 kHz, reference plots can be calculated, which the decoder’s output must
follow in order to fool the ear/brain system successfully. The head related
transfer functions for the Ambisonic array can be calculated in one of two
ways:
e A pair of HRTFs can be applied to each speaker’s output, and then left
and right ear responses are summed resulting in a single response pair

(for each encoded direction)

e The decoder can be encoded into a pair of HRTFs for each input signal
(W,X and Y in this case) using the method described in section 5.2.4

Both of the above methods ultimately arrive at the same results and if only off-
line analysis is needed, then either of these methods can be chosen (the 2™
is computationally more efficient if auralisation of the decoder is desired
(Wiggins, et al., 2001) and becomes more efficient the greater the number of
speakers used, when compared to the 1% method). Two resulting pairs of
HRTF responses have been produced for encoded sources all around a
listener, one pair for the low frequency decoder, and one pair for the high

frequency decoder.

A graph showing the level and time differences of real and Ambisonically
decoded signals is shown in Figure 5.33 (note, an Ambisonic decode to a five

speaker rig is often referred to as G format).

The HRTF analysis graphs have been constructed using the anechoic HRTFs
measured by MIT (Gardner B., Martin K., 1994). A real source is taken as a
single pair of these HRTFs, and the Ambisonic (G-Format) output has been
constructed from a combination of these anechoic HRTFs weighted to various
degrees depending on the simulated source direction (i.e. a simulation of an
Ambisonic decode). When using the HRTF analysis, the low frequency range
was 0 Hz — 700 Hz, and the mid frequency range was from 700 Hz — 3 kHz.
The 700 Hz value was used so the results could be directly compared to the
velocity and energy vector analysis used by Gerzon & Barton (1992) with the
3 kHz value used as a nominal value. The x-axis scale in these graphs
represents either a real or synthesised Ambisonic source position in degrees.
The y-axis scaling represents either the average time difference (in samples,
sampled at 44.1 kHz) or the average amplitude difference, measured linearly,

with an amplitude of one representing 0 dB gain.

LF Time Difference

n
K]

Q.

IS

= il
)

[

(8]

Q il
o
Q2
'5 .
o

2 _
'|: _40 1 1 1 1 1 1 1

0 50 100 150 200 250 300 350 400
HF Amp Difference
2 T T T T

8 —— G Format

5 1 —— Real Source ||
2

:‘O:

© 0 N
ke]

2

5 -1 :
IS

<

-2 1 1 1 1 1

1 1
0 50 100 150 200 250 300 350 400
Encoded Source Position (degrees)

Figure 5.33 A graph showing real sources and high and low frequency decoded
sources time and level differences.

This graph shows two interesting points. The low frequency, time difference,
graph indicates that the decoded material is not perfect, showing a significant
error around the rear of the system’s decoded sound field. This is, of course,
understandable as there is a speaker ‘hole’ of 140° between the two rear

speakers; however, this fact is not apparent from the velocity vector analysis.

The high frequency amplitude differences are a very good fit to the real
source’s curve, even when a source is to be reproduced around the rear of
the listener. The fact that the two vector analysis techniques perform slightly
differently is not wholly unexpected, as these two ideas were taken from a
number of sources and converted into part of a psychoacoustic meta-theory
by Gerzon (1992c).

In order to analyse the robustness of the calculated coefficients, head rotation
must be simulated. As the set of HRTFs used for the auralisation and
analysis of the Ambisonic decoders are taken using a fixed head, head
rotation is achieved by moving the speaker sources around the listener (which
is, essentially, the same thing). This more complex relationship between the
real and virtual source’s localisation cues can then be observed. A well

designed decoder will have localisation cues that follow the changing real

cues as closely as possible, where as a decoder that does not perform as well
will exhibit various artefacts, such as the virtual source moving with the
listeners as they rotate their head in any one direction (in the horizontal plane

in this example).

Figure 5.34 shows a graphical representation of two sets of decoder
coefficients that solve the energy and velocity vector equations (as good a
fitness value as possible). It can be clearly seen that the low frequency
decoder (that we shall concentrate on here) has different virtual microphone
responses for each of the decoders even though the decoders’ performance
analysis using the velocity vector gives an identical response for each
coefficient set. To make a more detailed comparison between these two sets

of coefficients we can use the HRTF simulation described above.

Coefficient Set 1 Coefficient Set 2
| HF Virtual Mic | HF Virtual Mic
Dl Polar Pattern < Polar Pattern
LF Virtual Mic LF Virtual Mic
Polar Pattern Polar Pattern
Velocity and Velocity and
Energy Vectors Energy Vectors

)

Figure 5.34 Graphical representation of two low/high frequency Ambisonic
decoders.

Figure 5.35 shows that coefficient set 2 has a better match of the low
frequency time difference parameter, when analysed using the HRTF data,
than coefficient set 1. However, this does show up a shortcoming of the
energy and velocity vector technigue. As mentioned already, a number of
solutions can be found that satisfy the energy vector equations, and a number

of solutions can be found that satisfy the velocity vector equation. Once a

good set of coefficients have been produced it has previously been a case of
listening to the resulting decoders and subjectively deciding which one is
‘best’.

Coefficient Set 1 Coefficient Set 2

LF Time Difference : 0 degrees LF Time Difference : 0 degrees
T T

T T
| — G Format
—— Real Source ||
N

40

20+

=201

-40
0 50 100 150 200 250 300 350 400

T T
—— G Format
—— Real Source ||

HF Amp Difference
T T

HF Amp Difference
T T

—— G Format
—— Real Source ||

L L L L L L L L
0 50 100 150 200 250 300 350 400 [50 100 150 200 250 300 350 400

Amplitude (frequency domain) Time Difference (samples)
Amplitude (frequency domain) Time Difference (samples)
~

Source Position (degrees) Source Position (degrees)

Figure 5.35 HRTF simulation of two sets of decoder.

However, if we continue the HRTF simulation, the effect that head rotation
has on the reproduced sound field can be observed (see Figure 5.36). In
anechoic circumstances, simulating a change of head orientation and a
rotation of all the speaker positions are actually the same thing. So in order to
accurately simulate head movement, all the speakers are rotated. This
should have the effect of the time and amplitude difference graphs cyclically
shifting when compared to Figure 5.35. Any difference in the graphs apart
from the cyclic shift is in error with what should be happening (and what can
always be seen in the graphs with regards to an actual source). Observing
Figure 5.36, it can be seen that head movement introduces errors to the mean
time and level differences presented to a listener in anechoic circumstances.
The low frequency time difference results are similar in error, but a difference
can be clearly seen. Coefficient set 1's low frequency plots stay faithful to a
real source’s time difference. However, the second set of coefficients does
not behave as well as this. If we look at the real and virtual source shown at
0° on the graphs (representing where the listener is facing, which will now be
an off-centre source due to the rotation of the speakers) the virtual response
should follow that of a real source. That is, a source at 0° should now have
an off-centre response as the speakers have rotated (again, which is the

same as head rotation in anechoic circumstances).

Coefficient Set 1

LF Time Difference : 30 degrees

T 40

Time (samples)
3 ma L
o o B

[
=]

LF Time Difference : 15 degrees

G Format
Real Source ||

f
Time (samples)
.]
=]

[
=]

G Format
Real Source 4

F
=]

! L ! !
100 150 200 250

L
300

L ! L ! ! ! 40
50 100 150 200 280 300 350 0 50
HF Amp Difference HF Amp Difference
2 T T 2 T T T T T
1k
@ @
E] E
£ £
k4 = .
KRS 4
=] L L ! L ! ! !] L ! L ! ! L L
] 50 100 150 200 280 300 350] 50 100 150 200 250 300 350
Source/Decoded Source Angle Source/Decoded Source Angle
LF Time Difference : 45 degrees LF Time Difference : B0 degrees
40 T T T T T 40 T T T T T

[}
=]

Time (samples)
s [=]

— G Format
—— Real Source ||

n
=]

.
Time (samples)
: =]

— G Format
—— Real Source ||

20F 8 0 1
A0 L L L L L L L 40 L L L L L L L
0 a0 100 150 200 250 300 350 0 50 100 150 200 250 300 350
HF Amp Difference HF Amp Difference
2 T T T T T T T 2 T T T T T
G Format
1F Real Source |4 1+
) o
E] E
< o 1 £ o 1
£ £
k4 =
RS i At 4
) L L L L L L L) L L L L L L L
il a0 100 150 200 250 300 350 il 50 100 150 200 250 300 350
Source/Decoded Source Angle Source/Decoded Source Angle
Coefficient Set 2
a0 LF Time Difference : 15 degrees LF Tirme Difference : 30 degrees
. . 40 T T T T T T T
= =~ B
e £
s 0) & Of]
E £ 7
£ 1 Eaop 1
-40 : : ' : ' ' 40 s s s
2l flun) ik S S)]] 50 100 &0 20 280 300 30
) HF Amp Difference HF Amp Difference
T T 2 T T
1 1k
= o
2 E:
2" 2" |
Ed £
=] =l]
2 . L L L - ! L 2 . . . L I . .
a 50 100 150 200 250 300 350 il 0 100 160 200 250 300 350
Source/Decoded Source Angle Source/Decoded Saurce Angle
LF Tirme Diffierence : 45 degrees LF Tire Difference : 60 degrees
40 T T T T T T T A0 T T T T T T T
G Farrmat
T 20f Real Source (| @
- =
£ £
E o 1 i
£ £
£ -0 1 S
40 . L L . . L a0 . . . L . . .
a0 100 150 200 250 300 350 a0 100 150 200 2480 300 350
HF Amp Difference HF Amp Difference
2 T T T T T 2 T T T T T
1Tr 1r
= =
= =l
2 0r 1 2 0r 1
£ 5
<€ <<
At i RS 4
2 . L L . . L L 2 . . . L I . .
a 50 100 150 200 250 300 350 1] 50 100 150 200 250 300 350

Figure 5.36

Source/Decoded Source Angle

Source/Decoded Source Angle

HRTF Simulation of head movement using two sets of decoder

coefficients.

This is not the case for the 2" set of coefficients and it can be seen that as
the head is rotated, the virtual source’s time difference stays at approximately
0 samples difference. This means that when the head is rotated, the virtual
sound source will track with the listener, potentially making the resulting

sound field confusing and unstable.

5.3.6 HRTF Decoding Technique — Low Frequency

The evidence gathered from the HRTF analysis of the decoders’ performance
under head movement suggests that, as far as the low frequency velocity
vector is concerned, more information is needed to design a decoder that is
both stable under head rotation and has accurate image localisation.
However, as the velocity vector is used as an approximation to the interaural
time difference, it is now possible to alter the Tabu search algorithm described
in section 5.3.4 to ignore the velocity vector and deal directly with the
interaural time difference present for encoded sources around the unit circle.
This, on its own, may lead to potential performance increases as the
interaural time difference for a listener looking straight ahead can be mapped
more accurately using HRTF data, when compared to the velocity vector
theory. Also, head rotations can be simulated as shown above, and these

results taken into account when evaluating the fitness of a particular decoder.

So, as is immediately apparent, the actual Tabu search algorithm will remain
the same (decoder still has same number of coefficients etc.) but the
algorithm that supplies the Tabu search with its fithess coefficient must be

altered to take advantage of this new research.

m=0 k=0

12 | [360(dgp)
Fitness = > Z[;fef - dgd“J 13
1) 1)

(5.10)

k = Source angle
d=Average Phase Response (0-700Hz)
o=Frequency

m=Head Rotation number.

The fitness is now calculated using Equation (5.10) and then combined with
the pressure level (volume) fitness given in Equation (5.8) using the root
mean square value. Again, the closer this fitness value is to 0, the better the
performance of the decoder coefficients. In order to take into account head
movement, this equation is evaluated using speaker rotations from 0° to 60° in

5% increments, and then the average fitness is taken.

LF Time Difference : 0 degrees LF Time Difference : 30 degrees

40 T T 40 T T
——| —— G Format — — G Format
200 —— Real Source || 200 7 —— Real Source ||
0) ot
-20 -20F
~_
-40 1 . I I . I . 40
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
LF Time Difference : 0 degrees LF Time Difference : 30 degrees
40 T T T T T 40 T T T T T
- — G Format —— | — G Format
20+ —— Real Source | 20 / —— Real Source |
\\ /
0 | 0 /
20 20 -
~_ =
40 . . I40 . I
50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

40
20
ol
20k
Z
_—
-40 . 1 I
0 50 100 150 200 250 300 350 400
LF Time Difference : 60 degrees
40
T —— G Format
20 ﬂOUVCe |
ol 4
20} 4
=
- —
-40 . 1 I
0 50 100 150 200 250 300 350 400

Figure 5.37 Comparison between best velocity vector (top) and a HRTF set of
coefficients (bottom).

Figure 5.38 Polar and velocity vector analysis of decoder derived from HRTF data.

In terms of the low frequency decoders that this technique produces, there is

a very high correlation between this HRTF method and the previous velocity

vector analysis. That is, a decoder calculated using HRTF data produces a

good velocity vector plot as shown in Figure 5.38.

However, it can be seen that, in order to maintain the image stability due to
head rotations, a compromise is needed between the accuracy of the
decoder’s localisation (according to the velocity vector) and its image stability
under head rotations. To see if this is actually the case Figure 5.37 shows the
HRTF analysis of the best velocity vector decoder (as used in Figure 5.36)
and a set of decoder coefficients derived using HRTF data. It can be seen
that the resulting plots are almost identical for each reproduced angle and
degree of head rotation (0°,30° and 60° in this case). The HRTF derived set
seems to actually have a better fit than the velocity vector analysis suggests,
and a slightly better fit than the original velocity vector decoder (which was
found to be the best of several found using the velocity vector technique). So,
as the decoder is now calculated taking head rotation into account, every
decoder now produced using this technique (as there are, again, multiple
solutions) will have an analytical performance similar to that shown in Figure
5.37.

5.3.7 HRTF Decoding Technique — High Frequency

As already stated (and as can be seen in Figure 5.36), the decoder’s high
frequency response is much more difficult to match to that of a real source,
and most decoders derived using the energy vector theory have a response to
head rotations very similar to those shown in Figure 5.36. However, as is
shown in the listening test later in this chapter, although decoders can be
designed using HRTF data directly, taking head rotations into account, this
will not necessarily result in decoders that perform better under head rotations
than when designing a decoder using the energy vector analysis. It decoder
designed using velocity and energy vectors can, clearly, still have a good
response to head rotations, it is just that it is not due to the Tabu search
algorithm striving for this behaviour. However, when utilising velocity/energy
vector optimisations, the head rotation parameter can still be used in order to
differentiate between decoders’ performance as many resulting decoders are

possible.

The algorithm used to calculate the fitness parameter for the higher frequency
decoder actually needs to be of a slightly different nature than that of the low
frequency system. This is due to the fact that after analysing the high
frequency lateralisation cues of many optimum decoders (optimum, in that
they were optimised using the energy/velocity vector methods, or using purely
front facing HRTF optimisation) it was found that, due to the non-uniformity of
the speaker layout, high frequency head turning is more catastrophic for the
amplitude cue when compared to the low frequency phase cue. If the
average fitness were used then the Tabu search would treat optimising the
response under head rotation with the same priority as looking straight ahead,
possibly resulting in a decoder that performs best when looking 30° to the left,
for example. It makes more sense to have priority given to the decoder’s
output when the listener is facing straight ahead, and so a weighting term
must be used. The equation used for the localisation fithess parameter is
given in Equation (5.11). This resulted in HRTF decoders that performed best
when the listener is facing straight ahead, as if the weighting parameter was
not used, the Tabu search algorithm would converge on decoders with a poor,
analytical, performance (i.e. the fitness function did not truly represent the
fitness of the decoder as a small increase in fithess when facing off-centre

made more of a difference when compared to a centrally facing listener).

Fitness = \/f(f (k)ref —f (k)dec)2

k=0
(5.11)

f=average magnitude response between 700-3000Hz of a real source (i) at
k° from centre front, and a decoded source (gec) located at k° from centre
front.

k=source angle (in degrees).

5.3.8 Listening Test

5.3.8.1 Introduction

In order to try and quantify any improvement that can be attributed to the
optimisation techniques described above, listening tests are needed.
Although the main body of this report concentrates on the numerical analysis
and optimisation of Ambisonic decoders using the lateralisation parameters
and velocity and energy vectors, a number of small listening tests were
developed in the hope that others will carry the work further now that a
technique for optimising irregular Ambisonic decoders has been made

available.

When designing the listening tests, there are two main types of material that
can be presented to the listener:
1. Dry, synthetically panned material
2. A pre-recorded real event in a reverberant space.

Each one of these extremes will result in a test that will be more suited to
testing for one attribute more than another. As an example, if the recent
Project Verdi test is observed (Multi Media Projekt Verdi, 2002), two
recordings in a reverberant space were used, with the following attributes
tested in the questionnaire:

a. Subjective room size — very big to small

b. Localisation accuracy — very good, precise to bad

c. Ensemble depth — deep to flat

d. Ensemble width — wide to narrow

e. Realism of the spatial reproduction — very good, natural to bad,

unnatural

f. Personal preference — very good to bad.
These are typical of the types of spatial attributes tested when listening to pre-
recorded material (although others, suggested by Berg & Rumsey, 2001,
could be envelopment, presence and naturalness). This type of material is
hard to test, in some ways, as it does depend on what you are expecting the
tested system to achieve. For example, accurate scene-capture and ‘best

sounding’ are not necessarily synonymous; ultimately, the personal

preference parameter may be of greater importance.

Conversely, the most common form of test carried out on a dry, synthetically
panned source is that of simple recognition of the angular placement of that
source (again, see Moller et al., 1999, Kahana et al., 1997, Nielsen, 1991 and
Orduna et al., 1995 as typical examples). However, evaluating other
attributes can often lead to a fuller picture of what a particular system is
achieving. Such attributes could include:

g. Source width/focus

h. Source distance

i. Source stability (with respect to head movement).
When it comes to testing a surround sound system, the ideals of the system
are easier to decide upon. The best case scenario would be a system which:

e Has small image width/good image focus

e Reproduces distance accurately

e Reproduces sources in a fixed position, regardless of listener

orientation.

Also, not mentioned at this point is that the performance of any multi-speaker
system in an off-centre position can also be assessed using any/all of the

above points.

As far as the optimisations of the Ambisonic decoder are concerned, the
direct consequences should be (with regard to an Ambisonically panned, dry
source):

e Increased accuracy/matching of encoded source position to

perceived source position.

e Increased image stability with respect to head turning.
Other effects of the optimisation may be (again, with regard to an
Ambisonically panned, dry source):

e Change in perceived image width/focus.

e Timbral alteration due to differences between low and high

frequency decoders

All of the above would also be true when listening to pre-recorded,
reverberant material, with potential increase in accuracy and coherency of the
lower order, lateralisation cues, resulting in improvements to the higher order
spatial properties of the reproduced audio environments:
e Envelopment should be increased, that is, the sense of being in a
real place, and not listening to an array of speakers.
e Spaciousness should more closely resemble that of the actual
event.
e Depth perception should be more accurate.
To this end, in order to subjectively test these decoders, questions based

around these attributes should be designed.

5.3.8.2 Decoders Chosen for Testing

A small sample listening test was carried out to give an insight into which
specific decoders worked best, and also to observe any common features
with Ambisonic decoders designed for use with an ITU 5 speaker array in

order to influence further listening tests to be carried out after this research.

Five decoders were chosen for this test comprising:
e One decoder using the default settings of the commercially
available SoundField SP451 Surround Processor (SoundField Ltd.,
n.d. a).
e Two decoders optimised using the energy and velocity vector.
e Two decoders optimised using HRTF data directly
An analysis of these decoders will now follow, using both the energy and

velocity vector and the HRTF decomposition methods described above.

Low Frequency Decoder Polar Plots
80 gg

1

— Centre
08t

06

04t

02F

of

02k

04t

0Bk

08k

4 . B — -

High Frequency Decoder Polar Plots LF Tirme Dif
@ g T T T T

.
=}

= Centre

[}
=]

Tirne dif (samples)
: o

5]
[
=] T

.
=]

L L 1 1
50 100 150 200 260 300 350 400

— Arnhi
— Real |4

HF Amp Dif

Armnplitude dif

L L L L L
i} 50 100 150 200 250 300 350 400
Source Angle (degrees)

Figure 5.39 Decoder 1 — SP451 Default Settings

Figure 5.39 shows the default settings of the commercially available SP451
Surround Processor unit. This decoder is frequency independent (i.e. both
high and low frequency decoders are the same), with all the virtual
microphone polar patterns being of type cardioid. This leads to various
problems when the decoder is viewed using energy and velocity vectors, with
the resultant lengths of the vectors being suboptimal, and all of the source
positions being shifted forwards (i.e. a source that should be at 45° will be
reproduced closer to around 20° when decoded). However, when the
resulting HRTF analysis is observed, the high frequency amplitude differences
are a surprisingly good match to that of an actual source, with the low

frequency time difference showing the greatest error.

Low Frequency Decoder Polar Plots

Figure 5.40

Figure 5.41

High Frequency Decoder Polar Plots

a0

270

15

= Centre
— Frantl
= FrontR
—— Rearl
= RearR

Arnplitude dif

Time dif (zamples)

=
[=]

LF Time Dif

[=]

n
=]

[
=]

e
=
o

L L L ! ! ! !
50 100 150 200 250 300 380 400

HF Amp Dif
— Ambi
—— Real

a0 100 150 200 260 300 350 400
Source Angle (degrees)

Decoder 2 — HRTF Optimised Decoder

Low Frequency Decoder Polar Plots

a0

2

= Centre

High Frequency Decoder Polar Plots

a0

15

n2t

04t

0Bk

08k

Armplitude dif

Tirne dif (samples)

08t

06

04

02r

I L I I
Sl 05 o 0s 1

HF Amp Dif

— Ambi
— Real |4

1 1 1
o 50 100 150

L .
200 2480 300 350 400
Source Angle (degrees)

Decoder 3 — HRTF Optimised Decoder

Figure 5.40 and Figure 5.41 show two examples of decoders optimised using

HRTF data directly. It can be seen that these two decoders have produced

similar results when looked at using the HRTF data directly and when using

the velocity and energy vector analysis, although the virtual polar patterns for

both high and low frequency decoders are quite different. Also, the two types

of analysis show good agreement as to the angular distortion introduced by

Decoder 3, with frontal sources not producing enough level difference

between the ears, and so pushing sources towards the front of the speaker

array. Decoder 2 has a much better encoded/decoded source position
agreement which is, again, shown in both the HRTF and velocity/energy
vector analysis at high frequencies, with very similar performance, again using

both forms of analysis, at low frequencies.

Figure 5.42 and Figure 5.43 show the two decoders that were designed using
the velocity and energy vector theories. One thing to note, firstly, is that these
decoders were optimised using rear speaker positions of +/- 115° instead of
the usual +/- 110°. Unfortunately this was not noticed until after the listening
test was carried out, but this is why the low frequency velocity vector match is
not as good as those shown in Section 5.3.4. Again, both of these decoders
have quite different low frequency virtual microphone polar responses, but
have near identical velocity vector responses. However, if the HRTF data is
looked at, it can be seen that Decoder 4's low frequency phase differences
can be seen to have significant errors around the rear of decoder’s response,
showing a ‘flipping’ of the image cues at source positions of 160° and 200°.
The high frequency decodes were designed using slightly different criterion,
with the angular accuracy of Decoder 4’s energy vector reproduced angle
being given a slightly smaller weighting, resulting in a higher error in the
reproduction angle for the rear of the decoder, but with the localisation quality

(vector length) benefiting from this approach.

Low Frequency Decoder Polar Plots

1F
W2 — Centre

08

06

041

02f

02k

04t

0E}F

08k

High Frequency Decoder Polar Plots LF Time Dif
90 45

=
[=]

= Centre

n
=]

[
=]

Time dif (zamples)
[=]

L L L L L L
0 &0 100 150 200 250 300 350 400
HF Amp Dif

Arnplitude dif
[=]

1 L n L . " 1
0 50 100 150 200 280 300 380 400

Source Angle (degrees)

Figure 5.42 Decoder 4 — Velocity and Energy Vector Optimised Decoder

Low Frequency Decoder Polar Plots
I

= Centre

High Frequency Decoder Polar Plots
90 45

— Centre

Tirne dif (samples)

a0 L L L
0 a0 100 150 200 250 300 350 400
HF Amp Dif
2 T T T T T T
e 1r
=
o
2o E
=
£
<.t B
2 L L L
1) a0 100 150 200 250 300 350 400

Source Angle (degrees)

Figure 5.43 Decoder 5 - Velocity and Energy Vector Optimised Decoder

LF Time O - Hoad Rotation = 0 degrees LF Time Dif - Head Rotation = 10 degrees

Amgliude o
=]
Amgliude o

Amngliude 44

Figure 5.44 Comparison of low frequency phase and high frequency amplitude
differences between the ears of a centrally seated listener using the 5
Ambisonic decoders detailed above.

Although the HRTF analysis of the various decoders has been shown, no
mention has yet been made of the performance of each decoder, numerically,
with respect to head turning. Figure 5.44 shows each decoder’s performance,
when compared to a real source, with respect to a listener turning their head

from 0° (facing straight ahead) to 50°. It can clearly be seen that all optimised

decoders perform in a very similar manner at low frequencies, with even the
unoptimised decoder performing in a coherently incorrect fashion (i.e. it does
not seem to exhibit the image tracking of a frontal source, for example, as
described in section 5.3.6). However, as it is to be expected, the high
frequency decoders do not perform as well. Figure 5.45 shows the
lateralisation cue errors as absolute error values, with Figure 5.46 showing

the average error value for each decoder with respect to head turning.

LF Time Dif - Head Rotation = 0 degrees LF Time D# - Head Rotation = 10 degrees

12 ' ' ' J— R 12
— Dec2- 010248
— Dae3- 014278 ! — Dae3- 021881
— Decd. 02173
5. 012

Asmpltude éf

o o

]

— Dwc2 - 4087
=0 — Dec3. 38183
Ei — Decd. 37935
* — Dach. 3901
g
g1
2

Asmpltude éf

o o

— Dued - 054529
— DecZ 020341
— Dec3- 033

— Dwcd . 037626
5 034211

Asmpltude éf

o o

Figure 5.45 Graphs showing absolute error of a decoder’s output (phase and level
differences between the ears of a centrally seated listener) compared to
areal source, with respect to head movement.

Average Errar with Head Turning @ Top - LF © Bottom HF
T T T T T T T

10k — Decl H
— Dec2
— Dec3
—— Decd
— Dech

Tirne Dif (samples)
o
T

‘o 5 10 15 20 25 30 35 40 45 50
Head Turning (degrees)

Figure 5.46 Graph Showing the Average Time and Amplitude Difference Error with
Respect to A Centrally Seated Listener’s Head Orientation.

Figure 5.46 shows, in a very simplified manner, how each decoder will
perform. Using this graph as an indicator for overall performance, it can be
seen that, as already mentioned, all of the decoders perform almost equally
as well with respect to low frequency phase cues, with Decoder 1 having, by
far the worst error, but, as already mentioned, an error that stays reasonably
consistent with head turning. However, it is the high frequency plots that give
more insight into the performance of any decoder, as it is the high frequency
decoder that is most difficult to optimise, using either energy vector of HRTF
techniques. Performing best, here, is Decoder 2, which was designed with
head turning as a parameter (although, only up to 30 degrees). However, the
decoder with the next best high frequency error weighting is Decoder 5 which
is a decoder designed using the energy and velocity vector principles. It must
also be noted that, although the decoders all seem to perform similarly (under
numerical analysis), looking at the low frequency errors it can be seen that,
again, decoder 5 performs very well (best, in fact), but decoder 2 at low
frequencies is one of the worst performing decoders (ignoring Decoder 1).
Although there are four optimised decoders tested, each low frequency and
high frequency decoder was designed separately. No criteria has yet been

set for deciding which low frequency decoders will complement particular high
frequency decoders and so the decoders have been paired randomly
(although always grouped with a decoder that was optimised in the same way,
that is, using either HRTF or velocity/energy vector methods).

5.3.8.3 Listening Test Methodology

For the actual listening test, two separate testing methods were chosen:
e A listening test similar to that described in section 5.2, measuring
the accuracy of panned, mono sources in the decoded sound field.
e A test where users give a preference as to which decoder performs
best when auditioning reverberant, recorded material.
These two styles of testing are not designed to be all-encompassing, but have

produced interesting points for use in further testing methodologies.

Two sources were chosen for the listening tests to be carried out. The source
that was to be synthetically panned was dry, female speech which is often
used in such tests (for example, see Martin et al., 2001, Kahana et al., 1997,
Moller et al., 1999 and Neilsen, 1992) due to its wide frequency range, and
reasonably un-fatiguing sound (especially when compared to band-limited
noise and other such sources). For the test of a real recording where decoder
preference was to be given by a 60 second excerpt from a recording made by
the company, Serendipity (2000), of Rick Wakeman playing the piano in
Lincoln Cathedral. It is a very reverberant recording made by a company that
has had significant experience with the SoundField Microphone, particularly in
the effective placing of the microphone (something that can often be

overlooked when choosing recorded material).

For this small test, three listeners were used. All three were experienced
listeners that had taken part in multi-channel sound system listening tests
before. The first test had sources presented to them, six source positions per
decoder. The source positions were identical for each decoder, but played in
a pseudo-random order. The listeners were asked to indicate in which
direction they thought the source was coming from and to give an indication of

source width. This was to be recorded on the sheet shown in Figure 5.47

which showed the layout of speakers in the University’s Multi-Channel
Research Lab. In addition, to aid in the recording of source position, each
speaker in the lab had a label fixed on it with its angular position relative to
straight ahead. They were asked to draw the size of the source, as this
method has proved to be more intuitive in these situations (Mason et al.,

2000).

ISPARG Listening Test Sheet 1 — July 2004

300 07 g0

190° 13“':'].-|"l]':I
1. Please mark on this shest the position at which you perceive the ferrale vocal =mmples to
be coming from just inside of the thick, inper circle. Ple=se number the source position

fram 1ta & [1for the first etc.]

2. Also, please ind cate howr Fooused' a sourceis by an erlarged spot, or lines coming off
wour original estimation.

3. Sources can come from any direction and can b2 presented from the == me postion more

than once.
4. F you peroeive the source 3= coming from mone than one locstion, please indicate this on

the shest.

Figure 5.47 Sheet given to listening test candidates to indicate direction and size of
sound source.

The user interface for controlling the listening test was constructed in Matlab,
which called Simulink models that encoded and decoded the mono sources in

real-time, taking in a direction parameter that had been pre-entered. A screen

shot of this user interface is shown in Figure 5.48.

<) |Untitled EEE

HRTF Arnbisonics Listening Test
Dec1 Tesl1| Test 2 | Test3 ‘ Test 4 ‘ Testh | TestE |
[10 T [285 ET [200 EES
Dec10 Test? | Testd | Test 9 | Teslw‘ Test 11 ‘ Test12|
T [~ 10 | 200 [138 [265 [a0
Deciz Test13 ‘ Test 14 | Test15 ‘ Test 16 | Test17 | Test 18 |
[30 [~ 200 | 265 T [135 [10
Dec13 Test18 ‘ Test 20 ‘ Test 21 | Test 22 ‘ Test 23 | Test 24 |
[135 [~ 30 [10 | 265 T | 200
Dec17 Test25 ‘ Test 26 | Test 27 ‘ Test 28 | Test29 | Test 30 |
| 265 I 138 I a0 | 200 |10 T
Dec17 Dec1 Dec10 Dec12 Dec13
Last Fun Test:
Test 31 ‘ Test 32 ‘ Test 33 ‘ Test 34 ‘ Test 35 | Testl

Figure 5.48 Screenshot of Matlab Listening Test GUI.

5.3.8.4 Listening Test Results

The listening test results showed reasonably subtle differences between the
different decoders when tested using the synthetically panned source, and
much more obvious differences when listening to a more complex, recorded,

sound field.

Figure 5.49 shows the results for the three listeners. The square data points
represent the recorded source position with the error bars, above and below
these positions showing the recorded source size for each decoder. Itis
difficult to analyse these graphs directly, but it can be seen that all of the
decoders seem to perform reasonably well in this test with no image flipping
becoming apparent, although two sources were recorded as coming from
more than one location, subject 1 — decoder 4 and subject 3 — decoder 1.
Interestingly these were both at source position 225°, which is the area where

the decoders will all perform at their worst (i.e. at the rear of the sound field).

Subject 1 - Results Subject 2 - Results

400

400

350} 3s0 |

w
&
=]
w
&
=]

250

Perceived Source Angle (degrees)
Perceived Source Angle (degreas)

oo b i Actual || 200
-& D1
1801 150+
D2
100 =0 H 100 F
a0k =y sob
""""""""""""""""""""""""""""" = 05
0 A ! h h ! h : 0 L L . . L T
D 50 100 150 200 250 300 30 400 0 50 00 150 200 250 300 350 400

Actual Source Angle (degrees) Actual Source Angle (degrees)

Subject 3 - Results
400 T T T

380+

w
=
=]

= - b
=} o =1
=] a =]

Perceived Source Angle (degress)

i
=]

(=

L I L L I L
0 50 100 180 200 250 300 350 400
Actual Source Angle (degrees)

Figure 5.49 Graphs showing the results of the panned source part of the listening
test for each subject. ‘Actual’ shows the correct position, D1 — D5
represent decoders 1 —5.

In order to compare these results more equally, the average absolute angle
error and image size can be seen for each subject in Figure 5.50. As is to be
expected, the image source’s graphical depiction of size is different for each
subject (Mason et al., 2000), with subject one generally recording smaller
image sizes than subjects 2 & 3. It would be reasonable to insert actual
source positions in order to record some form of ‘calibration’ size source for
each listener, but this was not attempted in this small test. Another obvious
result is that decoder one seems to perform worst, subjectively, according to
each subiject (i.e. high mean error value). This was an expected result. The
other results, however, are slightly more varied from listener to listener. It was
proposed in section 5.3.8.2 that decoders 5 and 2 would be expected to
perform best, taking into account head turning and the average localisation
error this would produce. However, only subject 1 seemed to agree with this
statement in its entirety. Decoder 5 did perform consistently well throughout
this phase of the test, but decoder 2 performed less favourably when the

results of subjects 2 and 3 are observed.

Awerage Error and Source Size Values : Subject 1 Awerage Error and Source Size Values : Subject 2

@
=]
@
=]

Jid}
=]
Jid}
=]

40 40
w w
3 3
2 30 2 30
o o
= =
Em Em
i} i}
5 5
£ 10 + 2 ol
Z Z
o o
10 10
20 L L L L L 20 L L L L L
1 2 3 4 5 B 0 1 2 3 4 5 g
Decoder Number Decoder Number
Average Error and Source Size Values : Subject 3
[=in} T T T T T
a0+
40+
;% 0+
g 20t
= m
o
o
£ 10r
S
ol
ok
20 . . L L L
o 1 2 & 4 5] B

Decoder Mumber

Figure 5.50 Graph showing mean absolute perceived localisation error with mean
source size, against decoder number.

There are a number of potential reasons for this:

e Subject 1 was the most experienced listener in this test, and may
give the most correct, or predictable results.

e Decoder 5 is located at the end of the test, and the subjects may be
changing the way they are grading the results (or learning how to
interpret them better) as the test continues. This may be
corroborated by the general downwards slope that subjects 2 and 3
show in their average error results.

e The low and high frequency decoders interact in some more
complex, non-linear way than has been simulated in the previous
analysis of the decoders (i.e. the low and high frequency decoders

should not be designed and analysed in isolation).

Figure 5.51 shows the average absolute error and image size for each
decoder. It must be noted that, as the image size for each subject has not

been normalised, the image size ratios of subject 1 (from decoder to decoder)

will have less of an effect than that of subjects 2 and 3. However, the average
absolute localisation will not be affected.

Average Error and Image Size per Decoder
50 T T T

Average Error (degrees)
P =) (3] £ [hy]
(] [am] [am] _ (o] _
T T T T T
1 1 1 1 1 1

L
(]
T
I

20 I I I I I
0 1 2 3 4 g g

Decoder Number

Figure 5.51 Graph showing the mean, absolute, localisation error per decoder
taking all three subjects into account.

Figure 5.51 shows that, overall it is decoder 5 that seems to perform best in
this test, with the downwards slope, starting with decoder 1, being clearly
evident in this figure. Also evident is the already mentioned, relatively equal
performance of all of the optimised decoders, with an average error between

10° and 16° compared to decoder 1's average error of 21°.

Other non-recorded observations were also evident from this test, and are
listed below:

¢ Head movement helped greatly in the localisation of sources in this
experiment, and were used extensively by each listener.

e It was noted that although front and side sources were generally very
stable (an impressive result by itself, when compared to amplitude
panned material or the observations of Craven’s higher order
decoder (Craven, 2003)), rear images only performed correctly when
facing forwards. That is, when the subject turned to face the source,
the two rear speakers were perceivable as sources. In these cases
all subjects recorded the position facing forwards.

e Front and side images were generally perceived at the same

distance as the speakers, whereas rear images were perceived

much closer to the head, almost on a line joining the two rear
speakers of the ITU speaker array.
The rear image problems are not wholly unexpected as it can be seen that
rear images due to head turning and analysis using the velocity/energy vector
methods all point to rear images performing less well. However, the fact that
rear images can be formed at all, with a speaker hole of 140°, is still an

impressive result.

The 2™ part of the listening test was the auditioning of a 60 second except of
a piano recording made in Lincoln Cathedral. Each listener heard each
decoder’s representation of this piece once and was then invited to call out
which versions they wished to hear again. This was continued until a
preference was given as to which decoder they thought performed best. The

results of this test were as follows:

Preference Subject 1 Subject 2 Subject 3
Best 1% 3 3 3
2" 5 2 5
3" 2 5 4
4" 4 4 2
Worst 5" 1 1 1
Table 5.1 Table showing decoder preference when listening to a reverberant, pre-

recorded piece of music.

The results showed a clear trend, showing that decoder 1 was by far the worst
of the five decoders, but with decoder 3 clearly being preferred by all three
listeners. This decoder, although not performing as well under head-turning
analysis, is the only optimised decoder to have significant shifting of sources
towards the front, when looking at Figure 5.41, as shown in both the energy
vector and HRTF analysis at high frequencies. This is not the same as just
using the forward dominance control as decoder 3 maintains the overall
perceived volume equally from all directions. This, therefore, could be a more
subjective, artistic artefact of this decoder, although comments from the

subjects did indicate some of the reasons for choosing this decoder:

Subjects 1 & 2 commented that decoders 5 & 2 (which they rated
2" and 3%, and 3™ and 2" respectively) were very similar in
performance, both with a slightly ‘oppressive’ sweet spot. This,
interestingly, disappeared when auditioned off-centre. Decoder 3
did not suffer from this.

Subject 1 mentioned that decoder 4 had a very wide, more diffuse
image.

All agreed that decoder 1 was very front heavy, with an obvious
centre speaker, and 2 subjects mentioned that it was almost ‘in-
head’ at the sweet spot, when compared to the other decoders.
Subject 1 commented that the Piano, when reproduced using

decoder 3, had a very ‘tangible’ quality to it.

5.3.8.5 Listening Test Conclusions

The listening test, although only being presented to a very small number of

subjects, was a useful exercise, bringing to light a number of attributes that

should be researched further. The most obvious result was that the un-

optimised decoder, based on the standard settings of the commercially

available B-Format decoder, clearly performed less-well in both of the tests.

This shows that both optimisation methods do improve the performance of

Ambisonic decoders for a five speaker irregular array. Also, the performance

of decoder 5 in the first stage of the listening test (panned source) was also

expected, although the differences between the decoders, overall, was more

subtle than expected, and a much larger test base would be needed to gain

more statistically significant results. However, the fact that the extremes of

performance were shown in this small test is a very encouraging result. If this

part of the test were to be carried out again a number of changes would be

made to try and remove any bias from the results:

The order of presentation of the test decoders would be
randomised. This may eliminate the general downward sloping of
the average localisation results observed in subjects 2 and 3.

The test would be carried out over more than one day, testing each
subject at least twice to try and measure what kind of variations

each one was likely to produce.

e More source locations would be used so as to map more accurately
the performance of each decoder.

e Actual sources would be played at random, so that a ‘calibration’
source width is available to judge better the width parameter of
subject’s results.

e A distinction could be made between source stability and image
location by running two separate tests (and allowing separate
analyses on the results):

1. Where the subject is asked to face forwards at all times
(knowing they will move their head a little, still).

2. Where the subject is asked to face each source before
recording its position.

Interestingly, the decoder that was unanimously voted as the ‘best’ decoder
when listening to pre-recorded material was an unexpected result (however,
the decoder perceived as ‘worst’ was not) with the middle group of decoders
needing a larger base of subjects in order to gather a statistically significant
result. Although this was a very simple test, with only one parameter, it did,
indirectly, reveal some valuable insight into the performance of the decoders:

e Most listeners are often surprised by the amount of variation that can
be achieved just by altering the decoder, with spaciousness and
envelopment being altered massively (especially when compared to
decoder 1).

e The sweet-spot problems with two of the four optimised decoders
were particularly interesting, especially as these were, analytically,
the best performing decoders. This suggests that over-optimising for
a single position may, in fact, be detrimental to the performance of a
decoder.

e The best sounding decoder may not be the one that is, necessarily,
the most accurate.

Testing the performance of a decoder using pre-recorded material is far more
difficult to grade when compared to the first test. A number of different
recordings should be used and tests where the recording situation can be

described by the listener and compared against later (i.e. actual source

positions, size of room etc.) could be used to try to neutralise the artistic

aspect of the decoder’s performance, if necessary.

5.4 The Optimisation of Binaural and Transaural Surround

Sound Systems.

5.4.1 Introduction

Both the Binaural and Transaural reproduction techniques are based upon
HRTF technology and, for this reason, can be optimised using a similar
approach. One of the main problems with synthesised (and recorded)
Binaural material is that the reproduction is normally perceived as filtered.
That is, the listener will not perceive the pinna filtering (and normally the
microphone and headphone filtering too) present in the recording as
transparent. Possible reasons for this could be that the pinna filtering on the
recording does not match the listener’s, or because no head tracking is used:
minute head movements can not be utilised to help lateralise the sound
source and so the frequency response heard is assumed to be that of the
source itself by the ear/brain system. A similar effect is experienced with the
use of crosstalk cancellation filters. If a 2 x 2 set of impulse responses are
inverted so as to create a pair of crosstalk cancellation filters, then the
frequency response of these filters will be perceived, both on and off-axis,
even though the theory states that this response is actually compensating for
a pinna filtering response. The most logical method of correcting these

artefacts is to use inverse filtering techniques.

5.4.2 Inverse Filtering

Inverse filtering (which has already been touched upon in Chapter 3) is a
subject that is very simple in principle, but takes a little more care and
attention in practice. Inverse filtering is the creation of a filter whose response
will completely equalise the response of the original signal. The general case
is that of a filter that is created to force the response of a signal to that of a
target response and is analogous to re-arranging an equation where the
answer is already known, where the value of a variable (in this case, a filter)

needs to be found. The time domain representation of this problem is given
in Equation (5.12).

a(n)®h(n)=u(n)
_u(n)
hin)= a(n)
(5.12)
where: a(n) = original response.

u(n) = target response.
h(n) = inverse filter (to be found).

In Equation (5.12) ® represents polynomial multiplication (convolution) and
the division represents polynomial division (deconvolution). A much more
efficient approach to this problem is to process all of the data in the frequency
domain using the Fast Fourier Transform algorithm. This then transforms the
polynomial arithmetic into a much quicker point for point arithmetic (that is, the
first value of ‘u’ is divided by the first value of ‘a’ and so on). These frequency

domain equations are shown in Equation (5.13).

(5.13)

where: ® = angular frequency.

If we were to take a head related transfer function and find the inverse filter in
this way the filter shown in Figure 5.52 will be produced. There are a number
of artefacts that can be observed, but first it should be noted that the
magnitude response of the inverse filter already appears to be just that, the
inverse response (mirror image about the 0 dB mark), as given by the
eguations above (an inverse filter can be thought of as inverting the

magnitude and negating the phase as described in Gardner & Martin (1994)).

Original HRTF (Time domain) Inverse Filter (Time damain)

n

08

o
n -

Amplitude
Amplitude
=]

=]
=

08 L L I I L L . L I I L L I
0 20 40 [=in) 80 100 120 140 0 20 40 [=in) 80 100 120 140
Sample Number Sample Number

Qriginal and inverse filtter corvolved Freguency response of original and inverse filter

— Inverse
—— Original

06r

06}

04t

Amplitude
Amplitude (dB)
: o

o

02

£
=]

0.2+

. . L L L a0 L . L .
a0 100 1580 200 250 300 0 05 1 15 2
Sample Number Frequency (Hz) w0t

04
0

Figure 5.52 Inverse filtering using the equation shown in Equation (5.13)

Unwanted audio artefacts can be clearly seen in the time domain
representation of the original and inverse signals convolved together
(theoretically they should produce a perfect unit pulse if the inversion has
been carried out successfully). Also, the inverse filter does not look complete
in that it does not have a definite start and end point as can be observed in
most filter impulses (this, on its own, however, is not necessarily an issue).
The problem seen in the time domain response of the two signals convolved
can be quantified if the frequency domain magnitude response is calculated at
a higher resolution as shown in Figure 5.53 (the frequency domain plot in
Figure 5.52 was calculated with a length equal to that of the filter). Analysis
using this higher resolution shows the excessive ripple that has been
introduced by this filter. This can be resolved, as in any other type of filter
design, using windowing techniques (Paterson-Stephens & Bateman, 2001).
However, the impulse response shown in Figure 5.52 is not yet in the correct

format to have a window applied.

Frequency response of ariginal and inverse filter
30 T T T

T
— lrwerse
—— Original

20k

Arnplitude (dB)
o =]

o
T

20

=30
1] .
Frequency (Hz) want

Figure 5.53 Frequency response of the original and inverse filters using an 8192
point F.F.T..

An F.I.R. filter® is basically a cyclic signal that will wrap around onto itself.
This means that when the inverse filter is calculated, the position of the filter
(in the impulse space) is not necessarily correct. For example, the envelope
of the filter created in Figure 5.52 is shown in Figure 5.54 along with the ideal

position of this filter.

Envelope of Original Filter Envelope of Desired Filter

15

17 1 17

0.a K B 0&aF

ol E
-EIE// 1 a5

. . L L L : . . L L L
a0 100 1580 200 250 300 0 a0 100 150 200 250 300
Sample Number Sample Nurmber

Amplitude
Amplitude

Figure 5.54 Typical envelope of an inverse filter and the envelope of the filter shown
in Figure 5.52.

It can be seen in Figure 5.54 that it is desirable for the main impulse to be in
the centre of the filter so as to maximise the number of samples given to pre

and post delay processing for the sound. It is this main impulse that dictates

® Finite Impulse Response — a filter with a fixed length that is convolved (polynomial

multiplication) with a signal to apply the filter’s time and frequency response onto the signal.

the overall time delay introduced by the filter. As the F.I.R. filter can be
treated as a continuous wrappable signal, the impulse response can be
repositioned by adding a delay to the response that is to be inverted, as
shown in Figure 5.54. To move the main impulse to the centre of the filter, a
delay of N/2 samples must be added, where N is the length of the target filter,
in samples. This technique also has the benefit of improving the frequency
response of the filter, as shown in Figure 5.55 (note that due to the extra
samples (zero padded) added to the shifted filter, both filters have been

calculated using 256 samples).

Inwerse Filter (Time domain)

Inwerse Filter (Time darmain)

15

1k

o
5

0a

Amplitude
o
Amplitude
o

08 -0a
A AL
A5 I I L L L 45 I ! L L L
[u] 50 100 180 200 250 300 [u] a0 100 150 200 250 300
Sample Number Sample Number
Fraguency response of original and inverse filter Freguency response of original and inverse filter
30 T T T T 30 T T T T
— lInverse — lInverse
—— Original —— Original |
0t - 0t [
10 B 10
[[
= =
o o | W
EAL . R ; \ \.
2 2 H
£ £
=T =T
-10 + .10 4
a0t B 04 B
0 L L L L a0 L I L I
0 0s 1 15 2 0 05 1 15 2

Freguency (Hz) w0 Frequency (Hz) w0t

Figure 5.55 Two F.LR. filters containing identical samples, but the left filter’'s
envelope has been transformed.

It can now be seen that the frequency response of the filter has been
improved and much of the rippling has been eliminated. This results in a
reduction of the artefacts seen in the time domain version of the original and
inverse filters convolved (as shown in Figure 5.52, bottom left plot). This is
shown in Figure 5.56.

Original and inverse filter convaolved

Arnplitude
(] (] (]
T m fas} -
1 1 1 1

=
[
1

o
1

0.2n — lrwerse Filter
— Transformed Inverse Filter

_D . ‘.1 1 1 1 1 1 1 1
0 a0 100 150 200 250 300 350 400

Sample Number

Figure 5.56 The convolution of the original filter and its inverse (both transformed
and non-transformed versions from Figure 5.55).

Now that the filter is in the correct format, a window function can be applied to
smooth the response still further, and help reduce these time and frequency
domain artefacts. The windowed response is shown in Figure 5.57. Using a
limited filter size, this is the best realisable response without using the
regularisation parameter described in Chapter 3. The only method of
improving this further is to create a longer response using zero-padding of the
filters used to calculate the inverse. However, the resulting size of the HRTF
filters must be taken into account as convolution of the inverse filter and the
original HRTF filter will cause its response to increase in size. If the HRTF
filter is of length ‘a’ and the inverse filter is of length ‘b’ then the resulting filter
will be of a length ‘a+b-1’, and the longer the filter, the more processing power
will be needed for it's implementation. The differences between using a
windowed 256-point filter and a windowed 1024-point filter are shown in

Figure 5.58.

Inverse Filter (Time daomain) Graph of Window Response

148 1
0ar
1k
08r
07r
0&r
06r
o o
= =
= =
= 0 =08+
£ <
04r
o5k
03r
02r
-1k
01r
A5 I I L L L 0 I ! L L
[u] 50 100 180 200 250 300 [u] a0 100 150 200 250 300
Sample Number Sample Number
Fraguency response of original and inverse filter Qriginal and inverse filter convoled
30 T T T T 1.2 T T T T
— lInverse
—— Original
ot r
08r
10r
= 2 06
o E]
2o e
= £ o4
e
-10
0zr
=20k a
0 L L L L 0z L ! L L I L I
0 0s 1 15 2 o a0 100 150 200 250 300 350 400
Freguency (Hz) w0 Sample Nurmber

Figure 5.57 A frequency and time domain response of the filter after a hamming
window has been applied.

Freguency response of original and inverse filter Original and inverse filter corvolved
T T T T T T

ein} T 12
— Inwverse
—— CQriginal
ot T
0&F
10F
g o 06
= E]
R £
E £ 04}
T
-10
02r
-20rF i
0 L L L L 02 L L L L L
0 0s 1 14 2 0 200 400 600 800 1000 1200
Fregquency (Hz) w10t Sample Mumber

Figure 5.58 The response of a 1024-point windowed inverse filter.

5.4.3 Inverse Filtering of H.R.T.F. Data

When inverse filtering the HRTF data, the only decision that has to be made is
which HRTF will be used to equalise the whole HRTF set. Two logical
choices are available:
e The near ear response to a sound source at an angle of 90° as this will
most likely be the filter with the least amount of pinna filtering affecting

the response.

e The ear's response to sound directly in front of the listener so that
when the sound is positioned at 0°, the H.R.T.F. responses at the ears

are identical and flat.

The 1024-point inverse filters for both of these methods are shown in Figure
5.59. Looking at this figure it can be seen that, in reality, the 0° HRTF is far
more ill-conditioned to the inversion process when compared to the 90°
response. Some wrapping of the resulting filter can be seen for the 0°
response indicating that a longer filter length is desirable. This is to be
expected because of the reason stated above (the 90° angle has less
head/pinna filtering associated with it) and so it is best to use the 90°, near

ear, HRTF as the reference response.

Inverse Filter (Time domain) using a 90 degree HRTF

Inverse Filter (Time dormain) using a 0 degree HRTF

15

1k

=
n

Amplitude
=)
[o
Armplitude

n

I I L L L K . n . L L
200 400 800 800 1000 1200 0 200 400 600 a00 1000 1200
Sample Number Sarmple Murnber

Frequency response of original and inverse filter

Frequency response of original and inverse filter

w
=}

w
a

— lInverse
—— Original

— Inverse
—— Original

IS}
=]
n
=]

Armplitude (dB)

B o s
Amplitude (dB)

3 o 5

[
=
o
=]

a0 I I I ! a0 L L L L
0 05 1 15 2 0 0s 1 1.5 2

Frequency (Hz) wiot Freguency (Hz) T

Figure 559 The 1024-point inverse filters using a 90° and a 0°, near ear, HRTF
response as the signal to be inverted.

As an example, a set of H.R.T.F. data has been processed in this way using
an inverse filter size of 769-points (so that the convolution of the original with
this inverse filter will be equal to 1024-points). Figure 5.60 shows a number of

the H.R.T.F. impulses in the time and frequency domain so a comparison of

them can be made both before and after inverse filtering.

Before Inverse Filtering

After Inverse Filtering

05

05

0 degrees

45 degraes

]

i

4
90 degrees #10

4
135 degrees w10

04

05

0 degrees

45 degrees

I

-

4
90 degrees x 10

o a0 100 o 50 100 o 500 1000 0 500 1000
90 degrees 135 degrees 90 degrees 135 degrees

1 1 1 1

0.5 05 04 0.5
o)
£ =
= 2

£ 7 i JMM\/\'_ £ 0 i —e

£ £
Z T

0.5 0.5 05 0.5

il -1 -1 -1

0 50 100 1} a0 100 1} A00 1000 o 500 1000
Sample Mumber Sample Mumber
0 degrees 45 degrees 0 degrees 45 degrees

10 10 10 10

u] o 0 o

-10 -10 -10 -10

-20 -20 20 20

-30 -30 -30 -30

-40 -40 -40 -40

0 0.5 1 148 2 a 0.5 1 14 2 0s 1 15 2 05 1 15 2

4
135 degreas %10

e

Amplituce (dB)
A oo L
5 8 8 0o o
58530
Amplitude (dB)
B o
S 89 80 o o
[V
I=I=]

05 1 15 2 “n 0.5 1 15 2 o 0a 1 14 2 o 0.5 1 15 2
Frequency (Hz) w10t wint Frequency (Hz) T «10*

Figure 5.60 Comparison of a HRTF data set (near ear only) before (right hand side)

and after (left hand side) inverse filtering has been applied, using the
90°, near ear, response as the reference.

Figure 5.60 shows that although both sets of HRTFs still have a pinna filtering
effect, the inverse filtered set have a larger bandwidth, in that extreme low
and high frequency components of the impulse responses contain more
energy, and contain peaks and troughs in the frequency response that are no
larger the originals (for example, the 135 degree frequency response plots
both have a notch no lower than around -27 dB). These inverse filtered
HRTFs are perceived to be of a better fidelity than that of the originals (which
have this response due, in some part, to the non-optimum inverse filtering of
the source’s response that was used to record the HRTF data in the first place
(Gardner & Martin, 1994)). It can also be seen that due to the nature of these
new inverse filtered HRTFs, they could also be windowed and shrunk if

smaller responses were needed due to processing constraints thanks to the
roughly equal amount of pre and post delay filtering (i.e. the highest amplitude

parts of the filter are at the middle sample position).

5.4.4 Inverse Filtering of H.R.T.F. Data to Improve Crosstalk

Cancellation Filters.

As mentioned at the start section 5.4, one of the problems of the crosstalk
cancellation system is that very noticeable colouration of the reproduced
sound can occur, both due to the crosstalk cancellation itself, and due to the
response of the individual parts of the system (usually speaker to near ear,
and speaker to far ear responses). This is why there is a difference between
crosstalk cancellation in the free field and crosstalk cancellation using HRTF
data. However, as discussed in Chapter 3, system inversion using frequency-
dependent regularisation can be used to compensate for this, at the expense
of the accuracy of the crosstalk cancellation at these frequencies. For this
reason, it is desirable to minimise any potential ill-conditioning due to the
response of the individual components of the system prior to the 2 x 2 matrix
inversion process, thus resulting in the least amount of regularisation needed
in order to create a useable set of filters. In this way, the inverse technique
described in section 5.4.2 will be utilised in much the same way. For
example, the system shown in Figure 5.61 will be used as a basis for the
creation of a pair of crosstalk cancellation filters.

10°

Figure 5.61 System to be matrix inverted.

This is a typical arrangement for a crosstalk cancellation system, and is based

on a pair of speakers placed at +/- 5° in front of the listener. Using the HRTF

set from M.I.T. (Gardner & Martin, 1994) this will give the responses for the

near and far ears (assuming symmetry) as shown in Figure 5.61.

08r — Far EarResponse |4
06r 4
0.4r
0.2r

i]

Amplitude

02t

Amplitude (dB)

04t

06t

L i ae| | — MearEar Response
i 31| FarEar Response

-1

0 20 40 =in} a0 100 120 0 05 1 15 2
Sample Number Frequency (Hz) vt

Figure 5.62 HRTF responses for the ipsilateral and contralateral ear responses to
the system shown in Figure 5.61.

If a set of crosstalk cancellation filters are constructed from these two impulse
responses, using the techniques described in Chapter 3, then the responses

shown in Figure 5.63 are obtained (using no regularisation).

4 T T T T T T T T 40

al - h2 | 0

Amplitude
o
Amplitude (dB)
5

20k

s

A0k

=S

4 ! L I I I L I I 60 L I L !
0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 os 1 15 2

Sample Number Frequency (Hz) 4

Figure 5.63 Crosstalk cancellation filters derived using the near and far ear
responses from Figure 5.62.

It can be seen, from Figure 5.63, that the expected peaks are present. That
is, a peak at very low frequencies due, mainly, to the close angular proximity
of the speakers and the peaks at around 8 kHz and high frequencies, which
appear to be due to the inversion of the responses of the near and far ear
HRTFs (as seen in Figure 5.62). When this crosstalk cancelled system is
auditioned, not only is a very coloured sound perceived off-axis, but a non-flat
frequency response is also perceived on-axis. This is also coupled with a
large loss in useable dynamic range as the amplifier and speakers have to

reproduce such a large difference in frequency amplitudes. These are mainly

because of the reasons stated at the start of section 5.4.1, but also because
of the different pinna/head/ear responses observed for different listeners. A
more general, yet correct inverse filtering method is needed to correct these

problems.

If regularisation is to be avoided as a last resort, then the responses shown in
Figure 5.62 must be ‘flattened’ using inverse filtering techniques. As itis the
difference between the near and far ear responses that is important, the
filtering of these two responses will have only fidelity implications so long as
the same filter is applied to both the near and far ear response. Also, the
least ill-conditioned of the two responses is likely to be the near ear response,
as it will have been filtered less by the head and pinna, so it is this response
that will be taken as the reference (although, due to the small angular
displacement of the speaker, there is little difference between the two filters).

The inverse filter of the near ear HRTF is shown in Figure 5.64.

Inverse Filter (Time domain) using 2048 points Freguency response of original and inverse filter

— lrwerse
—— Qriginal

30

[
=}

=]

Amplitude (dB)
2 =

[
=]

Armplitude
I S I - T T - I R .

1 1 1 1 L 1 1 1 1 1 a0 L 1 L 1
0 200 400 BOO BOO 1000 1200 1400 1600 1800 2000 0 05 1 15 2

Sarnple Number Frequency (Hz) . 104

Figure 5.64 Inverse filter response using the near ear H.R.T.F. from Figure 5.62.

Applying this inverse filter to the ipsilateral and contralateral ear responses
shown in Figure 5.62, gives the new ipsilateral and contralateral ear
responses shown in Figure 5.65. If these filters are now used in the
calculation of the crosstalk cancellation filters (using the 2 x 2 inverse filtering
technique with no regularisation), then the filters shown in Figure 5.66 are

obtained.

- ha

Amplitude
o
=

=]
]

o

0.2

o
m

=)
=

0

—— Mew MNear Ear Response — Mew MNear Ear Response
---- Mew Far Ear Response ar — Mew Far Ear Response
i l\f\’\/_’\’\“'“/\)
5 A
o -10-
=z
o
5-15
E‘
F 201
o5t
Aot
4,
a5t
L L L ! I I I L L L 40 L I L I
200 400 600 800 1000 1200 1400 1600 1800 2000 0 0s 1 15 2

Sample Number Frequency (Hz) ot

Figure 5.65 Near and far ear responses after the application of the inverse filter

Amplitude

o

02+
04t
-

08
0

shown in Figure 5.64 (frequency domain scaling identical to that of
Figure 5.62).

=]
]

T 40 T T T T
— h — h1
h2

20

—q\/.—
Armplitude (dB)

1 L 1 1 1 L 1 1 L 1 L 1
500 1000 1500 2000 2500 3000 3500 4000 4500 0 05 1 15 2

Sarnple Number Frequency (Hz) %10

Figure 5.66 Crosstalk cancellation filters derived using the near and far ear

responses from Figure 5.65 (frequency domain scaling identical to that
of Figure 5.63).

The optimisation of these filters using inverse filtering techniques can be

verified by observing the responses shown in Figure 5.66:

The overall response of both of the filters has been flattened with the
largest peak above very low frequencies now at around 6dB at around
12.5 kHz, and virtually no peak at very high frequencies, which means
that regularisation is no longer needed at these frequencies.

The peak at low frequencies is now solely due to the 2 x 2 matrix
inversion and not the response of the ipsilateral and contralateral ear
responses, which has reduced this peak from over 30dB to 20dB. This
means that, although regularisation is still needed here, a smaller
amount can be applied, making the crosstalk cancellation more

accurate in this frequency range.

e The flattening of the filter responses causes the on-axis response to be
perceived as much flatter (un-filtered) than before.

e The flattening of the filter responses also has the added effect of
making off-axis listening seem far less filtered.

e The crosstalk cancellation filters are actually smaller in length than the
originals shown in Figure 5.63, even though the contralateral and
ipsilateral ear responses used to calculate them were much larger than
the originals shown in Figure 5.62. This is due to the fact the new near
and far responses are much less ill-conditioned for inversion (the filters

do not have to ‘work as hard’ to achieve crosstalk cancellation).

These new crosstalk cancellation filters, although much better than filters
created using the raw HRTF data, still need to use some regularisation, and
still sound a little bass heavy. However, at this point, it is still possible to take
the inverse filtering technique a step further. As always, it is the difference
between the two ears that is important, especially as the pinna used in the
HRTF data is not likely to be the same as that of the listener. So, using
inverse filtering, it is possible to design crosstalk cancellation filters that
require no regularisation to correct for the conditioning of the system. If the
filter representing ‘h1’ is used as a reference, then another inverse filter can
be created by inverting the response of ‘h1’. If this inverse filter is convolved
with both h1 and h2 then the h1 filter will, in theory, become the unit impulse,
and h2 will then be a filter representing the difference between h1l and h2.
These filters are shown in Figure 5.67, and Figure 5.68.

Inverse Filter of h1 - Time Domain Inverse Filter of h1 - Frequency Domain
T T T T T T

12

w
=}

]

1k

=)

=
Magnitude (dB
z E

=]

=}
™
=]

(=}
.

=)
]

Arnplitude

=]

&
i

o4t

Rk

L . L . . . L .
o 500 1000 1800 2000 2500 3000 3500 4000 4500 o 0.5 1 15 2
Time - samples Frequency (Hz) @

Figure 5.67 Filter representing inverse of hl, in both the time and frequency
domain.

Cross-talk cancellation filters - time domain Cross-talk cancellation filters - frequency domain

[N}
=}

— ht i i i — n2
h2 || i

08 — s m ______________________________________
@ i i
06 E] : i
t 0 S -
04F = i H
10 I I I I
202 0 0.5 1 1.5 2
= Frequency (Hz) 4
=2] x 10
[
£ 0 T :

=]
]
=]

D4F

06k

Phase (degrees)

o
(=1 I S
in
in
[X})

08

)

. L . L . . L L . L
o 200 400 BOO 8OO 1000 1200 1400 1600 1800 2000
Time - samples Frequency (Hz) w10t

Figure 5.68 Crosstalk cancellation filters after convolution with the inverse filter
shown in figure 5.51

It can be seen from Figure 5.68 above that hl has a flat frequency response
and h2 now has very little energy over the 0dB point meaning that the system
needs no regularisation. These new, double inverted, filters are also
perceived as performing much better than the previous crosstalk cancellation
filters, with a less muffled sound and clearer imaging. One other highly useful
feature of these new filters is that h1 can be approximated by a unit impulse
(as this is what h1 should be, theoretically, anyway) which cuts the amount of
FIR filtering in the system by a half, replacing the h1 filters with a simple delay

line, as shown in the block diagram in Figure 5.69.

—p| Z"
+
Left Ear H2 > —P»| Left
Signal [| > Filter M Speaker
Right Ear |9 H2 > Right
Signal Filter * Speaker
—>
+
! z™ where m is the delay line
length

Figure 5.69 The optimised crosstalk cancellation system

However, these double inverted filters do mean that when the speakers are
positioned close to each other, the response can be perceived as lacking in
bass response when compared to the single inverted case (which is perceived
as having a raised bass response anyway). For example, if we inject an

impulse into the block diagram shown in Figure 5.69 (but replacing the delay

line with the filters again) and compare the results that will arrive at the ear of
a listener (although it should be noted that the analysis is using the non-
optimum frequency response of the MIT HRTF data), the results shown in
Figure 5.70 can be seen (note that the speakers in the University of Derby’s
Multi-channel research laboratory are actually placed at +/- 3°, and so filters

for this speaker arrangement is shown in Figure 5.70).

Left signal impulse response of +~ 3 degrees cross-talk cancellation filters,
top - after double inversion, bottom - after single inversion

Magnitude (dB)

-100 W I i i
0 . .

Magnitude (dB)

Freguency (Hz) « 1ot

Figure 5.70 Left Ear (blue) and Right Ear (red) responses to a single impulse
injected into the left channel of double and single inverted cross talk
cancellation systems.

Both responses show a good degree of crosstalk cancellation, in the right ear
response, with the single inverted system seeming to perform slightly better.
The low frequency roll-off can also be noted in the left ear response of the
double inverted system. However, these quantitative results cannot
necessarily be taken at face value. For example, the single inverted system
(lower plot) is perceived as being bass heavy, although this is not shown in
these graphs as it is the non-optimum HRTF data used in this analysis. Also,
the double inverted system is perceived as performing better at the higher
frequencies, although this, again, is not suggested in this plot. It is also,
interesting to look at the same graphs for the +/- 30° case, as shown in Figure
5.71.

Left signal impulse response of +- 30 degrees cross-talk cancellation filters,
top - after double inversion, bottom - after single inversion

20

0
20
A0 L
50 it
anl
002

Magnitude (dE)

e T T T T

5] I—_—_—-.—— [A S— R ———— —

A0 b - g v A e oo N

50 B nrmonie B e LLEY . Il A e ____4:__

=) T IS (RN - S DS k| S Uil o

400 I I I I
0

Magnitude (dB)

Frequency (Hz) " 104

Figure 5.71 Left Ear (blue) and Right Ear (red) responses to a single impulse
injected into the left channel of a crosstalk cancellation system.

This plot shows two significant results:

e The bass loss is no longer an issue. However this is to be expected as
widening the speaker span alleviates the bass boost in the original
filters which, in turn, means they do not need to be inverse filtered.

e The cancellation of the right ear signal is shown to be around 20dB
worse than that shown for the +/- 3° case.

This second point is interesting as the crosstalk cancellation filters have been
created in exactly the same way as the +/-3° case. This means that the same
differences between the filters will be retained. The only absolute in the
filtering process is the response due to the pinna alone, and it is this
discrepancy that must be causing the problem. These two graphs suggest
that the further apart the speakers, the more the pinna matching between the
listener and the filters becomes important. This would explain why widening

the speakers degrades the localisation quality using this system.

5.5 Conclusions

Optimisation techniques have been described, analysed and discussed in this
chapter, with the main part of this section concentrating on the optimisation of

the Ambisonics decoders.

5.5.1 Ambisonic Optimisations Using Heuristic Search Methods

The main problem to be tackled in this section was the derivation of
Ambisonic decoders for irregular arrays, as, although Gerzon & Barton (1992)
had suggested some parameters to be used in the design of these decoders,
the solving of these equations was previously a lengthy and difficult process.
In the analysis of the original work by Gerzon and Barton (1992 & 1998) it was
found that:

e Multiple values could be chosen that would satisfy these equations,
analytically performing equally well.

e The original coefficients suggested by Gerzon & Barton (1992) were
actually non-ideal, with an oversight in the way in which the
equations were initially solved leading to a mismatch between the
low and high frequency decoders’ perceived source position.

Various new methods have been devised and implemented in software to
solve these problems:

e A heuristic search method, based on a Tabu search algorithm, has
been developed, along with the fitness functions that need to be
satisfied in order to automatically generate decoders for irregular
speaker arrays. This method has the three following benefits:

o It automatically solves the non-linear simultaneous
equations in an optimal way.

o Changing the start position for the search will generate a
different set of coefficients.

o0 This method solves all the parameters of the equations
simultaneously which corrects for the low and high
frequency decoder mismatch found in Gerzon & Barton’s
method (Gerzon & Barton 1992 and Gerzon & Barton
1998).

e An analysis technique based on the use of generic HRTF data has
been devised to help differentiate between Ambisonic decoders
designed using the above method, using head turning as an
additional parameter as phase and level differences will generally

be similar for each decoder.

The tabu search method has also been shown to work well on the new higher
order decoder types, such as the one proposed by Craven (2003), which has
far more coefficients to optimise, demonstrating that the Tabu search

methodology is easily extendible to more unknowns (either a higher order, or

more speakers).

The HRTF analysis technique described above was also used to validate the
original work by Gerzon & Barton (1992) which then led to the creation of a
heuristic search program, with corresponding fitness functions, used to design
Ambisonic decoders for irregular arrays using the HRTF analysis technique
first proposed in Wiggins et al. (2001) taking into account head turning
directly, so reducing the number of decoders produced. The properties of this
new technique are as follows:

e [For atwo-band decoder the correlation between decoders designed
using the velocity/energy vector methods and HRTF methods are
good.

e Using the HRTF technique a decoder could be designed using
more frequency bands, which is impossible using the previous
velocity/energy vector method.

o However, the HRTF decoder method is far more computationally
expensive and it does take the tabu search algorithm longer to
converge on an optimum result, but as this is an off-line process

anyway, this is not a major issue.

A small listening test was carried out using both synthetically panned material
and pre-recorded material in order to help steer future listening tests aimed at
optimised Ambisonic decoders. Although only three subjects were used, the
decoder that performed worst in both tests was unanimously seen as an un-
optimised decoder based on the default settings of a commercially available
B-format decoder for the ITU irregular speaker array. However, although
many more subjects would be needed to gain statistically significant results,
all the optimised decoders performed well, with the expected decoder
performing best in the synthetically panned listening test. As expected, there

were no great differences between decoders designed using either

optimisation method, as the two systems correlate well with respect to
coefficients and, in fact, slightly less optimal decoders seemed to perform well
when recorded, reverberant material was auditioned by the test subjects.
Also, one reported observation was that the most optimal decoders seemed to
deliver a more pleasant listening experience slightly off-centre (when
compared to the same decoder in the sweet spot), which is an extremely

interesting result that needs to be investigated further.

In summary, the use of the Tabu search algorithm has resulted in a vast
simplification of the process of designing Ambisonic decoders, allowing for the
Vienna equations (Gerzon & Barton, 1992 & 1998) to be solved correctly for
irregular speaker arrangements (although the software concentrates on a
typical five speaker horizontal arrangement). This has then been taken a step
further through the use of the HRTF data directly.

5.5.2 Further Work for Ambisonic Decoder Optimisation.

Now that the decoder design algorithm can directly use HRTF data the
obvious next step is to increase the number of frequency bands. When taking
this method to its extreme, this will mean that instead of using cross-over
filters, a W, X and Y filter will be created for each of the speaker pairs (or 1 set
for the centre speaker). In this way it should be possible to maximise the
correctness of both the level and time differences simultaneously for many
frequency bands improving the performance of the decoder still further for a
centrally seated listener. The software could also be extended to take into
account off-centre listening positions which could, potentially, lead to a control
over the sweet spot size, trading the performance at the centre, for the
performance around this spot. This may well be beneficial, not only to create
a ‘volume solution’, but to also circumvent the problems noticed in the
listening test with respect to the more optimum decoders, analytically
speaking, giving a slightly uncomfortable, obtrusive listening experience
directly in the sweet spot.

5.5.3 Binaural and Transaural Optimisations Using Inverse
Filtering.
The use of inverse filtering techniques on HRTF data has proved an
invaluable tool in the optimisation of both Binaural and Transaural
reproduction. An improvement in the frequency response of the crosstalk
cancellation filters has been demonstrated which is apparent both on and off
axis from the cancellation position. This reduces the need to use the
frequency dependant regularisation function; although at the extreme upper
frequencies (where little energy in the HRTF data is present) it is still
advisable to use regularisation to stop the excessive boost of these

frequencies.

It has also been shown how moving the speakers closer together has the
effect of improving the analytical crosstalk cancellation figure between the
ears of a listener in the sweet spot. This has to be a feature of the pinna
filtering mismatches as the differences between the creation and analysis
HRTF filters were kept constant, with only the monaural pinna filtering having
changed (all the work was based around the same set of HRTF filters and

pinna differences between the ears are kept constant).

5.5.4 Further Work for Binaural and Transaural Optimisations.

A method to control the amount of inverse filtering that is carried out on the
crosstalk cancellation filters must be used as the single inverted filters sound
bass heavy, and the double inverted filters are bass light. This can be done
by carrying out the following steps:
e Create the inverse filter in the frequency domain and split into
magnitude and phase.
e Create a unit impulse, delayed by half the length of the inverse filter, in
the frequency domain and split into magnitude and phase.
e Crossfade the magnitude responses of the two filters using the desired
ratio, and use the phase from the unit impulse.
e Mix the magnitude and phase of this filter back into its complex form
and inverse FFT into the time domain.

e This will result in a filter that has a linear phase response (that is, pure
delay) and a magnitude response can be chosen from flat to the
magnitude response of the inverse filter.

e Use the above filter as the 2" inversion filter in the creation process of
the crosstalk cancellation filters.

Once the above steps have been carried out, listening tests can be carried out

to determine which filters are perceived as having the flattest response.

5.5.5 Conversion of Ambisonics to Binaural to Transaural

Reproduction

Although the conversion from the base format of Ambisonics has been
described in Chapter 4, there are still some ongoing issues that have meant
that listening tests on this part of the project have not taken place. During this
project all of the systems have been looked at separately with main
optimisation work carried out on the Ambisonics decodes and the crosstalk

cancellation systems.

The conversion of Ambisonics to binaural is now well documented (see
Noisetering et al., 2003 for the most recent overview) and this, coupled with
the inverse filtering techniques described in section 5.4 works well. Similarly,
playing a standard binaural recording over the two speaker crosstalk
cancelled system described in the same section also works well, with the
inverse filtering techniques resulting in a much flatter, un-filtered sound when
compared to a crosstalk cancelled system using raw HRTF data. However,
when combining these two steps and attempting to reproduce an Ambisonic
decode over either a two or four speaker crosstalk cancelled array, sub-
optimal results are experienced with heavily filtered results perceived. Further
work is needed in this area to bring this conversion process up to an
acceptable level. However, for further work the following avenues will be
investigated:

e The use of Bumlein's shuffling technique in order to convert a

coincident recording into a spaced one at low frequencies will be

attempted as this will remove the need for Ambisonic to binaural

conversion step, and will reduce some of the filtering applied to the
system.

The crosstalk cancellation and Ambisonic to binaural conversion
steps are taken in isolation; however, the filtering and calculation of
crosstalk cancellation filters can be combined by using the
Ambisonic to binaural decode function shown in equation (4.3), as
the target function for the crosstalk cancellation inversion equation
shown in equation (3.13). This will mean that inverse filtering is not
needed as the filters response to pinna should, to some extent,

cancel each other out, resulting in a less filtered system.

Chapter 6 - Implementation of a Hierarchical Surround
Sound System.

While carrying out this research it became apparent that although the
Matlab/Simulink platform was very useful in the auditioning and simulation of
surround sound systems, more efficient results (with regards to processor
loading) could be achieved, particularly when FIR filtering, if custom programs

were written for the Windows platform using the Win32 API.

In this chapter the various signal processing algorithms and implementation
details will be discussed, so as to build up a library of functions to be used in

multi-channel audio applications.

The platform specific code will then be investigated so that an audio base
class can be constructed, and it is this class that will form the basis for audio

applications.

Once the necessary background information and techniques have been
discussed, an example application based upon the surround sound system

described in Chapter 4 will be covered.

6.1 Introduction

At the beginning of this research it was assumed that the best platform for the
implementation of a system that relied on digital signal processing techniques
was one based around a digital signal processor. However, this seemingly

logical assumption has now been challenged (Lopez & Gonzalez, 2001).

Around ten years ago D.S.P. devices were far faster than home computers
processors (Intel, IBM, etc.), but whereas D.S.P. core speeds have been
increasing at a steady rate (approximately doubling every two years), the rate
of increase of core speed of a P.C. processor is now doubling every year.
This has resulted in the processing power available on fast PCs now being
greater than that available on more expensive D.S.P. chips (Lopez &

Gonzalez, 2001). As much of the testing and algorithm development was

already taking place on a PC platform (using Matlab® and Simulink®) it soon
became apparent that this platform would be suitable for the final
implementation of the system and, in some ways, be far more suited than a
dedicated D.S.P. platform.

Using the PC as a signal processing platform is not a new idea (Lopez &
Gonzalez, 2001; Farina et al., 2001), but has not been viable for surround
sound until fairly recently. This is mainly due to the fact that reasonably
priced, multi-channel cards (16 or more channels) are now readily available
and are not only the perfect test platform for this surround sound project, but
also, once the technology is in place, they provide a perfect platform to
actually develop surround sound software. It is, of course, also due to the fact
that Intel’'s Pentium and AMD’s Athlon processors are now very powerful and
can easily process over 32-channels of audio in real-time. Therefore,
convolving long filters with just a few channels of audio (as in crosstalk
cancellation) is not a problem for today’s PCs (assuming efficient algorithms
are used, see later in this chapter). So, when it comes to developing such a
system, what options are available?

e Home PC computer (Host Signal Processing).

e Digital Signal Processor Platform.

e Hybrid of the two.

Each of the systems described above have their pros and cons and each of
these methods have been utilised, at some point, during this project. A

description of each will be given.

6.1.1 Digital Signal Processing Platform

A Digital Signal Processor is basically a fast micro-processor that has been
designed and optimised with signal processing applications in mind from the
outset (Paterson-Stephens & Bateman, 2001). This means that it generally
has a more complex memory structure when compared to a ‘normal’ micro-
processor and a more specialised command set. An example of a memory
structure used by D.S.P.s is a system is known as dual-Harvard architecture.

A standard micro-processor is normally designed around the von Neumann

architecture (Paterson-Stephens & Bateman, 2001), and although a thorough
investigation into these techniques is not part of the scope of this project, a
brief explanation will be given to help differentiate between D.S.P.s and PC

micro-processors.

Von Neumann architecture is reasonably straightforward, having one memory
space, one internal data bus and one internal address bus. All of these
components are used in the reading and writing of data to and from memory
locations etc.. A diagrammatic view of von Neumann architecture is shown in
Figure 6.1. Basically the Internal Address Bus selects what data is to be
read/written, and then this is sent to the C.P.U. or A.L.U. for processing along

the internal data bus.

| Internal Address Bus

ALU I Instruction
Register File decode Shared
and CP? Program
contro
1/0 Devices and Data
Memory

| Internal Data Bus

Figure 6.1 A Von Neumann Architecture.

A Harvard architecture (see Figure 6.2) based micro-processor (common in
D.S.P. devices) has a very similar layout to the von Neumann architecture,
except that three memory spaces, three address buses and three data buses
are used as follows: one address bus, memory space, and data bus for
program memory, one for X data memory and one for Y data memory. This
means that the D.S.P. device can access memory more efficiently, being able
to read/write up to three memory locations per clock cycle, as opposed to one
using Von Neumann architecture. Also, a more complex Address Generation
Unit (A.G.U.) is normally included that can handle such things as modulo
address (circular buffering) and bit-reversed addressing (used in Fast Fourier
Transforms). This is another task that is taken away from the main processor

incurring no extra processor overhead.

As explained above, it is mainly the architecture of the system that
differentiates between a D.S.P. and a PC micro-processor. However, another
difference between a D.S.P. and a PC is that a D.S.P. has no ‘operating
system’ as such (although specialised real-time operating systems can be
employed). That is, each D.S.P. platform is configured for optimal
performance using whatever peripherals are used with it. It is not a general,
‘jack of all trades’ with flexibility being the key feature, like a PC. The
advantages of not having an operating system will become more apparent
when discussing the PC platform. The D.S.P. platform is designed for real-

time processing, that is, processing containing no perceivable delay.

X Address Bus |

Address
Generatio Y Address Bus |

Unit |
Program Address Bus |

> 1
ALU Instruction [
Register File decode § > l
and DSP 3 d .
control i g g 5
I/0O Devices d ¥ €
3]
¥ g =
d €
w 7§
(=)
S
' a
| X Data Bus B
| Y Data Bus N

| Program Data Bus

Figure 6.2 Diagram of a Harvard Architecture

6.1.2 Host Signal Processing Platform (home computer).

A PC (or Apple Macintosh) can be used as a system for carrying out digital
signal processing. This is now a viable solution because processors for these
platforms are now becoming very fast and the distinctions between the micro-
processor and D.S.P. are becoming more blurred as the PC has more low-
level optimisations for signal processing applications (such as streamed music
and video, via the World Wide Web). One of the PC’s biggest assets and

potentially largest limiting factors is its operating system. In this project the

Windows 2000 operating system was used. This operating system was
chosen as it is more stable than Windows 98, is compatible with more
software than Windows NT and uses fewer resources than Windows XP. In
any case, all these Microsoft platforms use the same API, namely, Win32.
Firstly, the reason that the operating system is the PC’s greatest asset is that
it's A.P.l. simplifies many operations on the PC and makes programming
graphical user interfaces relatively straightforward (as opposed to generating
code to run, say, a separate LCD display). Also, the operating system
handles all the calls to peripherals using a standard function set. This means
that the programmer does not need to know exactly what hardware is in the
machine, but can just quiz Windows as to whether the hardware meets the
requirements needed (e.g. it has the correct number of channels available).
The operating system also has disadvantages for similar reasons. Windows
is a graphical user environment, that is, it is geared towards graphical
applications. Audio, of course, is very well supported, but must be accessed
using the Windows A.P.l., that is, direct access of the underlying hardware is
not possible under Windows. When using this, it is soon noticed that
considerable latency can be introduced by both taking audio as an input and
passing it out as an output, and although this latency can be specified (within
limits), the lower the latency, the more unstable the system. This will be

explained in more detail later in this Chapter.

6.1.3 Hybrid System

The most user-friendly technique for developing such a system is by using a
hybrid system comprising of the two systems mentioned above. This system
would not only be a very easy system to develop, but would also be very cost
effective as a product, as half of the hardware platform (i.e. the PC) would
already be in place. It would include the positive aspects of both of the above
systems, with a graphic user interface being programmed and realised on the
host PC system, but with the actual processing of the audio stream being
handled by the D.S.P. card, meaning that latency is no longer a problem, and
tried and tested G.U.I. techniques can be utilised on the P.C. side. Such a
system can be devoid of any noticeable latency as the P.C. side is used to

just update a few parameters on the D.S.P. card. For example, if a three-

dimensional panning algorithm was to be implemented, then the D.S.P. card
would handle all of the audio passing through the system, mixing the audio
signals together, and passing the sounds to the correct speakers, at the
correct levels. The P.C. would be passing just the co-ordinates of where the
virtual sources are to be panned to. This also has the benefit of taking some
of the processing load off the D.S.P. card, as the P.C. can be used to
calculate coefficients, etc. that may rely on computationally expensive floating
point calculations, such as square roots and trigonometric functions, with the

results passed to the D.S.P. card for use.

6.2 Hierarchical Surround Sound System — Implementation

Although, as mentioned above, the hybrid system is the ideal solution for the
development of the hierarchical surround sound system, it was not a practical
solution for this particular project, mainly due to the cost of the D.S.P.
development boards with true multi-channel capability (although such an
affordable multi-channel board has now become available from Analogue
Devices®). Thus, as much of the testing and investigative work was carried
out using a P.C. with a multi-channel sound card (using Matlab, Simulink and
a Soundscape Mixtreme, 16-channel sound card), it was decided that this
would be the platform used for the realisation of the project’s software. For
the explanation of the software application developed as part of this project,
this section will be split into two main sub-sections:
e The techniques and algorithms needed for the successful
implementation of the system described in chapters 3, 4 and 5.
e An explanation of the Windows platform, its associated A.P.l.s, and
considerations and techniques acquired for this platform specific

programming task.

6.2.1 System To Be Implemented.

Figure 6.3 shows a simplified block diagram of the proposed hierarchical

surround sound system.

n-speaker output

n-channel decoder

carrier

Encoding [——® Sound-ield

Recorded/ —¥
Panned _L Block _L Manipulations. |
_>

Signals —» Rotations etc.

2-speaker trans
aural decoder

2-channel
binaural decoder

Figure 6.3 The hierarchical surround sound system to be implemented.

It can be seen from this block diagram that the proposed system has a
number of distinct sections that consist of:
e Recording of input signals, which will be in 1% Order B-format, in this
example.
e Sounds will be able to be manipulated internally (rotated, for example)
while in B-Format.
e These four-channel B-Format signals will then be decoded in one of
three ways:
0 Multi-speaker panned output.
0 2 or 4 speaker transaural output.

o 2-channel binaural output.

In order to describe how these functions will be implemented in a C++
environment it is necessary to understand how the Windows operating system
will pass the data.

e The sound data will be presented in buffers of a fixed size (a size that
is fixed by the application itself).

e The sound data will initially be passed to a buffer as an 8-bit unsigned
(char), although the application will always be dealing with 16-bit
signed integers (short) on the input and output sections.

¢ All intermediate processing will then take place at 32-bit floating point
precision.

e The application will use 8-channels in and 8-channels out from a single

sound card.

6.2.2 Fast Convolution

One of the most processor intensive functions needed in the hierarchical
surround sound software is that of convolution which is needed for the
binaural and transaural reproduction systems. Also, for accuracy it is
desirable for the cross-over filtering, needed in the Ambisonic decoders, to be
carried out using F.I.R. filters, as these possess linear phase responses in the
pass band (that is, pure delay), and so will cause the least distortion to the
audio when the two separate signals are mixed back together (as long as the
filter length, and therefore delay, is the same for each of the filters). F.I.R.
filters are simple to implement in the time domain (they are the same as
polynomial multiplication) but are very computationally expensive algorithms
to perform. Filtering of this kind is much more efficiently handled in the
frequency domain, thanks to the Fast Fourier Transform algorithm. However,
convolving two signals together in the frequency domain is slightly more

complex, when compared to its time domain equivalent.

To understand why other considerations must be taken into account for
frequency domain convolution let us first consider the time domain version of
the convolution algorithm. If we have two signals, ¢ and h, where c is the
signal to be convolved and h is the impulse response that we will convolve the

signal with, the convolution of these two signals is given by Equation (6.1).

y=c®h

¥(n)= 3 ol -i)()

(6.1)

where y = result
n = sample number

i = index into impulse response

In the above case, the impulse that is to be convolved with the signal is 128
samples long, and it can be seen that the convolution process works on the
past 128 samples of the signal. In programming terms this suggest that this

algorithm can be implemented using a circular buffer that is set to store the

current sample, and the preceding 128 samples before the current sample. If
the impulse is stored in another circular buffer, then the implementation of this

algorithm will follow the block diagram shown in Figure 6.4.

c(n) 1 1 1 71

v
v
\ 4
v

V4 z

V4 e = -

h(0) h(1) h(2)

Figure 6.4 Time domain convolution function.

From Figure 6.4 it can be seen that this algorithm will take ‘i’ multiplies and
additions per sample which, considering 128 samples represents an impulse
response length of 0.003 seconds at a sampling rate of 44.1kHz, would not be
suitable for longer impulses. So, how can this algorithm be transferred to the
frequency domain? It has already be noted that time domain polynomial
multiplication is the same as frequency domain point for point multiplication
(i.e. time domain convolution is the same as frequency domain multiplication),
and this fact can be used to improve the speed of this algorithm. Taking this
into account for a fixed length signal is relatively straightforward. If your
original signal is 256 samples long, and the impulse is 128 samples, as long
as the F.F.T. size used is longer than the final length of these convolved
signals (256+128-1), then both the signals can be transferred into the
frequency domain, multiplied, point for point (note that this is the multiplication
of complex numbers), and then an inverse-F.F.T. applied. However, if the
incoming signal needs to be monitored as it is being fed into the system (such
as in a real-time system) then, obviously, we cannot wait to find out the length
of the signal in question, the incoming signal must be split up into slices
(which is what happens in a computer, anyway). Furthermore, once the signal
has been split up, this simple frequency domain convolution will not work
correctly, that is, you cannot just multiply a slice by the frequency domain
impulse and inverse F.F.T. it again, as the slice has increased in size.

Therefore, some form of overlap-add scheme must be used (Paterson-

Stephens & Bateman, 2001). A block diagram showing this process is shown

in Figure 6.5.
o0] - ' o
Slice cg Slice ¢, Slice ¢, Slice c3
Slice co 0-Pad ; !
> MUlt | :
h ! 0-Pad i !

Mult

Summation '
Overlap

IFFTed Result

Sum

Final Convolved Signal

Figure 6.5 Fast convolution algorithm.

The example shown in Figure 6.5 uses a slice length of 128 samples, an
impulse length of 100 samples, and a zero-padded F.F.T. length of 256
samples (as 128+100-1 = 227 samples, and 256 is the next power of 2 higher
than this). This system means that the minimum latency achievable by this
method is measured by the slice size. This example is a specific example of
the overlap add system, but shows perhaps the simplest overlap relationship
between the multiplied segments. A more general relationship between the

length of the slice, and the overlap for summation is given in Equation (6.2).

Summation Overlap = (FFT Length) — (Length of Slice).
where:
(Length of Slice) + (Length of Impulse) — 1 <= FFT Length.

(6.2)

So, for this example, if the slice length is equal to 225 and the impulse length
is 32, then the F.F.T. size could still be 256 (225+32-1=256), and the
summation overlap would be 31 (256-225=31). This is a useful parameter to
know so the length of the input slice can be maximised when compared to the
F.F.T. size to increase the efficiency of the program (make more multiplies
count, so to speak). For example, if an F.F.T. size of 256 samples was to be
used and the impulse had a length of 32 samples, then a slice size of 225
should be used so as to minimise the summation overlap, and minimise the
number of slices that the sound should be divided into (and, hence, the
number of times the algorithm must be carried out). Due to the number of
specific function calls and number types that are needed for this algorithm, it
will be described in C later, when disscussing the more platform specific parts
of the application. However, as an example, the Matlab code for such an

algorithm is given in Table 6.1.

slicesize=225;
impsize=32;

fftsize=256;

it slicesize+timpsize-1>fftsize
error("FFT size must be GREATER or EQUAL to slicesize+impsize-17)
end

%Load signal and impulse
ht=wavread("hOeO45a.wav™);
ct=wavread("Test.wav");

%Convert Stereo files to a mono array
c=ct(:,2)";
h=ht(1:impsize,2)";

%create frequency domain impulse
fh=Fft(h, fftsize);

%clear temp storage for summation block
told=zeros(1,fftsize);

%zero pad signal, If not an exact multiple of the

%slice size

it length(c)/slicesize~=ceil(length(c)/slicesize)
c(length(c)+1:slicesize*ceil(length(c)/slicesize))=0;

end

for i=1l:slicesize:length(c)

%create frequency domain slice
fc=Fft(c(i:i+slicesize-1),fftsize);
%multiply with impulse
fr=fh_*fc;
%IFFT result
r = real (ifft(fr,fftsize));
%Summation of result (res) with portion of last result (told)
res(i:i+slicesize-1) = r(1:slicesize) + told(l:slicesize);
%update using last result ready for summation next time.
told=zeros(1,fftsize);
told(1:fftsize-slicesize) = r(slicesize+l:fftsize);

end

Table 6.1 Matlab code used for the fast convolution of two wave files.

6.2.3 Decoding Algorithms

The crux of the algorithmic work carried out during this research is concerned
with the decoding of the B-format (1% or 2" order) signal, and it is these
algorithms that will be discussed here. As all of the decoders (apart from the
simplest multi-speaker decoders) rely on filtering techniques, they will be

utilising the frequency domain filtering techniques discussed in section 6.2.2.

The first step in all of the decoding schemes is to decode the Ambisonics
audio to multiple speakers, as it was originally intended. As discussed in
Chapter 5, for the most psychoacoustically correct decoding methods, cross-
over filtering must be used. So far, it has been established that the samples
will arrive for processing, and be passed back into a 2-dimensional array, as
this is the most flexible system of holding multi-channel audio data in memory.
These Ambisonic audio streams will normally consist of 3, 5, 4 or 9 channels
of audio data (1% order horizontal only, 2" order horizontal only, full 1% order,
or full 2" order, respectively). The actual derivation of the coefficients needed
for this process was covered in Chapter 5 and so will not be repeated here.
All of the speaker feeds in an Ambisonic system are derived using
combinations of the various channels available. To this end, it can be useful
to specify an Ambisonic structure specifically so as to simplify writing audio
applications later on. The structure used to represent an Ambisonic (1% or 2"
order) carrier will comprise:

¢ Nine pointers to floats.

e Aninteger length parameter.

e A Boolean flag indicating a 1% or 2™ order stream.

The decision as whether to make the Ambi variable a structure or a class was
taken early on in this research, where a structure was decided upon. This
was mainly because any functions using this Ambi variable would have to be
made global functions, and so not associated with any Ambi structure in
particular, and this was thought to be a less confusing system when dealing
with more than one Ambisonic stream. However, in hindsight, it would have
made little difference either way. The code for an Ambi structure is given in

Table 6.2.

#define FIRSTORDER O
#define SECONDORDER 1
struct Ambi

{
float *W,*X,*Y,*Z,*R,*S,*T,*U,*V;
int Length;
bool Order;

};

void AllocateAmbi (Ambi *aSig, const int iLen, bool bAllocChannels,
bool bOrder)

{
aSig->Length = ilLen;
aSig->0rder = bOrder;
if(bAllocChannels)
{
aSig->W = new float[iLen];
aSig->X = new fTloat[iLen];
aSig->Y = new fTloat[iLen];
aSig->Z = new FTloat[iLen];
i T(bOrder==SECONDORDER)
{
aSig->R = new Tloat[iLen];
aSig->S = new Tloat[iLen];
aSig->T = new FTloat[iLen];
aSig->U = new fTloat[iLen];
aSig->V = new fTloat[iLen];
}
}
by
Table 6.2 Ambi Structure.

Included in Table 6.2 is a function for allocating memory dynamically and

setting the other flags for the Ambi structure. A choice of whether to allocate

memory is necessary as two situations are possible:

e The sources are entering the system as mono signals that are to be
panned. The extra channels needed for an Ambisonic signal must be

allocated.

e A B-format signal (1% or 2" order) is entering the system. These channels

can be used directly by assigning pointers directly to these channels.

As described in Chapter 5, there are two methods of decoding to an
Ambisonic array. There is decoding to a regular array, and decoding to an
irregular array. Of course, the decoding for a regular array is really just a
special case of the irregular decoding (all of the speakers have the virtual
response pointing in the same directions, with just the polar pattern altering for
different frequency bands), and it has also been observed that for particularly
large arrays, even simpler decoding should be used (Malham, 1998), limiting
the amount of out of phase signal emanating from the speakers opposite the
desired virtual source position. Let us first take the regular array case, as this
is the simplest. A simple block diagram of this system is shown in Figure 6.9.

Speaker Convert to
Position (=== Cartesian
Angles Co-ordinates
—p| LOW Frequency
LF Polar p| Decode with
Pattern —Jp| Pattern Select =P o
> | speaker
HF Polar > High Frequency |—gp| + output
Pattern Decode with
> Low Pass Pattern Select
B-F Filter
-Format | |
Signal p| High Pass
Filter
Figure 6.6 The regular array decoding problem.

Figure 6.6 shows that several parameters and settings are needed for the
decoder to act upon:
e Angular position of the speakers, converted to Cartesian co-ordinates
using the Ambisonic decoding equations given in equation 3.4.
e Both a low frequency and a high frequency directivity factor, as shown
in Equation (3.4). lItis these two parameters that set the frequency
dependent decoding. For frequency independent decoding, set both

parameters to the same setting (0 — 2 = omni — figure of eight).

Several functions are needed to fulfil decoding in order to minimise processing
at run time. Mainly, this is carried out by the speaker position function. As the
speakers are unlikely to move during system usage the Cartesian co-
ordinates of the polar patterns routed to the speakers can be fixed. This
means that all of the sine and cosine function calls can be made before the
real-time part of the application is to be run (sine and cosine functions are
very computationally expensive). A function used to calculate these decoding

coefficients is shown in Table 6..

float ** DecoderCalc(float *fAzim, float *fElev,
const int NoOfSpeakers, bool Order)

{
float **Result;
//1f 2nd Order decoder needed, 9 Rows
iT(Order)
Result = 2DAlloc(9,NoOfSpeakers);
//if 1st Order decoder needed, 4 Rows
else
Result = 2DAlloc(4,NoOfSpeakers);
for(int 1=0;i<NoOfSpeakers)
{
Result[O][i] = sqrt(2); //take off W offset of 0.707
Result[1][i] = cos(FfAzim[i])*cos(fElev[i]);//X
Result[2][1] = sin(FfAzim[i])*cos(fElev[i]);//Y
Result[3][i] = sin(fElev[i]);//Z
iT(Order)
{
Result[4][i] = 1.5F*sin(fElev[i])*sin(fElev[i]);//R
Result[5][i] = cos(fAzim[i])*sin(2*fElev[i]);//S
Result[6][1] = sin(FAzim[i])*sin(2*fElev[i]);//T
Result[7][1] = cos@*fAzim[i])*cos(fElev[i])
*cos(fElev[i]);//U
Result[8][1] = sin(@*fAzim[i])*cos(fElev[i])
*cos(fElev[i]);//V
}
}
//Return pointer to a two-dimensional array
return (Result);
by
Table 6.3 Function used to calculate a speaker's Cartesian co-ordinates which are

used in the Ambisonic decoding equations.
If the coefficients calculated in Table 6.3 are used directly then each speaker

will have a cardioid response, meaning that no out-of-phase material is
produced from any of the speakers (assuming a perfect, non-reverberant, B-
format input captured from a perfect point source). However, it has been
shown (see Chapter 5) that it can be beneficial to alter this polar response in
order to make the decoder more psychoacoustically correct at different
frequencies. For this, the equation shown in Equation (6.3), and discussed in

Chapters 3 & 5 can be used for the final decoding.

S=05x|2-d)g,W +d(g,X +9,Y +g,Z)

(6.3)
where: Ox, Oy, 0z & gw are the speaker coefficients calculated using
Table 6.3.
d is the pattern selector coefficient (from 0 — 2, omni — figure of
eight).

As can be seen from Equation (6.3), it is a simple matter to include this
equation in the final decoding function as it only involves a few extra multiplies
per speaker, and does not use any computationally expensive sine or cosine
functions. However, the decoding function is complicated slightly as a cross-
over needs to be implemented using the fast convolution function given in
section 6.2.2 (although, strictly speaking only phase aligned ‘shelving’ filters
are actually needed, the cross-over technique using FIR filters can be used for
both regular and irregular decoders, whereas the shelving filters can only be
used for regular decoders). A function for carrying out an Ambisonic cross-

over is shown in Table 6.4.

#define BLen 2049

float WOIALP[BLen],XOldLP[BLen],YOldLP[BLen];//etc.

float WOIdHP[BLen],XOldHP[BLen],YOldHP[BLen];//etc.

void AmbiXOver(Ambi *Source, Ambi *Dest, SCplx *LP, SCplx *HP,
const iInt order)

{

//This exmample takes Source as the source, stores the LP
//signal in Source, the HP signal in Dest, and takes LP and HP
//as the frequency domain filter coefficients.

//These original fTilters must be one sample less in length than
//the buffer size

const int Len = Source->Length;
//copy samples
memcopy(Source->W,Dest->W, Source->Length*4);
memcopy(Source->X,Dest->X,Source->Length*4);
memcopy(Source->Y,Dest->Y,Source->Length*4);
memcopy(Source->Z,Dest->Z,Source->Length*4);
iT(Source->0rder)
{
memcopy(Source->R,Dest->R,Source->Length*4);
memcopy(Source->S,Dest->S, Source->Length*4);
memcopy(Source->T,Dest->T,Source->Length*4);
memcopy(Source->U,Dest->U, Source->Length*4);
memcopy(Source->V,Dest->V, Source->Length*4);

//Do second order Low pass
OverAddFir(Source->R,LP,Len,Len-1,0rder,ROIALP);

OverAddFir(Source->S,LP,Len,Len-1,0rder,SOIdLP);
OverAddFir(Source->T,LP,Len,Len-1,0rder,TOIdLP);
OverAddFir(Source->U,LP,Len,Len-1,0rder,UOIdLP);
OverAddFir(Source->V,LP,Len,Len-1,0order,VOIdLP);

//Do second order High pass
OverAddFir(Dest->R,HP,Len,Len-1,0rder ,ROIdHP) ;
OverAddFir(Dest->S,HP,Len,Len-1,0rder,SOIdHP) ;
OverAddFir(Dest->T,HP,Len,Len-1,0rder,TOIdHP);
OverAddFir(Dest->U,HP,Len,Len-1,0rder,UOL1dHP);
OverAddFir(Dest->V,HP,Len,Len-1,order,VOIdHP);
}
//Do First order Low pass
OverAddFir(Source->W,LP,Len,Len-1,order ,WOIldLP);
OverAddFir(Source->X,LP,Len,Len-1,0rder,X0O1dLP);
OverAddFir(Source->Y,LP,Len,Len-1,0rder,YOLIdLP);
OverAddFir(Source->Z,LP,Len,Len-1,0rder,Z0IdLP);

//Do First order High pass

OverAddFir(Dest->W,HP,Len,Len-1,order ,WOldHP) ;

OverAddFir(Dest->X,HP,Len,Len-1,order,X0O1dHP);

OverAddFir(Dest->Y,HP,Len,Len-1,0rder,YOIdHP);

OverAddFir(Dest->Z,HP,Len,Len-1,0rder,Z01dHP);
}

Table 6.4 Ambisonic cross-over function

This is the comprehensive version of this function, but it can be changed
depending on the application. For example, the 2" order checking and Z
signal functions can be removed for a 1% order, horizontal only, application as
this will save some processing time. Now that the crossover function has
been given, a regular decoding function can be developed, and is shown in

Table 6.5.

void B2SpeakersReg(Ambi *Signal, float **Samples, float **Sp
, Int NoOfSpeakers ,int NoOfChannels,float LPPattern
,Float HPPattern)

static float WGainLP,XGainLP,YGainLP,ZGainLP;
static float WGainHP,XGainHP,YGainHP,ZGainHP;

//Do XOver using global Ambi variable Signal2
AmbiXOver(Signal, Signal2, LPCoefs, HPCoefs,Signal->0rder);

//Do loop check for both number of speakers, and number of
//channels available on system, for testing on systems with
//only a stereo sound card available
for(int J=0;j<NoOfSpeakers && j<NoOfChannels;i++)
{

//Take pattern calculations out of loop

//Calculate only once for each speaker

//per buffer.

WGainLP = 0.5F * (2-LPPattern) * Sp[O1[il;
WGainHP = 0.5F * (2-HPPattern) * Sp[O1[il:
XGainLP = 0.5F * LPPattern * Sp[1]1[il:
XGainHP = 0.5F * HPPattern * Sp[1]1[j]:
YGainLP = 0.5F * LPPattern * Sp[2][i]:
YGainHP = 0.5F * HPPattern * Sp[2]1[i1;
ZGainLP = 0.5F * LPPattern * Sp[3]1[i]l;

ZGainHP = 0.5F * HPPattern * Sp[3]1[il;

for(int 1=0;i<Signal->Length;i++)

{
//Do Low frequency pattern adjustment and decode
Samples[j]1[i] = WGainLP * Signal->W[i]
+ XGainLP * Signal->X[1i]
+ YGainLP * Signal->Y[i]
+ ZGainLP * Signal->Z[i];
//Do High frequency pattern adjustment and decode
Samples[jJ][i] = WGainHP * Signal2->W[1i]
+ XGainHP * Signal2->X[i]
+ YGainHP * Signal2->Y[i]
+ ZGainHP * Signal2->Z[i];
}
}
3}
Table 6.5 Function used to decode an Ambisonic signal to a regular array.

For simplicity, Table 6.5 shows only a first order example, but this function
could easily be extended to include second order functionality. The two-
dimensional ‘Samples’ array is now ready to be de-interlaced and passed

back to the sound card for output.

When it comes to the decoding of an irregular array two approaches can be
taken:
e Let each speaker (or speaker pair) have a user-definable pattern,
decoding angle and level.
e Have each speaker use decoding coefficients directly. That is, they are
supplied after the pattern, decoding angle and level have been taken

into account.

Both of these methods are acceptable, with the first being most suited to
optimising a decoder by ear and the second being most suited to using
coefficients calculated using the heuristic HRTF decoding program described
in Chapter 5. The latter will be slightly more efficient (although the program
used to pre-calculate the coefficients could be changed to output the pattern,

angle and level instead of the decoding coefficients directly).

As all of the coefficients used for decoding to irregular arrays were calculated

off-line in this project (using the Tabu search algorithm described in Chapter

5), the second approach was used. The code used for this irregular decoder

function is shown in Table 6.6.

void B2Speakerlrreg(Ambi *Signal, float **Samples, float **SpL,
float **SpH, int NoOfSpeakers, int NoOfChannels)

{
static float WGainLP,XGainLP,YGainLP,ZGainLP;
static float WGainHP,XGainHP,YGainHP,ZGainHP;
//Do XOver using global Ambi variable Signal2
AmbiXOver(Signal, Signal2, LPCoefs, HPCoefs, Signal->Order);
for (int j=0;j<NoOfSpeakers && j<NoOfChannels;j++)
{
//Use SpL & SpH decoding coefficients directly
WGainLP = SpL[O]1L]j1;
WGainHP = SpH[O]1Lj1;
XGainLP = SpL[1]1[i];
XGainHP = SpH[11[i];
YGainLP = SpL[2][i]:
YGainHP = SpH[2][i];
ZGainLP = SpLL3]1Li]:
ZGainHP = SpH[31I[i1;
for (int i=0;i<Signal->Length;i++)
{
//Do Low frequency pattern adjustment and decode
Samples[jJ]1[i] = WGainLP * Signal->W[i]
+ XGainLP * Signal->X[1i]
+ YGainLP * Signal->Y[i]
+ ZGainLP * Signal->Z[i];
//Do High frequency pattern adjustment and decode
Samples[jJ][i] = WGainHP * Signal2->W[1i]
+ XGainHP * Signal2->X[i]
+ YGainHP * Signal2->Y[i]
+ ZGainHP * Signal2->Z[i];
ks
ks
¥
Table 6.6 Function used to decode an Ambisonic signal to an irregular array.

This function is very similar to the one shown in Table 6.5, except that two
separate sets of speaker coefficients must be provided since they are
potentially very different (not just different in polar pattern, as in a regular

speaker array).

The multi-speaker array given above is possibly the most complex form of
decoding as the other types (transaural multi-speaker and headphone) are
based upon binaural technology and, to this end, will only need to be set up

once for optimal reproduction.

As discussed in Chapter 4, in order to reproduce an Ambisonic system
binaurally the separate speaker coefficients can be easily represented as a
set of HRTFs with one HRTF for each of the Ambisonic signals (that is, W, X,
Y etc.), or two if the rig-room-head combination are not taken to be left/right
symmetrical. So, for example, a second order, horizontal only decode would
be replayed binaurally using the equation shown in Equation (6.4).

Left = (W ®W, .)+ (X & Xy)+ (Y ®Y,)+ U ®U,)+ V ®V,,)
nght = (\N ®Whrtf)+ (X ® thtf)_(Y ®thtf)+ (U ®Uhrtf)_(V ®Vhrtf)

(6.4)

where: W, X, Y, U &V are the Ambisonic signals.
ntf denotes a HRTF filter response for a particular channel.

® denotes convolution.

What is possibly not apparent on first inspection is that, when compared to an
optimised speaker decode, a binaural simulation of an Ambisonic decoder
actually requires less convolutions if left/right symmetry is assumed (half as
many, in fact) and the same amount of convolutions if left/right symmetry is
not assumed. This is due to the fact that both the crossovers and differing
levels/polar patterns can be taken into account at the design time of the
Ambisonic signal filters. A function used to decode a horizontal 1% order

Ambisonic signal is shown in Table 6.7.

#define BLen 2049
#define Order 12 //FFT Length 27°12=4096
float WOId[BLen],XOld[BLen],YOld[BLen];

//Function assumes impulse length is 1 sample less than
//buffer length (i.e. 2048)
void B2Headphones(Ambi *Signal, float **Samples,
SCplIx *WFilt, SCplx *XFilt, SCplx *Yfilt,
int NoOfChannels)

const int Len = Signal->Length;

OverAddFir(Signal->W,WFilt,Len,Len-1,0rder,W0ld);
OverAddFir(Signal->X,XFilt,Len,Len-1,0rder,X01d);
OverAddFir(Signal->Y,YFilt,Len,Len-1,0rder,Y0Old);

for(int 1=0;i<Len;i++)
{
//Left Signal
Samples[O][1]=Signal->W[i1] + Signal->X[i] + Signal->Y[i];
//Right Signal
Samples[1][i]=Signal->W[i] + Signal->X[i] - Signal->Y[i];

}

//1f more than two channels were inputted and are to be
//outputted (i.e. took B-format signal in from live
//input) then other channels must be cleared.

for(int 1=2;i<NoOfChannels;i++)

for(int j=0;j<Len;j++)
Samples[i][j] = O;
}
by
Table 6.7 Function used to decode a horizontal only, 1* order, Ambisonic signal
to headphones.

From the B2Headphones function given above, it is easy to see how this
function can be extended to a two-speaker transaural representation. The

block diagram for a two-speaker transaural reproduction is given in Figure 6.7.

H1
> Filter
=
Left Ear H2 Left
Signal [| > Filter hl Speaker
Right Ear | Y9 H2 > Right
Signal Filter * —p| Speaker
+
H1
> Filter
Figure 6.7 A two-speaker transaural reproduction system.

The method for calculating and optimising the filters needed for this

arrangement were discussed in Chapter 5.

For the four-speaker version of the crosstalk cancellation not only is the above
algorithm (shown in Figure 6.7) needed to be run twice, but also four signals
must be provided (front left and right, and rear left and right ear signals).
These can be calculated using a system very similar to the one shown in
Equation (6.4), except that the front left and right HRTF filters (for the
conversion to binaural) will only be taken using the gains from the front
speakers, and the rear left and right HRTFs will be calculated using the gains
from the rear speakers. Example sets of HRTFs for this purpose are shown in
Figure 6.8 (simple, cardioid decoding, with no cross-over filtering present).

These graphs show that, although the decoder is not taken as a whole, as

long as the front and rear portions of the speaker rig are left/right symmetric,
the same binaural simplification can be used where only one HRTF is needed
for each of the Ambisonic channels. A block diagram of this four-channel
crosstalk cancellation system is shown in Figure 6.9. The coding for this
section is an extension of the B2Headphones function given in Table 6.7, with

an extra call to a transaural function, B2Trans, given in Table 6.7.

WV Front Wy Rear
0 J\/\/\/V\\/\f\—/w 0 JWU\M/\/\/\——F

X Front

L L L L L L 5 L L L L L L
1) 20 40 [n] 80 100 120 1) 20 40 B0 80 100 120

f Fromt

Figure 6.8 Bank of HRTFs used for a four-channel binauralisation of an Ambisonic
signal.
W To Front Left
HRTE Front Cross- m
X . . l—.) talk .
Simulation Cancellation | To Front Right
Y (3 FlRS) . (4 FIRs) Speaker >
To Rear Left
HRTF - Rear Cross- 1 Speaker
S(|mUIat|c)m Cancellation
3 FIRs (4 FIRs) To Rear Right
’ Speaker
Figure 6.9 Block digram of a four-speaker crosstalk cancellation system.

#define BLen 2049

//Flag that is set for 2 and 4 speakers

//transarual reproduction.

bool Trans4;

float FLOId[BLen],FROId[BLen],FLCOld[BLen],FRCOId[BLen];
float RLOId[BLen],RROId[BLen],RLCOId[BLen],RRCOId[BLen];

void BToTrans(float **Samples,SCplx *hl, SCplx *h2,
const int BufferLength, const int NoOfChannels)

//Samples should be housing up to four channels,
//front left, front right

//back left, and back right binaural signals.
static Tloat FLCopy[BLen];

static Tloat FRCopy[BLen];

memcpy (FLCopy,Samples[0],BufferLength*4);

memcpy (FRCopy,Samples[1],BufferLength*4);

int ChUsed=2;

//Do 2 Speaker Transaural
OverAddFir(Samples[0].,hl,Len,Len-1,0rder,FLOId);
OverAddFir(Samples[1],h1,Len,Len-1,0rder,FROId);
OverAddFir(FLCopy,h2,Len,Len-1,0rder,FLCOld);
OverAddFir(FRCopy,h2,Len,Len-1,0rder,FRCOId);

float FL,FR;
for (int i=0;i<BufferLength;i++)
{
FL = Samples[O][i];
FR = Samples[1][i];
Samples[O][i] = FL + FRCopy[i];
Samples[1][i] = FR + FLCopy[i]l;
}

//Do 4 speaker transaural if flag says true
if(Trans4 && NoOfChannels>=4)
{
static Tloat RLCopy[BLen];
static Tloat RRCopy[BLen];
memcpy (RLCopy, Samples[2] ,BufferLength*4);
memcpy (RRCopy, Samples[3],BufferLength*4);

OverAddFir(Samples[2],h1,Len,Len-1,0rder,RLOId);
OverAddFir(Samples[3],h1,Len,Len-1,0rder,RROId);
OverAddFir(RLCopy,h2,Len,Len-1,0rder ,RLCOId);
OverAddFir(RRCopy,h2,Len,Len-1,0rder,RRCOId);

float RL,RR;

for (int i=0;i<BufferLength;i++)

{
RL = Samples[2][i];
RR = Samples[3]1[i]:;
Samples[2][i] = RL + RRCopy[i];
Samples[3][1] = RR + RLCopy[i];

ks
ChUsed=4;
}

//Clear other output channels, ready for outputting
for(int 1=ChUsed;i<NoOfChannels;i++)

{
for(int j=0;j<Len;j++)
Samples[i][j] = O;

}
+

Table 6.8 Code used for 2 and 4 speaker transaural reproduction.

6.3 Implementation - Platform Specifics

All of the algorithmic work discussed so far in this project has been platform
independent, that is, all of the functions could be implemented on any platform
that supports floating point operations and standard C. However, there has to
come a point where a specific platform must be chosen, and then more
specialised functions are usually needed depending on the
hardware/operating system used. In this project the Microsoft Windows™
operating system was used, which possesses a number of APIs for interfacing
with the sound system via Windows:

e Waveform Audio (windows multi-media system)

e Direct Sound (part of the Direct X API)

e ASIO (Steinberg’s sound API).

The system used in this project was the standard waveform audio system.
There were a number of reasons for this:
e Waveform audio had easy support for multi-channel sound.

e All windows compatible sound cards had good support for this API.

Although information about the Waveform Audio API is reasonably
widespread (for example, see Kientzle (1997) and Petzold (1998) Chapter 22)
none give a comprehensive guide to setting up a software engine for signal
processing (that is, capturing some audio live or from wave files, processing it,
and outputting the processed audio). For this reason, This section of the
report will give an in depth summary of how the software used in this project
was structured and implemented so it can be used as a starting reference for

further research to be carried out.

So, what is the Waveform Audio API? The Waveform Audio API is a layer of
functions that sits between the programmer and the sound card. This means
that the function calls necessary to set up and successfully run an audio
application will be the same no matter what make or model of sound card the
computer possesses. In this system the input and the output ports of the
soundcard work seemingly independently, and so each must be taken as a

separate entity and programmed for accordingly. For example, just because

the output device has been set up as a 44.1 kHz, 16-bit sample stream, this
does not mean that the input device will automatically take these settings
when it is started. Any device activated (be it input or output) using the
waveform audio APl must have a number of parameters set and structures
available for use. Firstly, let us examine the parameters that must be set
before an output device can be started:

e Data type (for example, fixed or floating point).

e Number of Channels (for example, 1 — mono, 2 — stereo, 4, 8).

e Sample rate in Hz. (for example, 44100 or 48000).

e Bits per sample (for example, 8, 16).

¢ Block align — the alignment of the samples in memory (i.e. the size of

the data for one sample for all of the channels, in bytes).
e Average bytes per second.

e Buffer size in bytes.

Using all of the above data, the Waveform audio API is almost ready to set up
the input/output devices, however, let us first look at the block diagram of the

waveform audio system as shown in Figure 6.10.

Message:
Ready for Samples

: Send to
WaveHDR — | Soundcard
WaveHDR
WaveHDR
Processed
Samples —> WaveHDR

Figure 6.10 Waveform audio block diagram — Wave out.

As can be seen from this diagram, the soundcard actually informs the
program when it has finished with the last buffer and is ready for the next one.
This is because Windows is a message based operating system. That is, the
application either passes messages, or waits to receive messages from the
Windows operating system. These work in much the same way as software
interrupts on a D.S.P. device, and mean that the application does not have to
run in a loop, but process and send the appropriate messages in order to

keep the program running. A WaveHDR is a structure that represents a buffer
of audio samples, along with a few other parameters. A WaveHDR is

arranged as shown in Table 6.9.

/* wave data block header */
typedef struct wavehdr_tag {

LPSTR IpData; /* pointer to locked data buffer */
DWORD dwBufferLength; /* length of data buffer */
DWORD dwBytesRecorded; /* used for input only */
DWORD dwUser; /* for client"s use */
DWORD dwFlags; /* assorted flags (see defines) */
DWORD dwLoops; /* loop control counter */
struct wavehdr_tag FAR *IpNext; /* reserved for driver */
DWORD reserved; /* reserved for driver */
} WAVEHDR, *PWAVEHDR, NEAR *NPWAVEHDR, FAR *LPWAVEHDR;
Table 6.9 WaveHDR structure.

Of all of the various parameters available from a WaveHDR structure, only a
few of them are of importance for this application. These are:
o |IpData — Pointer to an array of bytes used for the storage of samples.
e dwBufferLength — Holds the length of the buffer (in bytes).
e dwFlags — Holds flags signifying that the buffer is finished with,

prepared etc..

At least two of these wave headers need to be sent to either the input or
output device in order for seamless audio to be heard or captured. If only one
is used then an audible gap will be heard as the buffer is refilled and sent
back to the device (in the case of an output device). However, as many
buffers as is desired can be sent to the device, which windows will

automatically store in a queue.

The other major structure that is used by the waveform audio API is
WaveformatEX. This structure is used to hold nearly all of the data that must
be presented to Windows in order to successfully open a device. The format

of the WaveformatEX structure is given in Table 6.10.

/*

* extended waveform format structure used for all non-PCM formats.
* this structure is common to all non-PCM formats.

*/

typedef struct tWAVEFORMATEX

WORD wFormatTag; /* format type */

WORD nChannels; /* number of channels (i.e. mono,
stereo...) */

DWORD nSamplesPerSec; /* sample rate */

DWORD nAvgBytesPerSec; /* for buffer estimation */

WORD nBlockAlign; /* block size of data */

WORD wBitsPerSample; /* number of bits per sample of
mono data */

WORD cbSize; /* the count In bytes of the size
of extra information (after
cbSize) */

} WAVEFORMATEX, *PWAVEFORMATEX, NEAR *NPWAVEFORMATEX, FAR
*LPWAVEFORMATEX ;
Table 6.10 WaveformatEX structure.

As can be seen by the comments in Table 6.9 and Table 6.10, all of the
necessary information is now potentially available for any device that is to be

opened, be it an input, or an output device.

Various functions are used in the initialisation and running of a Wave device
and the structures given in Table 6.9 and Table 6.10 are relied upon to
provide the necessary information and memory allocation needed. Example

code used to initialise a wave out device is shown in Table 6.11.

WAVEHDR WOutHdr[2];
WAVEFORMATEX wf;
HWAVEOUT hWaveOut;

void InitialiseWaveOut(unsigned int Device,
unsigned short usNoOfChannels,
unsigned short usSRate,
unsigned short usBLength)

//Pass WAVEFORMATEX structure necessary data
wf.wFormatTag WAVE_FORMAT_PCM;

wf.nChannels = usNoOfChannels;
wf.nSamplesPerSec = usSRate;
wF.wBitsPerSample = 16;

wf_nBlockAlign
wf._nAvgBytesPerSec
wf.cbSize

wf_nChannels * wf.wBitsPerSample / 8;
= wf_nSamplesPerSec * wf.nBlockAlign;
= O;
iT(Device==0)

//let windows choose device

Device=WAVE_MAPPER;
else

//else, use specified device

Device--;
//0pen wave device, specifying callback function
//used to catch windows messages from device
waveOutOpen(&hWaveOut,Device,&wf, (DWORD)WOCal Iback,

(DWORD)this,CALLBACK_FUNCTION);

waveOutPause(hWaveOut) ;

//Allocate memory for 2 buffers, and pass them to wave device
for(int 1=0;i<2;i++)
{
WOutHdr[i].dwBufferLength = usBLength * wf.wBitsPerSample
* wf.nChannels/8;
WOutHdr[i]-1IpData = new char[WOutHdr[i].dwBufferLength];

WOutHdr[i].-dwFlags
WOutHdr[i].dwLoops

0;
0;

waveOutPrepareHeader (hWaveOut,&WOutHdr[i1],sizeof(WOutHdr[i]));
waveOutWrite(hWaveOut,&WOutHdr[i1],sizeof(WOutHdr[i]));
}

//Start wave out device

waveOutRestart(hWaveOut) ;

void CALLBACK WaveOutCal lback(HWAVEOUT hwo, UINT uMsg,
DWORD dwlnstance, DWORD dwParaml, DWORD dwParam2)

{
switch(uMsg)
{
case WOM_DONE:
{
//1f WOM_DONE, call function used to fill buffer
//WAVEHDR buffer passed in to callback function
//as dwParaml
WaveOutFunc((WAVEHDR *)dwParaml);
break;
¥
default:
break;
}
}
Table 6.11 Initialisation code used to set up and start an output wave device.

As shown in Table 6.11, a call-back function must be specified in order to
process the Windows’ messages that are passed by the waveform audio
system. For the output device the most important message is WOM_DONE.
This message is passed to the call-back function every time the wave out
device has finished with the WAVEHDR buffer, where a function can then be
called that fills the buffer with processed samples using the processing
technigues shown in Chapter 6.2 (in this case, the WaveOutFunc function is
called, passing with it a WaveHdr structure).

The Wave In device is configured in much the same way by the Windows
operating system, although it is interesting to note that the input and output
devices are both taken to be two separate devices. To this end, no automatic
connection between the two devices exists and it is the programmer that must
store the input samples and then pass them to the output device (this is, of
course, assuming that both input and output devices have been initialised at
the same frequency, bit rate and channel numbers).

In Windows, many audio devices can be opened simultaneously, which is
necessary as most multi-channel sound cards default to being configured as a
number of stereo devices. However, for true multi-channel sound
reproduction it is necessary to have a card that can be configured as one
multi-channel device. This is due to the fact that Windows cannot open and
start multiple devices at exactly the same time and, although some sound
card manufacturers quote that the drivers will synchronise multiple devices,
this has not been found to be the case when using their standard wave
drivers. This can potentially cause problems when using such a card to feed
an array of speakers used for multi-channel surround sound, as the time
alignment of the output channels is assumed to be perfect. Although this
artefact is not readily noticeable, it is obviously more desirable to start with a
system that is as theoretically perfect as possible and so a single multi-
channel device should be used, if possible. Having one multi-channel device
also simplifies the processing as multiple call-back functions are not used.
This effect was discovered using the Matlab add-on, Simulink. The block

arrangement used to document this feature is shown in Figure 6.11.

-loix]

File Edit Wiew Simulation Format Tools Help

D|D”H§|%E|9C’Z|H§-®|b .INDIITIa| 'I

[E12x1] N [E12x1] N N
[EX] [t} =
@J L L Blzel] 1) AEDM 1}
hono Device 1 ToWotkspace 1 pono Device 5 ToWotepace 5 To Mono Dewice 1 To Meno Device §
[E12x1] N [E12x1] N . N
bz [el5}

@J L L Biaei] T 1) AEDM 1}
bana Device 2 ToWotkspace 2 pong Device 6 Tofotepace & To Mono Device 2 To Meno Device G
[E12x1] - [E12x1] = = -

[oT
@J L L Bizei] T 1) BEDM b
bana Device 3 To Wotspace 3 pong Device 7 To'fotepace 7 To Mono Dewice 3 To Mono Dewice 7
[E12x1] - [E12x1]
2] T > >
@ v v []:I G]:I
Mano Device 4 To'fotepace 4 pyong Device 5 To'fotepace 3 To Mono Dewice 4 To Mono Dewice 8
DEP H
|J—L| 512wd]
Sine Wave
Ready [100%% | [[odeas >

Figure 6.11 Simulink model used to measure inter-device delays

This system was used to test the latency of various devices a number of times
and not only was the inter-device latency apparent, but it also changed

between test runs. An example plot is shown in Figure 6.12, showing just four

devices, to make the graph more readable. This variable device latency
means that it is almost impossible to correct, and so a single device should be

used.

02 Delay between opening of devices

. —— device 1

NS - - - device 2
\ — device 3
—— device 4

0.15

0.1

0.051

magnitude
)
o
o

L L L L L I}
0 2000 4000 6000 8000 10000 12000
time in samples at 44.1KHz sampling frequency

Figure 6.12 Graphical plot of the output from 4 audio devices using the Waveform
audio API.

In order to successfully close an audio device, a number of API calls must be

made. This is shown (for the output device) in Table 6.12.

void CloseDevice(UINT Device)

{

//Reset Wave Device

waveOutReset(hWaveOut);

//Unlock and delete dynamic memory allocated for WAVEHDRs
Tor(UINT i=0;i<NoOfBuffers;i++)

{

waveOutUnprepareHeader (hWaveOut, &WaveHeadersOut[i],
sizeof(WaveHeadersOut[i]));
if(WaveHeadersOut[i]. IpData)
delete [] WaveHeadersOut[i].IpData;

//Close Wave Device
waveOutClose(hWaveOut);

}
Table 6.12 Closing a Wave Device

Both the opening and closing of an input wave device is identical to that of an
output wave device, with the only difference being the message passed to the

call-back function.

As all of this coding is Windows dependent (that is, it will never be needed for

any other system), the wave device functions were encapsulated within a

class. This meant that a basic ‘pass-through’ application could be coded, that
did no processing. A new class could then be created, inheriting from this first
class, but with the processing functions being redeclared so that minimal extra
coding is needed for every new sound processing application that is to be

written.

In order for this first class to be as flexible as possible, a signal processing
function for both incoming and outgoing samples has been written. This
means that the signal can be monitored (or processed) just after the input and

just before the output of the audio to the soundcard.

A block diagram of the structure of this class is shown in Figure 6.13.

U LA SR ——
Calls made : : Invoked by Windows Messages 1
from_ i D WIM_DATA | Seesscessscssscssssssssssssesssnsssnaans i
Application : | Message .

A 4
Initialise Wave InFunc AddToQueue ProcesslIn
nlwgr:wgr& ?g:oc Call AddToQueue [=P|Add new samples M= Function to be
Y Add Used Buffer to audio gqueue OverRidden
WaveHDRs H
to device

Create Sample

Queue
WOM_DONE
Open Device : | Message

Open In/0ut :

Devices H v
Prepare & Send H
Buf’:[):ers to = | WaveOutFunc ProcessOut
devices . -

- Call Process Out _ | Function to be

Start Devices Add Used Buffer ¥ OverRidden

to device

Figure 6.13 Block Diagram of Generic ‘pass-through’ Audio Template Class

It can be seen from Figure 6.13 that, apart from the initialisation and opening
of the audio devices, the whole of the audio subsystem is driven by
messages. The WIM_DATA message signalling that an audio buffer is ready
for use (i.e. full) causes the WavelnFunc to call a function that adds this audio
data to a data queue. Then, when the WOM_DONE message has been
received signalling that an output buffer is ready to be filled again, the
ProcessOut function is called, which is where the audio processing will be
carried out on the data at the end of the audio queue, and then passed to the
empty output device. An example of the overridden ProcessOut function is

shown in Table 6.13. Example code for the whole of this base class can be
found in the Appendix.

void ProcessAudio(WAVEHDR *pWaveHeader,
unsigned short usNoOfChannels,
unsigned short usBufferLengthPerChannel)

{
//0utput Callback
//Grab pointers to in and out buffers
short *inPtr = (short *)ReadBuffer->IpData;
short *outPtr = (short *)pWaveHeader->IlpData;
float yn;
for(
unsigned iInt i=0;i<usBufferLengthPerChannel*usNoOfChannels;
i+=usNoOfChannels)
{
//Left Channel
yn = (float)inPtr[i];
//Processing Here
outPtr[i] = (short)yn;
//Right Channel
yn = (float)inPtr[i+l1];
//Processing Here
outPtr[i+1] = (short)yn;
}
}
Table 6.13 Example implementation of the ProcessAudio function for a Stereo

Application.
6.4 Example Application

Using the signal processing and wave API code given above, it is now a
relatively simple task to build an example signal processing application. In
this research project the programming environment of Borland C++ Builder
was used (Borland Software Corporation, 2003). This environment has the
advantage of drag and drop development of graphical user interfaces using
standard Windows components, Borland’s own components or custom
components based on one of Borland’s component templates. This greatly
simplifies the GUI creation process meaning that working, flexible applications
can be coded quickly, which then makes the use of a powerful, high level

language, such as C++, a valuable signal processing prototyping tool.

As stated above, applications written for the Windows operating system can
be programmed using the C++ programming language. The object oriented
approach lends itself well to audio programming, particularly when filtering is

involved (which it generally is). This is because for each signal that needs to

be filtered, separate memory locations are needed for that particular signal’s
feedback, feedforward, or delay line features. When coding filters in C it is the
developer that must group all of this memory together, which can be
cumbersome at times with different types of filters needing different memory
requirements. For example, the fast convolution algorithm described in
section 6.2.2 needs an additional amount of memory for each channel filtered.
The size of this memory must be the same size as the FFT window size, that
is, it must be larger than the size of the incoming signal. Once other types of
filter are also introduced the subsequent memory requirement would soon
become complicated and difficult to follow. This, on its own, is not a large
problem, but means that all the memory requirements for a filter function must
be clearly documented using comments, and strictly adhered to by the
developer. However, in C++ a filter ‘object’ can be created. Inside this object,
all the extra memory requirements can be hidden from the programmer with
as many filter objects created as needed. This means that each filter object
can be imagined as one filter device in a studio, operating on one audio
stream. Initially, all the same memory requirements must be taken care of,
but once implemented inside a C++ class this can then be used as a template
where the developer only has access to, perhaps, a ‘processaudio’ function.

A simple template for such a class is shown in Table 6.14.

class AllPass

i
private:

float fs,fc,alpha,*Buffer;

float ff,fb,in,out;

const int BuflLen;

void DoAllPass(float *signal, int iLen, float aval);
public:

AllPass(int iLen);

~AllPass();

void SetCutOff(float fcut, float fsam);

void ProcessAudio(float *signal, float dBLP, float dBHP,

bool dBdummy);

void ProcessAudio(float *signal, float LinLP, float LinHP);
};
Table 6.14 C++ Class definition file for an allpass based shelving equalisation unit.

An object of type AllPass can now be initialised in the normal way in the
application. However, due to the fact that the private variable BufLen,
representing the length of an audio buffer, has been declared constant, this

object must be initialised with an integer length (see the constructors and

destructors, AllPass(int iLen) & ~AllPass()). This means that, unless the
application has a fixed buffer length, the object must be declared dynamically

at run time.

Looking at this object definition file further it can be seen that the developer
only has access to five functions; a constructor and a destructor that are
called automatically when a new AllPass object is created or destroyed, a
SetCutOff function, and two ProcessAudio functions. The latter have been
created in order to give this class improved flexibility, with one function making
use of linear gain values, and the other making use of dB gain values. As the
same function names need to have some difference in their passed values, a
dummy, unused variable has been included in one of the functions to indicate
that dB gains are used. Also, it can be noted that all of the variables
associated with this class are declared private, meaning that the calling object
has no access to these variables, protecting them from potential wrong doing.
All of these variables are updated, as needed, by the underlying code in the
class, either at initialisation, or by a public member function. This ensures that
the filter is secure and as intuitive to use as possible, with the developer only

having access to the functions needed, and no more.

This method was also used for the fast convolution filter, greatly simplifying
the knowledge needed by the developer to use this function. The definition

file is shown in Table 6.15.

class FastFilter

{
private:
int order,fftsize,siglen,implen;
float *OldArray,*Signal,*tconv,*h;
SCplIx *fh,*fSig,*fconv;
public:
FastFilter(int FFTOrder,AnsiString *FName, int FLength);
~FastFilter(Q);
void ReLoadFilter(AnsiString *FName, int FLength);
void OverAddFir(float *signal);
}:
Table 6.15 C++ class definition file for the fast convolution algorithm

Again, a system very similar to that shown in the AllPass filter class definition

file can be seen. However, if the constructor of this class is shown, it can be

seen how much work is taken away from the developer when using this class,

as shown in Table 6.16.

FastFilter::FastFilter(int FFTOrder,AnsiString *FName, int FLength)
{

order = FFTOrder;

fftsize = pow(2,order);

siglen (fftsize/2) + 1;

implen fftsize/2;

OldArray = new Tloat[fftsize];
Signal = new float[fftsize];
tconv = new Tloat[fftsize];

h = new Float[fftsize];

fh = new SCplx[fftsize];
fSig = new SCplx[fftsize];
fconv = new SCplx[fftsize];

ReLoadFilter(FName,FLength);

nspsReal FFtNip(NULL ,NULL ,order ,NSP_Init);
nspsReal FFtNip(h, fh,order ,NSP_Forw);

}

Table 6.16 Constructor for the FastFilter class

As is immediately evident, the memory requirements of this class are
complicated, with a number of memory spaces of two variable types
(representing data in both the time and frequency domain) needing to be
dynamically created and destroyed when necessary. Also, the size of the
coefficients used in FIR filters can be large, meaning that entering them into
the code is unfeasible. So, this class actually takes in a filename that contains
the list of numbers used in the filter, in single precision format. This means
that the filters can be quickly designed and saved to a file format in Matlab,
and then tested quickly using a C++ Windows application without the need for
any changes in the code of the application, meaning that recompilation is not
necessary. The Matlab code used to create these files and the C++ code

used to read them are shown in Table 6.17 and Table 6.18 respectively.

function count = savearray(array, fname);
%save array to .dat file for reading in a c program
% for example count = savearray(array, “c:\coefs.dat");

fid = fopen(fname, "w");
count = fwrite(fid,array, "float");
fclose(Tid);

Table 6.17 Matlab function used to write FIR coefficients to a file.

#include <fstream.h>
void FastFilter::ReLoadFilter(AnsiString *FName, int FLength)

{

FILE *f;
int c;

memset(OldArray,0,sizeof(float)*fftsize);
memset(Signal,0,sizeof(float)*fftsize);
memset(tconv,0,sizeof(Float)*fftsize);
memset(h,0,sizeof(float)*fftsize);

memset(th,0,sizeof(SCplx)*fftsize);
memset(fSig,0,sizeof(SCpIx)*fftsize);
memset(fconv,0,sizeof(SCplx)*fftsize);

f = fopen(FName->c_str(),"rb™);

if(h)
{
c = fread(h,sizeof(float),FLength,T);
if(c!=FLength)
MessageBox(NULL,"Filter Length Error™,
"Filter Length Error™, NULL);
fclose(T);
}
else
MessageBox(NULL, ""Cannot open file",
"Cannot open file™, NULL);
by
Table 6.18 C++ code used to read in the FIR coefficients from a file.

Now the main signal processing classes have been constructed, the
application can be designed. This example application was designed to test a
number of the optimisation techniques discussed in Chapter 5. However, the
irregular Ambisonic array testing was carried out in Simulink, and is not
implemented in this application in order to keep things a little simpler. It will
be capable of taking in a first order B-format signal (comprised of four wave
files, as this is how most of our B-format material is archived), or one mono
wave file for panning into a B-format signal. If a mono source is used, then
this can be panned using a rotary dial, and if a B-format signal is used, then
the sound field can be rotated using a rotary dial. The user is able to choose
from four different decoding methods:

e Optimised eight speaker regular Ambisonics (using the allpass filters

described above).
e Ambisonics to binaural transform (based on an eight speaker array).
e Ambisonics to two speaker transaural with speaker placements at:
o +-3°

o +/-5°
o +-10°
o]

+/- 20°

o +-30°

¢ Ambisonics to four speaker transaural with front speaker placements
as above, and rear speaker placements at:

o +/-5°

o +-10°

o +-20°
o +-30°
o]

+/- 70°

In addition to these modes of reproduction, a source from the line input can
also be used so that the transaural filters (two speaker algorithm) can be
tested with CD material (both binaural and normal stereo). In order to utilise
all of the transforms discussed above, a total of fifty six filters must be made
available to the application as there must be two versions of each filter. One
sampled at 44.1 kHz and another sampled at 48 kHz. This is another reason

why writing these to separate data files saves time and programming effort.

To facilitate the above formats, a GUI was constructed as shown in Figure
6.14. All of the controls used are standard Windows controls, apart from the
two rotary controls used for altering the mono source panning and b-format
rotation. The code for the creation of the rotary controls will not be discussed

here, however, but can be found in the Appendix.

'L AmbiToall -0 x
Ls

. MuriChannels——SampleR ate
: kono Poz AmbiR otate -
| fie 2 & | O 441kHz = |
Uislsii | Stop | O O 4 8 ' 48kHz
u J ﬂ . . —AmbiE frect .?:ml:ﬂrr;phﬁn
" Ambisonics M | |
ID:'xSparg Papers'Pianc way u:IrI ~ L'DnT n
: & - ive In
ID:'\Sparg Papers'Planck waw |:|r| Ambi->Binaursl = —
[:M\Sparg PapershPiano way AmbisTransx2 | +53
|D:4Sparg Pap et 45
ID:'xSparg FapershFianos way Rl e il T 4 4410
4420
" Steren-»Trans F:jgg]
b —FearFilter
" /-5 o+ 20 4470 = I
O +-10 O+~ 30 3,048

Figure 6.14 Screen shot of simple audio processing application GUI.

In the audio subsystem class, there are two main tasks to be carried out:
¢ Initialisation/deinitialisaton of filter structures and graphical
oscilloscope.
e Process audio function.
In order for to avoid storing fifty six FIR filters in memory at once (and, for that
matter, having to manage fifty six FIR filter structures in the program code),
only the filters currently available for use will be stored in memory. These are:
e 3 Allpass filters for the eight speaker Ambisonic decoder.
e 3 FIR filters for Ambi to two ear binaural processing
e 6 FIR filters for Ambi to four ear binaural processing
e 4 FIR filters for binaural to two speaker transaural processing
e 4 FIR filters for binaural to four speaker transaural processing (8 used
in this algorithm in total).
It is only the crosstalk cancellation filters that need to be updated in real time,
and so, in order to facilitate this, the GUI sets a flag to true whenever a filter
needs changing (that is, the transfilter and rear filter radio boxes are
changed). The audio subsystem checks this flag at the start of every audio

buffer and, if set, reloads the appropriate filter from disk.

A block diagram of the audio function for this application is shown in Figure
6.15.

Check for true Move wave
wave File file
skip flag pointer.
Check input |
type
mbrln onoln Liveln
\ 4 \ 4
Copy four Copy one Deinterlace
wave Files wave File incoming
data to data to ReadBuffer
AmbiBuffer buffer to a 2D
i Samplebuffer
Pan into
AmbiBuffer
\ 4 tereo->
R%}ate B- Check Transx2
ormat »
N decode type
signal
Ambisonics Amb 1 —> IAmb 1 -> Embi—>
Binaural ¥ ransx2 ransx4
3XFIR B- 3x2xFIR B-
format format
\ 4 \ 4 L Z v \ 4
Allpass B- 3xFIR B- 4AXFIR 2- 4x2xFIR 4- 4AXFIR 2-
format format channel channel channel
8 Speaker 2 Speaker 2 Speaker 4 Speaker 2 Speaker
Decode binaural transaural transaural transaural
to 2D array Decode Decode Decode Decode
to 2D array to 2D array to 2D array to 2D array
\ 4
Signifies Re-Interlace
potential into WAVEHDR
filter
update here

Figure 6.15

Block diagram of the applications audio processing function.

The audio processing function is simplified because all of the various

processing algorithms are carried out in separate objects/functions, making

the coding a simpler task, as each function can be taken in isolation. So, for

the final section of coding needed for this example application, the decoder

type switch statement and code is shown in Table 6.19.

switch(Window->m_effect)

{

case 0O:

//8 Speaker Ambisonics

WAP->ProcessAudio(ABuf->W,1.33,1.15);
XAP->ProcessAudio(ABuf->X,1.33,1.15);
YAP->ProcessAudio(ABuf->Y,1.33,1.15);
B2Speakers(Decode, ABuf,Samples,usNoOfChannels,8,0);
break;

case 1: //Ambisonics to Binaural
B2Headphones(ABuf,Samples,usNoOfChannels);
break;

case 2: //Ambisonics to Binaural to Transaural x 2
if(UpdateFilter)

ChooseFilter(SampleRate);
UpdateFilter = false;

¥
B2Headphones(ABuf,Samples,usNoOfChannels);
B2Trans(ABuf,Samples[0],Samples[1],
usNoOfChannels,h1fl ,h2fl ,h1fr,h2fr);
break;
case 3: //Ambisonics to Binaural x 2 to Transaural x 4
if(UpdateFilter)
{
ChooseFilter(SampleRate);
UpdateFilter = false;

}
if(UpdateRearFilter)

ChooseRearFilter(SampleRate);
UpdateRearFilter = false;

}

B2Headphones4 (ABuf,BBuf,Samples,usNoOfChannels);

B2Trans(ABuf,Samples[0],Samples[1],
usNoOfChannels,h1fl ,h2fl ,h1fr,h2fr);

if(usNoOfChannels>=4)

B2Trans(ABuf,Samples[2],Samples[3],

usNoOfChannels,hlrl,h2rl,hlrr,h2rr);

break;

case 4: //Live input to Transaural x 2

if(UpdateFilter)

{
ChooseFilter(SampleRate);
UpdateFilter = false;

}
B2Trans(ABuf,Samples[0],Samples[1],
usNoOfChannels,h1fl ,h2fl ,h1fr, h2fr);

break;
default: //i1if none of the above
B2Speakers(Decode,ABuf,Samples,usNoOfChannels,8,0);
break;
3
Table 6.19 Decoding switch statement in the example application

To look at the code in its entirety, this example application is given in the
Appendix.

6.5 Conclusions

Writing the application in this modular fashion makes the potentially complex

audio processing function much easier to manage and change, if necessary,

and has resulted in a large library of functions and classes that can be used to
create a working multi-channel audio application very quickly.

Due to the use of the fast convolution algorithm, and the utilisation of the Intel
Signal Processing Library (although Intel have now discontinued this, and the
Intel Integrated Performance Primitives must be used instead (Intel, 2003b)),
the implemented surround sound system will run on Intel Pentium Il

processors and faster, even when decoding to eight or more speakers.

Most of the Ambisonic algorithmic testing was carried out in Matlab and
Simulink, but regarding sound quality, the software libraries described in this
Chapter work well and without audio glitches. It must also be noted that using
custom C software was the only way to test and evaluate the Transaural or
Binaural decoders in real-time due to the lack of a real-time (that is, frame
based) overlap add convolution function in Simulink, so this software was
invaluable in the rapid evaluation and testing of the crosstalk cancellation

filters described in Chapter 5.

Chapter 7 - Conclusions

7.1

Introduction

This thesis has identified the following problems with the current state of

surround sound systems (as described in Section 3.4):

1. Although Gerzon and Barton (1992) suggested a number of

optimisation equations for use with irregular speaker arrangements, the
equations are difficult to solve, and so no further research seems to
have been carried out in this area.

At least four speakers must be used to decode a horizontal 1 order
signal, and six speakers must be used to decode a horizontal 2" order
system and although the conversion to binaural has been done by
McKeag & McGrath (1996) initially, and later by Noisternig et al. (2003),
none of this work takes into account the correct presentation of the
lateralisation parameters which has been addressed in point 1, above.
Only a handful of software utilities for the encoding and decoding of
Ambisonic material are available (McGriffy, 2002), and no

psychoacoustically correct decoding software for irregular arrays exists.

These problems have been addressed in this research as follows:

1.

2.

A method of solving the equations given by Gerzon and Barton (1992)
has been demonstrated that simplifies the design of Ambisonic
decoders for irregular speaker arrangements using the velocity and
energy vector criterion as described by Gerzon & Barton (1992) which
also corrects the problem of low and high frequency decoder
discrepancies as shown in section 5.3.

Also, a new method of HRTF analysis has been developed in order to
differentiate between decoders designed using the method described in
point 1, above. This data has then been utilised directly in the design
of multi-channel decoders. This form of decoder is not strictly
Ambisonic, as it does not conform to the Ambisonic definition as
described by Gerzon & Barton (1998) and described in section 3.3.1,

but will allow for the further optimisation of the B-Format decoding

process than is possible using the original velocity/energy vector theory
(i.e. more frequency bands can be used).

3. The use of B-format and higher order Ambisonic encoded signals as a
carrier format for Binaural and Transaural reproduction systems has
been demonstrated. The optimisation of both Binaural and Transaural
techniques through the use of inverse filtering has been formulated,
with the transaural reproduction technique benefiting particularly from
this technique. Also, a new Ambisonic to four speaker Transaural
decode has been formulated and discussed, although sound quality
issues have hindered this work, possibly due to the HRTF set used in
this research, and so work in this area is still ongoing.

4. Software utilities have been implemented for both the design of
decoders for irregular speaker arrays, and the replaying of the
Ambisonic carrier signal over:

a. Headphones

b. Two or four speaker Transaural

c. Multi-speaker, optimised, Ambisonic arrays.
The details of these achievements are discussed below.

7.2 Ambisonics Algorithm development

This project has concentrated on the decoding of a hierarchical based

surround sound format based on the Ambisonic system.

The traditional method of analysing and optimising Ambisonic decoders is
through the use of the energy and velocity vector theories. The algorithmic
development in this report, in the most part, has been centred on the use of
HRTF data in order to analyse and optimise the performance of the Ambisonic
decoders directly. This form of analysis was shown, in Chapter 5, to give

results that backed up the original energy and velocity vector theory.

Figure 7.1 Recommended loudspeaker layout, as specified by the ITU.

That is, if an Ambisonic decoder was optimised using the energy and velocity
vectors, then this result also gave a very good match when analysed using the
HRTF method. A number of interesting observations were made from this
experiment:

e Although a standard ITU five speaker arrangement was used (as
shown in Figure 7.1) in the analysis and optimisation stages, the
velocity vector analysis gave a perfect low frequency match for the
decoder, as shown in Figure 7.2. This was surprising as there is such
a large speaker ‘hole’ at the rear of the rig.

e However, the HRTF analysis showed some error in the rear of the
sound fields reproduction, which seems to show a more realistic result,

as demonstrated in Figure 7.3.

Figure 7.2 Low frequency (in red) and high frequency (in green) analysis of an
optimised Ambisonic decode for the ITU five speaker layout.

LF Time Difference

N
o

N
o

[
o

Time Difference (samples)
o

A
o

1 L L 1 1 1
50 100 150 200 250 300 350 400
HF Amp Difference

Figure 7.3 A graph showing areal source’s (in red) and a low frequency decoded
source’s (in blue) inter aural time differences.

Also, a number of benefits were found due to the inherent increased flexibility
of the HRTF analysis technique when compared to the analysis using the
energy and velocity vectors. Using the HRTF technique, the effect of head
movements could be analysed in a quantitative manner. This can prove
invaluable when trying to differentiate between a number of potentially optimal
sets of decoder coefficients, and significant differences can be observed. For
example, see Figure 7.4 which shows a comparison between two sets of
optimised decoder coefficients (using energy and velocity vector theory) and
their analytical performance under head rotation. One prominent feature of
Figure 7.4 can be seen if the low frequency time difference plots for a source
at 0° are observed. The second coefficients response to head rotation shows
that the time difference stays at roughly zero samples no matter what direction
the listener is facing, indicating that the source is tracking with the listener.
However, the first coefficients low frequency graphs shows that the time
difference of a source at 0° changes in the same way as a real source would,
that is, the source does not track with the listener and more correct cues are

presented.

Coefficient Set 1

[N
[=2=]

Tirme {samples)
o

LF Time Difference : 15 degrees

G Format
Real Source

. L . L L L
100 150 200 250 300 380
HF Amp Difference

Amplitude

5] . . L . L L L
o a0 100 150 200 250 300 380
Source/Decoded Source Angle
LF Time Difference : 45 degrees
40 T T T T T T T
G Format
T A Real Source |4
)
£
g ot .
£
£ mk A
40 . . L . L L L
a0 100 150 200 250 300 380
HF Amp Difference
2 T T T T T T T
G Format
1k Real Source [
@
=
=
=l b
£
=
KRS 4
5] . . L . L L L
o a0 100 150 200 250 300 380
Source/Decoded Source Angle
LF Time Difference : 15 degrees
40 T T T T

Tirne {samples)
.]
=]

[
=]

G Faormat
Real Source

N
[=]
o

1 h L L 1 1
100 150 200 260 300 350

HF Amp Difference

Arnplitude

5] L . 1 n L . 1
] 50 100 160 200 250 300 360
Source/Decoded Source Angle
LF Time Difference : 45 degrees
40 T T T T T T

.
=]

Tirme (samples)
‘ =]

G Format
’ Real Source

! I L L ! I
100 150 200 260 300 350

HF Amp Difference

20k
-40 -
1] a0
2 T
1_
.
g
2 0r
£
T
AR
2 1
0 a0
Figure 7.4

100 150 200 250 300 350
Source/Decoded Source Angle

LF Time Difference : 30 degrees

40 T T T
T W e
=
£
g o 1
£
S anf 1
40 L L . L L . .
a0 100 180 200 2480 300 350
HF Amp Difference
2 T T T T T
1F \
@
=
=
= 0f 1
£
T
At ’ 1
5 L L . L L . .
0 a0 100 180 200 2480 300 350
Source/Decoded Source Angle
LF Time Difference : 60 degrees
40 T T T T T T T
G Format
T ! Real Source ||
=
£
g0 1
£
£ 1
40 L L . L L . .
a0 100 180 200 2480 300 350
HF Amp Difference
2 T T T T T
1
@
=
=
=0 1
£
T
Rl 4
5 L L . L L . .
0 a0 100 180 200 2480 300 350
Source/Decoded Source Angle
LF Time Difference : 30 degrees
40 T T T T T T T
— G Format
T 0 Real Source (|
=
£
g o 1
£ /
= 20 q
40 L n L . L n L
] 50 100 150 200 280 300 350
HF Amp Difference
2 T T T T T T T
— G Format
1 Real Source [
o
=
=
20 1
£
<
1 4
5 L L L I L L L
1] 50 100 180 200 250 300 350
Source/Decoded Source Angle
LF Time Difference : B0 degrees
40 T T T T T T T
T
=
£
s 0
£
E a0
40 L L L I L L L
a0 100 1580 200 250 300 350
HF Amp Difference
2 T T T T T
1
@
=
o=
5 0 b
£
<L
A1 4
5 L n L . L n L
50 100 150 200 280 300 350

Source/Decoded Source Angle

HRTF Simulation of head movement using two sets of decoder

coefficients.

Such observed variations between different decoders’ analytical performance
can give more indications as to how well the decoder will perform than

previous techniques allow.

Although the Vienna decoding optimisation technique (using the velocity and
energy vectors) was proposed in 1992, very little (if any) Vienna decoders
have been calculated and used, mainly due to both the mathematical
complexity in deriving decoder coefficients using this method and the fact that
Gerzon’s paper gave results for a speaker layout very different from the ITU
standard, which was proposed after this paper’s publication.

To this end, software based on a Tabu search algorithm was developed that,
once the five speaker positions were entered, would calculate optimised
decoders automatically. This heuristic mechanism has proved a valuable tool,
and once the program was written to optimise decoders using the Vienna
equations, it could easily be adapted to use the HRTF method, both with and

without head-turning considerations.

A limited set of formal listening tests have been carried out on a number of
decoders optimised using the two techniques described above, as a precursor
to further research in this area. Two tests were carried out:
1. Perceived localisation of a panned, dry, source.
2. Decoder preference when listening to an excerpt of a reverberant
recording.
Although a very small test base was used, decoders optimised using both
energy/velocity vectors and HRTF data directly, via the Tabu search
algorithm, were shown to outperform the reference decoder in both tests. The
best performing decoder in test 1 was an expected result, after observing the
performance of the decoder using HRTF data. However, the decoder that
was chosen unanimously as the preferred choice when auditioning pre-
recorded material was not as easy to predict. Reasons for this may be:
1. The most accurate decoder may not be the one that actually sounds
best, when replaying pre-recorded material, and will be material

dependant.

2. It was noticed that the two best (analytically speaking) performing
optimised decoders exhibited a slightly uncomfortable, in-head, sound
when auditioned in the sweet-spot, which was not apparent with the
preferred decoder. This effect disappeared when the listener moved
slightly off-centre.

This result suggests that when designing decoders artistically, rather than for
spatial accuracy, other parameters may need to be taken into account or be
available to the user so intuitive control of the decoder can be carried out in
order to alter the spatial attributes of the presentation (such as spaciousness
and perceived depth, for example).

Overall the tests were encouraging and showed that the Ambisonic technique
can reproduce phantom images both to the side and behind the listener.
However, a much larger test base should be used to further test the new
decoders, along with more source positions, due to the reasonably subtle

differences between the decoders used in this test (especially for test 1).

It has also been shown how this software can be adapted to optimise higher
order decoders for irregular arrays, as described by Craven (2003) and two
decoders for such a system (using 4" order circular harmonics) are shown
below. One suggested by Craven (2003) and another optimised using the
Tabu search methodology described above.

Decoder optimised using Tabu Search Decoder proposed by Craven (2003)

Plot of 4th Qrder Irregular Decoder
1 : : .

08F 08F

06| 06}

04F 04F
02r 0z2r

ol
02k 02k
o4l 04l
06 06}

Rik:] 3 08+

L

L I L I J L L I I L
-1 05 0 0s 1 -1 05 1} 05 1

Figure 7.5 Energy and Velocity vector analysis of two 4™ order, frequency
independent decoders for an ITU five speaker array. The proposed
Tabu search’s optimal performance with respect to low frequency
vector length and high/low frequency matching of source position can
be seen clearly.

7.2.1 Further Work

This project has raised a number of questions and results that require future
work:

1. Altering the coefficients of decoders (i.e. their virtual microphone
patterns) can drastically alter how reverberant a recording is perceived
to be (as well as altering other spatial attributes). This is probably
related to the amount of anti-phase components being reproduced from
speakers, but needs further work to the relationship between more
complex spatial attributes and decoder coefficients can be formulated..

2. The uncomfortable, ‘in-head’ perception reported by the listening test
subjects when listening to pre-recorded material requires further work
which could be coupled into a study of how optimising decoders affects
its off-centre performance.

3. Altering the optimisation criterion to take into account off-centre
positions could be investigated so determine whether the sweet area of
the system can be increased.

4. A study of the higher order decoders, such as the one proposed by
Craven (2003), or decoders optimised using the Tabu search method,
as described in section 5.3.4, in order to evaluate what effect higher
order components have, and whether an upper limit, with respect to

harmonic order, can be judged.

7.3 Binaural and Transaural Algorithm Development

7.3.1 B-format to Binaural Conversion

The main optimisation method employed using the decoding technologies
based on binaural techniques is that of inverse filtering. This is needed for the
HRTF set used in this report due to the noticeable colouration of the sound
perceived when these HRTFs are used. The inverse filtering technique works
well in improving the quality of these filters, while maintaining their
performance, as the differences between the ears remain the same and the
pinna filtering is likely to be incorrect when compared to that of a listener’s (in
fact, the likelihood of the pinna filtering being the same is extremely slim, if not

impossible). However, the B-format HRTFs created (see Figure 7.6) do give

the impression of a more spatial headphone reproduction, when compared to
listening in conventional stereo, even though these are the anechoic forms of
the filters. This is especially true when listening to sounds recorded in
reverberant fields as the ear/brain system will now receive more coherent
cues than when mixing the B-format to it's stereo equivalent (which is based
on mid and side microphone signals and relies on the crosstalk between the
ears which is destroyed using headphones — see section 3.2.2 on Blumlein
Stereo for more details). Two recordings have been obtained from the
company Serendipity (2000) where recordings of the musicians were made in
Lincoln Cathedral using both a SoundField microphone and a binaural, in-ear
system, simultaneously. Although the binaural recording was not from the
same position (it was carried out by Dallas Simpson, a binaural sound artist,
who tends to move around often during recordings for artistic effect), a
qualitative comparison of the spatial qualities of the two recordings could be
made over headphones.

W filter - time domain W filter - frequency domain
0.4 T T T T T 10 T T T

02r
0

02+

Amplitude
Arnp - dB

04k

0Bk

.
1] 200 400 600 800 1000 1] 05 1 15 2

) w10t
filter - time dornain X filter - frequency domain

0.4 T T T T T 10

02r

021

Amplitude
Arnp - dB

04k

0B+ i 30+

L L L L L L L I L
1] 200 400 600 600 1000 1] 0.8 1 15 2

Y filter - tirme domain Y filter - frequency domain
0.4

0.2r

02t

Amplitude
Arnp - dB

04t

0B+

L L L L L L L L L
0 200 400 600 800 1000 0 0.4 1 14 2
Time - samples Frequency - Hz w10t

Figure 7.6 B-format HRTF filters used for conversion from B-format to binaural
decoder.

This confirmed that the B-format to binaural system seems to perform
favourably when compared to the plain binaural system, although good out of
head effects are still difficult to achieve with both recordings. This is not due
to algorithmic errors, but to the fact that the ear/brain system isn’t receiving
enough coherent cues, and it is interesting as the work by Lake (McKeag &
McGrath, 1997) has shown that out of head images are possible using
headphones alone. However, they do restrict themselves to recording the
impulses of ‘good’ listening rooms for this purpose, with their large hall
impulse responses seeming no more out-of-head than their smaller room
impulses (Lake DSP, 1997).

7.3.2 Binaural to Two Speaker Transaural

Once the B-format to binaural transform has been executed, the resulting two
channels can then be played over a transaural reproduction system,
employing the filter design techniques outlined and discussed in Chapter 5.
The inverse filtered crosstalk cancellation filters perform better when
auditioning standard binaural material when compared to binauralised B-
Format material, with colouration of the sound being noticeable when replying
B-Format in this way, although the colouration is not noticeable when
auditioning either the B-Format to binaural, or binaural to crosstalk cancelled

material in isolation.

As mentioned in Chapter 5, pinna errors seem to worsen the system’s
accuracy and, to this end, the Ambiophonics system employs a pinna-less
dummy head in the calculation of the inverse filters for the crosstalk

cancellation, and in the recording of the event itself (Glasgal, 2001).

7.3.3 Binaural to Four Speaker Transaural

The binaural to four speaker transaural system has an interesting effect. The
testing of this system has mainly been on the front and rear pair of a standard
5.1 setup as this speaker array is readily available for quick testing (that is,
speakers at +/- 30° and +/- 110%). The B-format to four speaker binaural filters
are shown in Figure 7.7 where an overall level difference can be seen

between the two sets of filters. This is due to the front decode containing the

combined response of five speakers and the rear decode containing only the
combined response of three, which is due to the virtual speakers at +/- 90°
being assigned to the front hemisphere decoder (a regular eight speaker array

was simulated).

When carrying out A/B comparisons between the two speaker and four
speaker systems (note, that the sound colouration problems mentioned above
are still present), a number of points are noticeable:
e The four speaker crosstalk cancelled decode produces images further
away from the listener.
e The four speaker decode also has a more open, surrounding sound (as
one would expect from adding the rear speakers).
e The localisation seems slightly clearer and more precise (although this
seems to be a little dependent on the type of material used in testing).

W filters - Tirne Domain W filters - Fraguency Dornain

— Front
— Back

02

0.4

Amplitude
Arnplitude - 4B

-08

L L I L I . I I L L
200 400 600 800 1000 1] 05 1 15 2

o

* filters - Time Dormain #filters - Frequency Domain
0.4 T T T T T 10

}

g
Epe 2
£ =
< £
Ed
08 1 1 I 1 | 40 | | | 1
0 200 400 500 800 1000 0 0s 1 15 2
10t
¥ filters - Time Domain ¥ filters - Frequency Domain g
0.4 T T T T T 10 T T T
e
£ g2t E
£ = -
< £
L
08 40
u] 200 400 600 800 1000 1] 05 1 18 2
Time - samples Frequency - Hz w1t
Figure 7.7 B-format HRTF filters used for conversion from B-format to binaural
decoder.

Much of this is probably due to the increase in localisation cue consistency

associated with splitting the front and rear portions of the decode and

reproducing this from the correct portion of the listening room (that is, the rear
speaker feeds come from behind and the front portion of the decode comes
from in front), although the ‘moving back’ of the material is an interesting
effect: it is not yet certain whether it is a ‘moving back’ of the sound stage or a
more realistic sense of depth that is being perceived. It must also be noticed
that this effect only occurs when the rear speakers are engaged. Thatis, itis
not noticed when just changing the front pair of speakers’ filters from five to
eight speaker virtual decodes, meaning that it is not due to the ‘folding back’
of the rear speakers into the frontal hemisphere in the two speaker, eight
virtual speaker, decode. It should also be noted that because the Ambisonic
system is designed so that the sum of the speaker outputs at the ear of the
listener (in the centre of the array) produce the correct psychoacoustic cues
(as far as is possible), this makes it particularly suited to the
binaural/transaural playback system, as this should make the system less
dependent on the quality of the actual speaker simulation. This is in contrast
to the simulation of the five speakers of the 5.1 system over headphones

(such as the Lake developed Dolby Headphones system (Lake DSP, 1997)).

One other promising feature of the four speaker crosstalk cancellation system
is that if the speaker span described above is used (+/- 30° and +/- 110°),
although the most ‘correct’ listening experience is found in the middle of the
rig, the system still produces imaging outside of this area. This is in contrast
to the single +/- 3° speaker placement that, although possessing very good
imaging in the sweet area, has virtually no imaging off this line. This would
make this setup more desirable for home use where other listeners could still
get a reasonable approximation to the sound field, but with the central listener
experiencing an improved version. However, it must also be noted that, as
mentioned in chapter 5, the virtual imaging of the filters created for +/- 30° is
not as accurate as those created for a smaller span (such as +/- 3%, although
its frequency response does not lack (or boost depending on the level of

inverse filtering used) lower frequencies as much.

7.3.4 Further Work

A number of optimisations have been suggested for the crosstalk cancellation
system, where much less work has been carried out when compared to
standard binaural audio reproduction systems, mostly striving for the
minimisation of the use of the regularisation parameter as described by Kirkby
et al. (1999) and Farina et al. (2001). This is because, although regularisation
accounts for any ill-conditioning that the system may possess, it is at the
expense of crosstalk cancellation accuracy. This can have the effect of the
images pulling towards the speakers at these frequencies (Kirkby et al, 1999).
In this report a number of inverse filtering steps were taken where single
inversion was used to reduce regularisation, and double inversion used to
remove the need for regularisation completely. However, this has the effect of
altering the frequency response of the crosstalk cancelled system quite
noticeably when the speakers are set up in an optimum configuration (that is,
closely spaced). Nevertheless, this is still not the whole picture. The single
inverted filters show (mathematically speaking) that no bass boost is
perceived by the listener, although it is noticed in reality, and the double
inverse filtering takes away too much bass response. A filter part way
between these two extremes is needed, and this is the next step in the
development of the crosstalk cancellation filter structures. Also, much work is
still needed in how it is that the listener actually perceives the sound stage of
a crosstalk cancelled system as a number of interesting ‘features’ have been
noted during informal listening tests.

¢ When listening to straight binaural pieces (where the crosstalk cancellation
system still works best), good distance perception is apparent, with
sources able to appear closer and further away than the speakers actually
are.

e Room reflections can have an interesting effect on the playback. If the two
speakers are against the wall, then the perceived material is, for the most
part (see above), located in a semi-circle around the front of the listener.
However, if the speakers are moved inwards, then the material is generally
still perceived towards the back of the room. In this way, it is as if the
room is superimposed onto the recorded material.

These are two situations that need further investigation, as they may hold
more clues as to our distance perception models, one attribute that can be

difficult to synthesise in audio presentations.

Overall, it is the original Ambisonic system that sounds the most natural,
although much of this could be attributed to the filters used in the HRTF
processing. With filters recorded in a non-anechoic room and a better
speaker/microphone combination it may be possible to achieve a more out-of-
head experience, especially if accompanied with some form of head-tracking,
where the rotation could be carried out using a standard B-format
transformation, removing the need for complex dynamic filter changing in real-
time (where careful interpolation is needed to eliminate audible artefacts when
moving between the different HRTF filter structures) as recently demonstrated
by Noisternig et al (2003).

Chapter 8 - References

Alexander, R.C. (1997) Chapter Three — The Audio Patents. Retrieved: May,

2003, from http://www.doramusic.com/chapterthree.htm, Focal Press.

Atal, B.S. (1966) Apparent Sound Source Translator. US Patent 3236949.

Bamford, J.S. (1995) An Analysis of Ambisonic Sound Systems of First and
Second Order, Master of Science thesis, University of Waterloo, Ontario,

Canada.

Begault, D.R. (2000) 3-D Sound for Virtual Reality and Multimedia, Retrieved:
March, 2003, from http://human-
factors.arc.nasa.gov/inh/spatial/papers/pdfs db/Begault 2000 3d Sound Mu

[timedia.pdf, NASA.

Berg, J., Rumsey, R. (2001) Verification and Correlation of Attributes Used
For Describing the Spatial Quality of Reproduced Sound. Proceedings of the
19" International AES Conference, Germany. p. 233 — 251.

Berkhout, A.J. et al. (1992) Acoustic Control by Wave Field Synthesis. Journal
of the AES, Vol. 93, Num. 5, p. 2765 — 2778.

Berry, S. & Lowndes V. (2001) Deriving a Memetic Algorithm to Solve Heat
Flow Problems. University of Derby Technical Report.

Blauert, J. (1997) Spatial Hearing — The Psychophysics of Human Sound

Localization, MIT Press, Cambridge.

Blumlein, A. (1931) Improvements in and relating to Sound-transmission,
Sound-recording and Sound-reproducing Systems, British Patent Application
394325.

Borland Software Corporation (2003) C++ Builder Studio Main Product Page.
Retrieved: August, 2003, from http://www.borland.com/cbuilder/index.html.

Borwick, J. (1981) Could ‘Surround Sound’ Bounce Back. The Gramophone,
February, p 1125-1126.

Brown, C. P. & Duda, R. O. (1997) An Efficient HRTF Model for 3-D Sound,
Retrieved: April, 2003, from
http://interface.cipic.ucdavis.edu/PAPERS/Brown1997(Efficient3dHRTFModel

S).pdf.

CMedia (N.D.) An Introduction to Xear 3D™Sound Technology, Retrieved:
July, 2004 from http://www.cmedia.com.tw/doc/Xear%203D.pdf

Craven, P.G., Gerzon, M.A. (1977) Coincident Microphone Simulation
Covering Three Dimensional Space and Yielding Various Directional Outputs,
U.S. Patent no 4042779.

Craven, P. (2003), Continuous Surround Panning for 5-speaker Reproduction,

h
AES 24t International Conference, Banff, Canada.

Daniel, J. et al. (2003) Further Investigations of High Order Ambisonics and
Wavefield Synthesis for Holophonic Sound Imaging. 114™ AES Convention,
Amsterdam. Preprint 5788

De Lancie, P. (1998) Meridian Lossless Packing:Enabling High-Resolution
Surround on DVD-Audio. Retrieved: July, 2004 from http://www.meridian-

audio.com/p mlp mix.htm.

Dolby Labs (2002) A history of Dolby Labs. Retrieved: June, 2003, from
http://www.dolby.com/company/is.ot.0009.History.08.html.

Dolby Labs (2004) Dolby Digital — General. Retreived: July, 2004 from
http://www.dolby.com/digital/diggenl.html.

Duda (1993) Modeling Head Related Transfer Functions. Preprint for the 27"
Asilomar Conference on Signals, Systems & Computers, Asilomar, October

31% — November 3.

Farina, A. et al. (2001) Ambiophonic Principles for the Recording and
Reproduction of Surround Sound for Music. Proceedings of the 19" AES
International Conference of Surround Sound, Schloss Elmau, Germany, p. 26-
46.

Farino A., Ugolotti E. (1998) Software Implementation of B-Format Encoding
and Decoding. Preprints of the 104th International AES Convention,
Amsterdam, 15 — 20 May.

Farrah, K. (1979a) Soundfield Microphone — Design and development of

microphone and control unit. Wireless World, October, p. 48-50.

Farrar, K. (1979b) Soundfield Microphone. Parts 1 & 2. Wireless World,
October & November. p. 48 — 50 & p. 99 — 103

Kramer, L. (N.D.) DTS: Brief History and Technical Overview. Retrieved: July,
2004 from

http://www.dtsonline.com/media/uploads/pdfs/history,whitepapers,downloads.

pdf.

Furse, R. (n.d.) 3D Audio Links and Information. Retrieved: May, 2003, from
http://www.muse.demon.co.uk/3daudio.html.

Gardner B., Martin K. (1994) HRTF Measurements of a KEMAR Dummy-
Head Microphone, Retrieved: May, 2003, from
http://sound.media.mit.edu/KEMAR.html.

Gerzon, M. A. (1974a) Sound Reproduction Systems. Patent No. 1494751.

Gerzon, M. A. (1974b) What's wrong with Quadraphonics. Retrieved: July,
2004 from
http://www.audiosignal.co.uk/What's%20wrong%20with%20quadraphonics.ht

ml

Gerzon, M.A. (1977a) Sound Reproduction Systems. UK Patent No.
1494751,

Gerzon, M. A. (1977b) Multi-system Ambisonic Decoder, parts 1 & 2.
Wireless World, July & August. p. 43 —47 & p. 63 —73.

Gerzon, M.A. (1985) Ambisonics in Multichannel Broadcasting and Video.
Journal of the Audio Engineering Society, Vol. 33, No. 11, p. 851-871.

Gerzon, M. A. & Barton, G. J. (1992) Ambisonic Decoders for HDTV.
Proceedings of the 92nd International AES Convention, Vienna. 24 — 27
March. Preprint 3345.

Gerzon, M.A. (1992a) Optimum Reproduction Matrices for Multispeaker
Stereo. Journal of the AES, Vol. 40, No. 7/8, p. 571 — 589.

Gerzon M. (1992b) Psychoacoustic Decoders for Multispeaker Stereo and
Surround Sound. Proceedings of the 93rd International AES Convention, San

Francisco. October Preprint 3406

Gerzon, M.A. (1992c) General Methatheory of Auditory Localisation. 92nd
International AES Convention, Vienna, 24 — 27 March Preprint 3306.

Gerzon, M.A. (1994) Application of Blumlein Shuffling to Stereo Microphone
Techniques. Journal of the AES, vol. 42, no. 6, p. 435-453.

Gerzon, M.A, Barton, G.J. (1998) Surround Sound Apparatus. U.S. Patent
No. 5,757,927

Glasgal, R. (2001) The Ambiophone - Derivation of a Recording Methodology
Optimized for Ambiophonic Reproduction. Proceedings of the 19" AES

International Conference, Germany, 21 — 24 June. p. 13-25.

Glasgal, R. (2003a) The Blumlein Conspiracy. Retrieved: August, 2003, from
http://www.ambiophonics.org/blumlein conspiracy.htm.

Glasgal, R. (2003b) AmbioPhonics — Chapter 4, Pinna Power. Retrieved:
June, 2003, from

http://www.ambiophonics.orqg/Ch 4 ambiophonics 2nd edition.htm.

Glasgal, R. (2003c) Ambiophonics - The Science of Domestic Concert Hall

Design. Retrieved: May, 2003, from http://www.ambiophonics.org.

Gulick, W.L. et al. (1989) Hearing — Physiological Acoustics, Neural Coding,

and Psychoacoustics, Oxford University Press, New York.

Huopaniemi, J. et al (1999) Objective and Subjective Evaluation of Head-
Related Transfer Function Filter Design. Journal of the Audio Engineers
Society, Vol 47, No. 4, p218-239

Inanaga, K. et al. (1995) Headphone System with Out-of-Head Localisation
Applying Dynamic HRTF. 98™ International AES Convention, Paris, 25 — 28
February. Preprint 4011.

Intel Corporation (2003a), Intel Corporation. Retrieved: June, 2003, from

http://www.intel.com.

Intel Corporation (2003b) Intel® Software Development Projects. Retreived:
August, 2003, from
http://www.intel.com/software/products/ipp/ipp30/index.htm.

Ircam (2002) Carrouso. Retrieved: July, 2004, from
http://www.ircam.fr/produits/technologies/CARROUSO-e.html

Kahana, Y. et al (1997). Objective and Subjective Assessment of Systems for
the Production of Virtual Acoustic Images for Multiple Listeners. 103 AES
Convention, New York, September. Preprint 4573

Kay, J. et al. (1998) Film Sound History — 40’s. Retrieved: August, 2003, from

http://www.mtsu.edu/~smpte/forties.html.

Kientzle, T. (1997) A Programmer’s Guide to Sound, Addison Wesley. New
York.

Kirkeby, O. et al. (1999) Analysis of lll-Conditioning of Multi-Channel
Deconvolution Problems. IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, New York. 17 — 20 October

Kleiner, M. (1978) Problems in the Design and Use of ‘Dummy-Heads'.
Acustica, Vol. 41, p. 183-193.

Lake DSP (1997) Lake DSP Acoustic Explorer CD/CD-ROM v2, Lake DSP
Pty. Ltd.

Leese, M. (n.d.) Ambisonic Surround Sound. Retrieved: August, 2003, from

http://members.tripod.com/martin leese/Ambisonic/

Leitner et al (2000) Multi-Channel Sound Reproduction system for Binaural
signals — The Ambisonic Approach. Proceedings of the COST G-6
Conference on Digital Audio Effects (DAFX-00., Verona, Italy, December, p.
277 — 280.

Lopez, J.J., Gonzalez, A. (2001) PC Based Real-Time Multichannel Convolver
for Ambiophonic Reproduction. Proceedings of the 19" International

Conference of Surround Sound, Germany, 21 — 24 June. p. 47-53.

Mackerson, P. et al. (1999) Binaural Room Scanning — A New Tool for
Acoustic and Psychoacoustic Research. Retrieved: May, 2003, from
http://www.irt.de/wittek/hauptmikrofon/theile/BRS DAGA 1999 Paper.PDF.

Malham, D. (1998) Spatial Hearing Mechanisms and Sound Reproduction.
Retrieved: June,2003, from

http://www.york.ac.uk/inst/mustech/3d audio/ambis2.htm.

Malham, D. (2002) Second and Third Order Ambisonics. Retrieved: August,
2003, from http://www.york.ac.uk/inst/mustech/3d _audio/secondor.html.

Martin, G., et al. (2001) A Hybrid Model For Simulating Diffused First
Reflections in Two-Dimensional Synthetic Acoustic Environments.
Proceedings of the 19" International AES Conference, Germany. p. 339 —
355.

Mason, R., et al (2000) Verbal and non-verbal elicitation techniques in the
subjective assessment of spatial sound reproduction. Presented at 109th AES

Convention, Los Angeles, 22-25 September. Preprint 5225.

McGriffy, D (2002) Visual Virtual Microphone. Retrieved: August, 2003, from,
http://mcqgriffy.com/audio/ambisonic/vvmic/.

McKeag, A., McGrath, D. (1996) Sound Field Format to Binaural Decoder with
Head-Tracking. 6" Austrailian Regional Convention of the AES, Melbourne,
Austrailia. 10 — 12 September. Preprint 4302.

McKeag, A., McGrath, D.S. (1997) Using Auralisation Techniques to Render
5.1 Surround To Binaural and Playback. 102" AES Convention in Munich,
Germany, 22 — 25 March. preprint 4458

Microphone Techniques (n.d.). Retrieved: August, 2003, from
http://www.mhsoft.nl/MicTips.asp,

Microsoft Corporation (2003), Retrieved: June 2003, from

http://www.microsoft.com/windows/.

MIT Media Lab (2000) MPEG-4 Structured Audio (MP4 Structured Audio).
Retrieved: August, 2003, from http://sound.media.mit.edu/mpeqg4/.

Moller, H. et al. (1996) Binaural Technique: Do We Need Individual
Recordings? Journal of the AES, Vol. 44, No. 6, p. 451 — 468.

Moller, H. et al. (1999) Evaluation of Artificial Heads in Listening Tests. J.
Acoust. Soc. Am. 47(3), p. 83-100.

Multi Media Projekt Verdi (2002) Design of the Listening Test. Retrieved:
July, 2004 from http://www.stud.tu-ilmenau.de/~proverdi/indexen.html.

Nelson, P.A. et al. (1997) Sound Fields for the Production of Virtual Acoustic
Images. Journal of Sound and Vibration, Vol. 204(2), p. 386-396.

Nielsen, S. (1991) Depth Perception — Finding a Design Goal for Sound
Reproduction systems. 90" AES Convention, Paris. Preprint 3069.

Noisternig, M. et al. (2003) A 3D Ambisonic Based Binaural Sound
Reproduction System. Proceedings of the 24™ International Conference on

Multichannel Audio, Banff, Canada. Paper 1

Orduna, F. et al. (1995) Subjective Evaluation of a Virtual Source Emulation
System. Proceedings of Active 95, Newport Beach, USA. P. 1271 — 1278.

Paterson-Stephens I., Bateman A. (2001) The DSP Handbook, Algorithms,

Applications and Design Techniques, Prentice Hall. Harlow

Petzold, C. (1998) Programming Windows — The definitive guide to the Win32
API, Microsoft Press, New York.

Poletti, M. (2000) A Unified Theory of Horizontal Holographic Sound Systems.
Journal of the AES, Vol. 48, No. 12, p. 1155 — 1182.

Pulkki, V. (1997) Virtual sound source positioning using vector base amplitude

panning. Journal of the Audio Engineering Society, Vol. 45, No. 6 p. 456-466.
Rossing T. (1990) The Science of Sound, Addison Wesley. Reading

Rumsey, F., McCormick, T. (1994) Sound & Recording — an introduction,
Focal Press. Oxford

Ryan, C. and Furlong, D. (1995) Effects of headphone placement on
headphone equalisation for binaural reproduction. 98™ International
Convention of the Audio Engineering Society, Paris, 25 — 28 February.
preprint no. 40009.

Savioja, L (1999) Air Absorption. Retrieved: July, 2004, from
http://www.tml.hut.fi/~las/publications/thesis/Air Absorption.html.

Schillebeeckx, P. et al. (2001) Using Matlab/Simulink as an implementation
tool for Multi-Channel Surround Sound. Proceedings of the 19th International
AES conference on Surround Sound, Schloss Elmau, Germany, 21 — 25 June.
p. 366-372.

Serendipity (2000) SERENDIPITY- Audio, Music, Recording and Mastering
Studio. Retrieved: August, 2003, from http://www.seripity.demon.co.uk/.

Sibbald, A. (2000) Virtual Audio for Headphones. Retrieved: July 2004, from

http://www.sensaura.com/whitepapers/pdfs/devpc007.pdf

Sontacchi, A., Holdrich, R. (2003) Optimization Criteria For Distance Coding in
3D Sound Fields. 24™ International AES Conference on Multichannel Audio,
Banff. Paper 32.

SoundField Ltd. (n.d. a) SP451 Surround Sound Processor. Retrieved:
August, 2003, from http://www.soundfield.com/sp451.htm.

SoundField Ltd. (n.d. b). Retrieved: August, 2003, from

http://www.soundfield.com.

Spikofski, G., Fruhmann, M. (2001) Optimization of Binaural Room Scanning
(BRS): Considering inter-individual HRTF-characteristics. In: Proceedings of
the AES 19" International Conference, Schloss Elmau, Germany 21 - 25
June. p.124-134.

Steinberg, J., Snow, W. (1934) Auditory Perspective — Physical Factors. In:
Electrical Engineering, January, p.12-17.

Surround Sound Mailing List Archive (2001), Retrieved: June, 2003, from

http://www.tonmeister.de/foren/surround/ssf archiv/SSF Diskussion 2001 12

2.pdf, p. 5.

Sydec Audio Engineering (2003), Retrieved: June 2003, from
http://www.sydec.be.

The MathWorks (2003), Retrieved: June 2003, from

http://www.mathworks.com/.

Theile, G. (2001) Multi-channel Natural Music Recording Based on Psycho-
acoustic Principles. Extended version of the paper presented at the AES 19"
International Conference. Schloss Elmau, Germany, 21 — 25 June. Retrieved:
May, 2003, from http://www.irt.de/IRT/FuE/as/multi-mr-ext.pdf.

University of Erlangen-Nuremberg (N.D), Wave Field Synthesis and Analysis,
Retrieved: July, 2004 from
http://www.Int.de/LMS/research/projects/WFS/index.php?lang=eng

Verheijen, E.N.G. et al. (1995) Evaluation of Loudspeaker Arrays for Wave
Field Synthesis in Audio Reproduction. 98™ International AES Convention,
Paris, 25 — 28 February. preprint 3974.

Vermeulen, J. (n.d.) The Art of Optimising — Part 1. Retrieved: August, 2003,
from http://www.ctxweb.net/modules.php?name=News&file=article&sid=630.

Wiggins, B. et al. (2001) The analysis of multi-channel sound reproduction
algorithms using HRTF data. 19th International AES Surround Sound
Convention, Schloss Elmau, Germany, 21 — 24 June. p. 111-123.

Wiggins, B. et al. (2003) The Design and Optimisation of Surround Sound
Decoders Using Heuristic Methods. Proceedings of UKSim 2003, Conference
of the UK Simulation Society p.106-114.

Wightman, F.L. and Kistler, D.J. (1992). The Dominant Role of Low-
Frequency Interaural Time Differences in Sound Localization. Journal of the
Acoustical Society of America 91(3), p. 1648-1661

Zacharov, N. et al. (1999) Round Robin Subjective Evaluation of Virtual Home
Theatre Sound Systems At The AES 16" International Conference.
Proceedings of the 16™ AES International Conference, Finland. p. 544 — 553,

Zwicker, E., Fastl, H. (1999) Psychoacoustics — Facts and Models, Springer.

Berlin.

Chapter 9 - Appendix

In this appendix, example code is given for selected programs used in this
investigation. A list of all code is not given due to the extensive amount of C
and Matlab code used during this research, but significant programs are given
so as to aid in the reproduction of the programs that are not present. The
Matlab script code is given in the first part of this appendix, followed by two
programs written in C++ for the Windows operating system.

9.1 Matlab Code

9.1.1 Matlab Code Used to Show Phase differences created in
Blumlein’s Stereo

%Blumlien Stereo Phase differences
%Showing amplitude differences at a
%speaker converted to phase differences
%at the ears of a listener

N 1024 ;
fs = 1024;
n=0:N;
T 2;

I o

%Create Left and Right Speaker Feeds
%Along with phase shifted versions
Left = sin(fF*2*pi*n/fs);

Leftd sin(f*2*pi*n/fs - pi/2);

Right = 0.3 * sin(f*2*pi*n/fs);

Rightd = 0.3 * sin(f*2*pi*n/fs - pi/2);

%Sum Example Signals arriving at Ears
LeftEar = Left + Rightd;
RightEar = Right + Leftd;

%Plot Speaker Signals
figure(1)

clf;

subplot(2,1,1)
plot(Left);

hold on
plot(Right,"r");
legend("Left Speaker-”,"Right Speaker®);
ylabel ("Amplitude®);
xlabel ("Samples®);
axis(JON -1.2 1.2 D;

%Plot Signals Arriving at Ears
subplot(2,1,2)

plot(LeftEar);

hold on;

plot(RightEar,"r");
legend("Left Ear®,"Right Ear");

ylabel ("Amplitude®);
xlabel ("Samples*®);
axis(JON -1.2 1.2 1);

9.1.2 Matlab Code Used to Demonstrate Simple Blumlein Spatial
Equalisation

%Example of Blumleins Spatial Equalisation
%used to align auditory cues in Stereo

angle=0:2*pi/127:2*pi;

Sum = sin(angle);
Dif = cos(angle);
Left = (Sum - Dif)/1.13;
Right = (Sum + Dif)/1.13;

%Angle Offset used in spatial EQ
offset = pi/16;

%Derive Left and Right Speaker feeds for both

%Low and High frequencies

SumL (sin(pi/4-offset)*Sum+cos(pi/4-offset)*DifT);
SumH (sin(pi/4)*Sum+cos(pi/4)*Dif);

%Plot Mid and Side Signals
figure(1)

clf;

polar(angle,abs(Sum));

hold on

polar(angle,abs(Dif),"r");
legend("Mid", "Side");

FSize = 16;

Co = 0.4;

text(Co,0,"+", "FontSize" ,FSize);
text(-Co,0,"-", "FontSize" ,FSize+4);
text(0,-Co, "+", "FontSize" ,FSize);
text(0,Co,"-","FontSize" ,FSize+4);

%Plot M+S and M-S

figure(2)

clf;

polar(angle,abs(Right));

hold on

polar(angle,abs(Left),"r");
legend("Sum of MS","Difference of MS");
FSize = 16;

Co = 0.5;
text(0,Co, "+", "FontSize" ,FSize);
text(0,-Co,"-", "FontSize" ,FSize+4);
text(Co,0,"+","FontSize" ,FSize);
text(-Co,0,"-", "FontSize" ,FSize+4);

%Plot Low and High Frequency Versions
%of the Left and Right Speaker Feeds
figure(3)

clf;

polar(angle,abs(SumL));

hold on;

polar(angle,abs(SumH), "r");

legend("Low Frequency Pickup®,“High Frequency Pickup®);

9.1.3 Matlab Code Used To Plot Spherical Harmonics

%Plot Oth and 1st Order Spherical Harmonics
%Reolution

N=32;

%Setup Angle Arrays

Azim = 0:2*pi/(N-1):2*pi;

Elev = —pi/2:pi/(N-1):pi/2;

%Loop Used to create Matrices representing X,Y,Z and
%Colour Values for W,X,Y and Z B-format signals
a=1;
b=1;
for i=2:N
for j=2:N
r=1/sqrt(2);
[WX(a ,b),wy(a ,b),wz¢a .,b)]= .
sphZCart(AZ|m(|—1) Elev(j- 1) 1/sqrt(2));
[WX(at+1l,b),wy(at+tl,b),wWwz(atl,b)H]= .
sph2cart(Azim(i-1),Elev(g), 1/sqrt(2));
[WX(at+2,b),wy(a+2,b),Wz(a+2,b)H]= .
sph2cart(Azim(i),Elev(Q), 1/sqrt(2));
[WX(a+3,b),Wy(a+3,b),wz(a+3,b)]= .
sph2cart(Azim(i),Elev(-1), 1/sqrt(2));
[WX(a+4,b),Wy(a+4,b),wz(a+4,b)H]= .
sph2cart(Azim(i-1),Elev(j-1), 1/sqrt(2));
if(r>=0)
WC(:,b)=[1;1;1;1;0];
else
WC(:,b)=[0;0;0;0;0];
end

r=cos(Azim(i-1))*cos(Elev(-1));

XX(a ,b).,X¥Y(a ,b),Xz¢a ,b)I= ...
sph2cart(Azim(i-1),Elev(j-1),abs(r));

r=cos(Azim(i-1))*cos(Elev(}));

[XX(atl,b),XY(a+l,b),XzZ(atl,b)]1= ...
sph2cart(Azim(i-1),Elev().,abs(r));

r=cos(Azim(i))*cos(Elev(j));

[XX(a+2,b),XY(a+2,b),XzZ(a+2,b)= ...
sph2cart(Azim(i),Elev().,abs(r));

r=cos(Azim(i))*cos(Elev(j-1));:

[XX(a+3,b),XY(a+3,b),Xz(a+3,b D)1= ...
sph2cart(Azim(i),Elev(-1),abs(r));

r=cos(Azim(i-1))*cos(Elev(j-1));

[XX(at4,b),XY(a+4,b),Xz(at4,b D)1= ...
sph2cart(Azim(i-1) ,Elev(j-1),abs(r));

if(r>=0)
XC(=,b)=[1;1;1;1;0];

else
XC(:,b)=[0;0;0;0;0];

end

r=sin(Azim(i-1))*cos(Elev(j-1));

[YX(a ,b),YY(a ,b),Yz(a ,b)]= ...
sph2cart(Azim(i-1),Elev(j-1),abs(r));

r=sin(Azim(i-1))*cos(Elev(}));

[YX(atl,b),YY(a+1l,b),YzZ(atl,b)]= ...
sph2cart(Azim(i-1) ,Elev(),abs(r));

r=sin(Azim(i))*cos(Elev(j));

[YX(at2,b),YY(a+2,b),Yz(a+t2,b)H]= ...
sph2cart(Azim(i),Elev(),abs(r));
r=sin(Azim(i))*cos(Elev(j-1));
[YX(at3,b),YY(a+3,b),YzZ(a+3,b)]1= ...
sph2cart(Azim(i),Elev(-1),abs(r));
r=sin(Azim(i-1))*cos(Elev(-1));
[YX(at4,b),YY(a+4,b),YZ(at4,b)H]= ...
sph2cart(Azim(i-1),Elev(-1),abs(r));
iT(r>=0)
YC(:,b)=[1;1;1;1;0];
else
YC(:,b)=[0;0;0;0;0];
end

r=sin(Elev(-1));

[zZX(a ,b),z¥(a ,b),Zz(a ,b)]I= ...
sph2cart(Azim(i-1),Elev(j-1),abs(r));

r=sin(Elev(g)):;

[ZX(at1l,b),zY(a+1l,b),ZZ(at+tl,b)= ...
sph2cart(Azim(i-1) ,Elev().,abs(r)):

r=sin(Elev(}));

[zZX(a+t2,b),zY(a+2,b),zZz(a+2,b)H]= ...
sph2cart(Azim(i),Elev(),abs(r));

r=sin(Elev(j-1));

[ZX(at3,b),zY(a+3,b),zZz(a+3,b)= ...
sph2cart(Azim(i),Elev(-1),abs(r));

r=sin(Elev(-1));

[ZX(at4,b),zY(a+4,b),ZZ(a+4,b D))= ...
sph2cart(Azim(i-1),Elev(j-1),abs(r));

iT(r>=0)
ZC(:,b)=[1;1;1;1;0];

else
ZC(:,b)=[0;0;0;0;0];

end

b=b+1;

end
end
%Plot W
figure(1)
FilI3(WX,WY,WZ,WC);
light;
lighting phong;
shading interp;
axis equal
axis off;
view(-40,30);
axis([-1 1 -1 1 -1 1]);
%Plot X
figure(2)
FilI3(XX,XY,XZ,XC);
light;
lighting phong;
shading interp;
axis equal
axis off;
view(-40,30);
axis([-1 1 -1 1 -1 1]);
%Plot Y
figure(3)
Fill3(YX,YY,YZ,YC);
light;

lighting phong;

shading interp;

axis equal

axis off;

view(-40,30);

axis([-1 1 -11 -1 1]);
%Plot Z

figure(4)
fill3(zX,zY,zz,Z2C);
light;

lighting phong;

shading interp;

axis equal

axis off;

view(-40,30);

axis([-1 1 -11 -1 1]);

9.1.4 Code used to plot A-format capsule responses (in 2D) using
oversampling.

%scaling

sc=1.5;

%oversampling

fsmult = 64;

%number of capsules
noofcaps = 4;

%sampling frequency

fs = 48000 * fsmult;
h=Figure(1)

hi=Figure(3)

set(h, "DoubleBuffer”,"on");
set(hl, "DoubleBuffer”®,"on");
i=0;

%capsule spacing

spacing = 0.012;
%resolution

N=360*32;
n=0:2*pi/(N-1):2*pi;

n=n-;

AOffset = 2*pi/(2*noofcaps) :2*pi/(noofcaps):2*pi;
POffsetx = spacing * cos(AOffset);
POffsety = spacing * sin(-AOffset);

xplot = zeros(N,noofcaps);

yplot = zeros(N,noofcaps);

for a=1:noofcaps
CPolar = 0.5*(2+cos(n+AOffset(a)));
[xplot(:,a),yplot(:,a)] = pol2cart(n,CPolar);
xplot(:,a) =xplot(:,a) + POffsetx(a);
yplot(:,a) =yplot(:,a) + POffsety(a);

end

%For loop uncomment out next line and comment out
%the SignalAngle = 5.._.
for SignalAngle = 0:2*pi/32:2*pi;
%SignalAngle = deg2rad(0);
i=i+l;

figure(1)

clf
hold on;

plot(xplot,yplot, "LineWidth",1.5);

signalx = cos(SignalAngle) * 2;

signaly = sin(SignalAngle) * 2;
plot([signalx,0],[signaly,0]);

axis equal;

title("Polar Diagram of A-Format and signal direction®);

Gainlndex = round(SignalAngle*(N-1)/(2*pi))+1;
pos = 1;
for a=1:noofcaps

if a > noofcaps/4 & a <= 3 * noofcaps 7/ 4

pos = -1;
else

pos = 1;
end

plot(xplot(Gainindex,a),yplot(Gainlndex,a), "p", "LineWidth",3);
Gain(a) = sqrt((xplot(Gainlndex,a)-POffsetx(a))™2 ...
+ (yplot(Gainlndex,a)-POffsety(a))"2);
Gain8(a) = (sqrt((xplot(Gainlndex,a)-POffsetx(a))"2 ...
+ (yplot(Gainlndex,a)-POffsety(a))”2)) * pos;
end
axis([-sc,sc,-sc,sc]);

Delay = spacing - (spacing * Gain);

SDelay = (Delay*fs/340) + (spacing*fs/340) + 1;
FilterBank = zeros(round(2*spacing*fs/340) + 1,1);
FilterBank8 = zeros(round(2*spacing*fs/340) + 1,1);

for a=1:noofcaps
FilterBank(round(Sbelay(a))) =
FlIterBank(round(SDelay(a))) + Galn(a)/2
FilterBank8(round(SDelay(a))) =
FiIterBank8(round(SDelay(a))) + Gain8(a)*sqrt(2);
Ch(a) = Delay(a);
CG(a) = Gain(a);
end

figure(3)

clf;

subplot(2,1,1)

stem(FilterBank);

yhim([-4 41):

hold on;

stem(FilterBank8,"r=);

title("Omni and Figure of 8 impulses (8 imp taken from X rep)*);
subplot(2,1,2)

invFB = inversefilt(FilterBank);

T = 20*logl0(abs(fft(FilterBank/noofcaps,512*fsmult)));
g = 20*1ogl0(abs(fft(FilterBank8/noofcaps,512*fsmult)));
h =1./F;
X = 120;

plot(0:24000/255:24000, F(1:512*Fsmult/(2*Fsmult)))

text(x*24000/255,F(x), "\leftarrow Omni Rep-,
"HorizontalAlignment®, "left");

hold on;

plot(0:24000/255:24000,g(1:512*Fsmult/(2*Fsmult)),"r")

text(x*24000/255,9(x), "Figure of 8 Rep \rightarrow",
"HorizontalAlignment®, "right™);

title("Omni and Figure of 8 responses®);

yhim([-20 6]);

xIim([0 24000]);

xlabel (*Frequency (Hz)");
ylabel ("Amplitude (dB)");
pause(0.1);

%remember to uncomment me tool!

end

figure(2)

clf;

Wx = (xplot(:,1) + xplot(:,2) + xplot(:,3) + xplot(:,4))/2;

Wy = (yplot(:,1) + yplot(:,2) + yplot(:,3) + yplot(:,4))/2;

Xx = (xplot(:,1) + xplot(:,2) - xplot(:,3) - xplot(:,4))*sqrt(2);
Xy = (yplot(:,1) + yplot(:,2) - yplot(:,3) - yplot(:,4))*sqrt(2);
Yx = (xplot(:,1) - xplot(:,2) - xplot(:,3) + xplot(:,4))*sqrt(2);
Yy = (yplot(:,1) - yplot(:,2) - yplot(:,3) + yplot(:,4))*sqrt(2);
plot(Wx,Wy);

hold on

plot(Xx,Xy, "m");
plot(-Xx,-Xy, "m");
plot(YX,Yy,"r");
plot(-YX,-Yy,"r");
axis equal;
title("Reconstructed polar diagram of B Format®);
X = 0.5;
text(x,0,"+X");
text(-x,0,"-X");
text(0,x,"+Y");
text(0,-X,"-Y");

9.1.5 Code Used to Create Free Field Crosstalk Cancellation Filters

%Create matlab free field dipole filters
%Speakers = +/- 30 deg

%Distance = 1m

%Mic spacing radius = 7 cm (head radius)

%Filter Size

N = 1024;

%Mic Spacing Radius

MSpacing = 0.07;

%Speaker spacing +/- n degrees

SSpacing = 30;

%Sampling Frequency

fs = 96000;

%Speed of Sound in Air

c = 342;

%Middle of Head x & y co-ords (speaker is at origin, symmetry
%assumed)

x = sin(deg2rad(SSpacing));

y = cos(deg2rad(SSpacing));

%Left and Right Mic Coords
Xr = X - MSpacing;
yr =ys;

x1 X + MSpacing;

yl =vy;

%Calculate Distances from origin (speaker)
rdist = sqrt(Xr*xr + yr*yr);

Idist = sqre(xI*xIl + yl*yl);

%Calculate Amplitude difference at mics using inverse square law
ADif = 1-(ldist-rdist);

%Convert distance to time using speed of sound
rtime = rdist/c;

Itime = Idist/c;

timedif = Itime - rtime;

%Convert time to number of samples

sampdif = round(timedif * fs);

%Create filters
hl=zeros(1,N);
count=1;
for a=1:N
if a==1
hi(a) = 1;
count=count+2;
elseif round(a/(sampdif*2))==a/(sampdif*2)
hi(a+l) = ADif”~count;
count=count+2;
end
end
ht = zeros(1,sampdif+1);
ht(sampdif+l) = -ADiF;
h2=conv(hl,ht);

%Plot Time Domain Representation

figure(l)

clf;

a=stem(hl);

hold on

b=stem(h2,*r");

set(a, "LineWidth",2);

set(b, "LineWidth",2);

title(["x-talk filters at +/- " ,num2str(SSpacing),"” degrees"]);
legend("h1"," *,"h2"," ");

ylabel ("Amplitude®);

xlabel (*Sample Number (at 96kHz, c = 342ms-1)7);

axis([0 1024 -1.05 1.05]);

%Plot Frequency Domain Respresentation

figure(2)

clf;

freq=0:fs/(N-1):fs;

plot(freq,20*1ogl0(abs(fFft(hl))), "LineWidth",2);

hold on
plot(freq,20*1og10(abs(fft(h2,1024))),"r:", "LineWidth",2);
xhim([0 fs/4]);

title(["Frequency Response at +/- " ,num2str(SSpacing),” degrees"]);
xlabel ("Frequency (Hz)");
ylabel ("Amplitude (dB)");
legend("h1","h2");

9.1.6 Code Used to Create Crosstalk Cancellation Filters Using

HRTF Data and Inverse Filtering Techniques

inna = 1;
= "d:\matlab\hrtf\ofull\elevO\";

ref = wavread([d, "LOel75a.wav™]);
refR = ref(z,pinna);

ref = wavread([d, "LOel85a.wav™]);
refL = ref(:,pinna);

hrtf = wavread([d, "LOel75a.wav™"]);
hrtfR = hrtf(:,pinna);

hrtf = wavread([d, "LOel85a.wav™]);
hrtfL = hrtf(:,pinna);

1en=4096;

temp=zeros(l, len);

offset=2048;
temp(offset:offset-1+length(hrtfL))=refL;
iL=inversefilt(temp);

win=hanning(len);
iL=iL_*win";
figure(b)

clf;

plot(ilL);

hold on
plot(win);

L2 conv(hrtfL,iL);

R2 conv(hrtfR,iL);
win=hanning(length(L2));
L2=L2.*win";
R2=R2.*win";

figure(1)
clf;
plot(L2);
hold on
plot(R2,"r");

figure(2)
clf;
freqz(L2);
figure(3)
clf;
freqz(R2);

[h1,h2] = freqdip([L2"],[R2"],1en,0,0);

hlinv = inversefilt(hl1,0.0);

hii = conv(hl,hlinv);

h2i = conv(h2,hlinv);

hii = hli((1en-1024):(1en+1023));
h2i = h2i((1en-1024): (1en+1023));
win = hanning(length(hli));

hii = hli _.* win;

h2i = h2i _* win;

figure(6)

plot([hli,h2i]);

hl1i48 = resample(hli,48000,44100);
h2i148 = resample(h2i,48000,44100);
h148 = resample(h1,48000,44100);
h248 = resample(h2,48000,44100);

%Carry out test dipole simulation
%c = wavread("h0Oe0O30a.wav™);
%cl = c(:,2);

%c2 = c(:,1);

cl = hrtflL;

c2 = hrtfR;
source=zeros(8191,2);
source(1,1)=1;

dipolesig=[conv(source(:,1),hli)+conv(source(:,2),h2i),conv(source(:,
2),hi1i)+conv(source(:,1),h2i)];

leftspeakerl=conv(dipolesig(:,1),cl);
leftspeakerr=conv(dipolesig(:,1),c2);
rightspeakerl=conv(dipolesig(:,2),c2);
rightspeakerr=conv(dipolesig(:,2),cl);

stereoout=[leftspeakerl+rightspeakerl, leftspeakerr+rightspeakerr];
figure(?)

clf;

freqz(stereoout(:,1));

hold on

freqz(stereoout(:,2));

9.1.7 Matlab Code Used in FregDip Function for the Generation of
Crosstalk Cancellation Filters
function [h1,h2]=Freqdip(tcl,tc2,FiltLength, inband,outband)

%[h1,h2]=Freqdip(tcl,tc2,FiltLength, inband,outband)
% Frequency Domain XTalk Cancellation Filters

Lf = 500;
Hf = 20000;
if(nargin<3d)

FiltLength=2048;

inband=0.0002;

outband=1;
elseif(nargin<b)

inband=0.0002;

outband=1;
end
LowerFreg=round(FiltLength*Lf/22050);
UpperFreg=round(FiltLength*Hf/22050) ;
reg=ones(FiltLength,1);
reg(l:LowerFreq) = outband;
reg(LowerFreq:UpperFreq) = inband;
reg(UpperFreq:FiltLength)= outband;
regx=0:22051/FiltLength:22050;
figure(1)
clf
plot(regx,reg);

cl=tcl;
c2=tc2;

fcl=fft(cl,FiltLength);
fc2=fft(c2,FiltLength);
fnc2=Fft(-c2,FiltLength);

Filt=(fcl.*fcl)-(fc2.*fc2);
FiltDenom=1./Filt;

fhl=Ffcl.*FiltDenom;
fh2=Ffnc2.*FiltDenom;

w = hanning(FiltLength);

hl=real (ifft(fhl,FiltLength)) .* w;
h2=real (i fft(fh2,FiltLength)) .* w;

figure(2)

clf;

plot(hl)

hold on

plot(h2,"r");

figure(3)

clf
freqz(hli, 1, length(hl),44100)
hold on

freqz(h2,1, length(h2),44100)

%Carry out test dipole simulation
source=zeros(1024,2);
source(1,1)=1;

dipolesig=[conv(source(:,1),hl)+conv(source(:,2),h2),conv(source(:,2)
,h1l)+conv(source(:,1),h2)];

leftspeakerl=conv(dipolesig(:,1),cl);
leftspeakerr=conv(dipolesig(:,1),c2);
rightspeakerl=conv(dipolesig(:,2),c2);
rightspeakerr=conv(dipolesig(:,2),cl);

stereoout=[leftspeakerl+rightspeakerl, leftspeakerr+rightspeakerr];
figure(4)
plot(stereoout);

9.1.8 Matlab Code Used To Generate Inverse Filters

function res = inversefilt(signal,mix)
%RES = INVERSEFILT(SIGNAL)

if(nargin==1

mix = 1;
end
fftsize=2"(ceil(log2(length(signal))));
fsignal=Fft(signal, fftsize);

mag
ang

abs(fsignal);
angle(fsignal);

newmag
newang

1./mag;
—ang;

newfsignal = newmag.*exp(i*newang);
newsignal = real(ifft(newfsignal,fftsize));

if(nargin==1)
res = newsignal(l:length(signal));
else
ut = newsignal(l:length(signal));
grpdelay(out,1,fftsize);
round(sum(a)/fftsize);
= zeros(size(out));

(b) = 1;

nw unwoovo

ig
ig

fo = fft(out);

fm = Fft(sig);

fomag = abs(fo);

fmmag = abs(fm);

foang = angle(fo);

fmang = angle(fm);

newmag = (mix * fomag) + ((1-mix) * fmmag);
newang = fmang;

newfft = newmag.*exp(i*newang);

fres = ifft(newfft, fftsize);
res real(fres);
res res(1l:length(signal));

end

9.2 Windows C++ Code

9.2.1 Code Used for Heuristic Ambisonic Decoder Optimisations

=101 x|

moll
=,

50 Cardiods vl
* |5.00ptimised 1 Ev¥ FD Gain || & LFDec || [¢ LF
(|50Soundield g —a— g T T 0 N —g g | HFDes|| ¥ HF
- |5.0 Optimised 2 " Bath |:
5.0 Oplimised 3 i
e P
; IS.U Layout 3 LF Amplitude
eret—— 1 —anas = .. LF-#e]
| Manal =
" Patten = =
: FieDraw 0.5 IEIE |D5 = [
—I =
: Magnitude AMFiL — cAngle Faril - -Angle Fafilz Volume FvFl = [OFid Overall ;

- Magnitude Fitness [MFH - Angle Fitness [akin | Volume Fitness [vhd = [F Overall -
Current TEdit IEdit1 IEditT Edit1 |Edit1 |Editl |[Edit1 |Edit1 IEdit1 Edit11 Current

Iterations: MaxTabu: Step Size © o4 soarch - Eites Edtil Bt

[s00 [o993gas | [om GO Highl SaveEuttonl

2
/e MAIN . CPP =~ — = — o e
2

#include <vcl.h>
#pragma hdrstop

#include "Main.h"

#include <math.h>
#include <fstream.h>

#pragma package(smart_init)
#pragma link "VolSlider™
#pragma link ""RotorSlider"
#pragma link "LevelMeter"
#pragma resource "*._.dfm"
TForml *Forml;

__Fastcall TForml::TForml1(TComponent* Owner)
: TForm(Owner)
{

LamL=LamH=1;

OGainL=0GainH=1;
SliderLength=32768;

Bitmap = new Graphics::TBitmap;
Bitmap2 = new Graphics::TBitmap;
Bitmap->Height = Bevell->Height-4;
Bitmap->Width = Bevell->Width-4;
Bitmap2->Height = Bevel2->Height-4;
Bitmap2->Width = Bevel2->Width-4;

MaxX = Bitmap->Width/2;
MaxY = Bitmap->Height/2;
NoOfSpeakers = 5;

SpeakPos[0] = 0;

SpeakPos[1] = Deg2Rad(30);
SpeakPos[2] = Deg2Rad(115);
SpeakPos[3] = Deg2Rad(-115);
SpeakPos[4] = Deg2Rad(-30);

ListBox1l->I1temlndex=0;

ListBox1Click(this);

WGain[O0] WGainH[O] =
(double)VolSliderl->Position/SliderLength;

WGain[1] = WGainH[1] =
(double)VolSlider3->Position/SliderLength;

WGain[2] = WGainH[2] =
(double)VolSlider6->Position/SliderLength;

XGain[0] = XGainH[O0] =
(double)VolSlider2->Position/SliderLength;

XGain[1] = XGainH[1] =
(double)VolSlider4->Position/SliderLength;

XGain[2] = XGainH[2] =
-(double)VolSlider7->Position/SliderLength;

YGain[1l] = YGainH[1] =

(double)VolSlider5->Position/SliderLength;
YGainH[2] =
(double)VolSlider8->Position/SliderLength;

RadioGroupl->1temlndex=1;

VolSliderlChange(this);

RadioGroupl->1temlndex=0;

VolSliderlChange(this);

YGain[2]

double TForml: :Deg2Rad(double Deg)

{
return (Deg*M_P1/180);

void TForml::GPaint()
{

long a,b,c,d;
int SpRad = 5;
Bitmap->Canvas->Pen->Style = psDot;
Bitmap->Canvas->Pen->Color = clBlack;
Bitmap->Canvas->Brush->Style = bsSolid;
Bitmap->Canvas->Brush->Color = clWhite;
Bitmap->Canvas->Rectangle(0,0,Bitmap->Width,Bitmap->Height);
Bitmap->Canvas->Ellipse(0,0,Bitmap->Width,Bitmap->Height);
Bitmap->Canvas->Pen->Style = psSolid;
Bitmap->Canvas->Brush->Style = bsSolid;
Bitmap->Canvas->Brush->Color = clBlue;
for(int 1=0;i<NoOfSpeakers;i++)
{

double x,y;

int r = Maxy - 10;

X = r * cos(SpeakPos[i1]) + MaxX;

y = r * sin(SpeakPos[i]) + MaxY;

Bitmap->Canvas->Rectangle(

Xx-SpRad, y-SpRad, x+SpRad, y+SpRad) ;

}

double r8 = 0.35355339059327376220042218105242;

double r2 = 0.70710678118654752440084436210485;

double MFitnessL=0,AFitnessL=0,0FitnessL=0,VFitnessL=0,Ang;

double MFitnessH=0,AFitnessH=0,0FitnessH=0,VFitnessH=0;
for(int 1=0;1i<360;i++)

{

double Rad = Deg2Rad(i);

WSig = 1/sqrt(2);
XSig = cos(Rad);
YSig = sin(Rad);

wSigL = (0.5*(LamL+1LamL)*WSig) +
(r8*(LamL-ILamL)*XSiQ);

XSigL = (0.5*(LamL+lLamL)*XSig) +
(r2*(LamL-1LamL)*WSiQ);
YSigL = YSig;
WSigH = (0.5*(LamH+1LamH)*WSig) +
(r8*(LamH-ILamH)*XSiQ);
XSigH = (0.5*(LamH+ILamH)*XSig) +
(r2*(LamH-1LamH)*WSiQ);
YSigH = YSig;
SpGain[0] = (WGain[0]*WSigL + XGain[0]*XSiglL);
SpGain[1] = (WGain[1]*WSigL + XGain[1]*XSigL +
YGain[1]*YSiglL);
SpGain[2] = (WGain[2]*WSigL + XGain[2]*XSigL +
YGain[2]*YSigL);
SpGain[3] = (WGain[2]*WSigL + XGain[2]*XSigL -
YGain[2]*YSigL);
SpGain[4] = (WGain[1]*WSigL + XGain[1]*XSigL —
YGain[1]*YSigL);

SpGainH[0] = (WGainH[0]*WSigH + XGainH[0]*XSigH);

SpGainH[1] = (WGainH[1]*WSigH + XGainH[1]*XSigH
YGainH[1]*YSigH);

SpGainH[2] = (WGainH[2]*WSigH + XGainH[2]*XSigH
YGainH[2]*YSigH);

SpGainH[3] = (WGainH[2]*WSigH + XGainH[2]*XSigH
YGainH[2]*YSigH);

SpGainH[4] = (WGainH[1]*WSigH + XGainH[1]*XSigH
YGainH[1]*YSigH);

+

+

P=P2=E=VecLowX=VecLowY=VecHighX=VecHighY=0;

for(int j=0;j<NoOfSpeakers;j++)

{
P+=SpGain[j];
P2+=SpGainH[j]*SpGainH[]j];
E+=pow(SpGainH[j],2):

}

VolLx[i]=(P*cos(Rad)*MaxX/5)+MaxX;
VolLy[i]=(P*sin(Rad)*MaxY/5)+Maxy ;
VolHx[i]=(P2*cos(Rad)*MaxX/5)+MaxX;
VolHy[i]=(P2*sin(Rad)*MaxY/5)+Maxy;

if(1==0)
{
LFVol = P/NoOfSpeakers;
HFVol = P2/NoOfSpeakers;
3+
for(int j=0;j<NoOfSpeakers;j++)
{

VecLowX+=SpGain[j]*cos(SpeakPos[j]);
VecLowY+=SpGain[j]*sin(SpeakPos[j]);
VecHighX+=pow(SpGainH[j],2)*cos(SpeakPos[j]):
VecHighY+=pow(SpGainH[j],2)*sin(SpeakPos[j]);

3}
if(P && E)
{

VecLowX/=P;

VecLowY/=P;

VecHighX/=E;

VecHighY/=E;
3

VFitnessL+=(1-((LFVol*NoOfSpeakers)/P))*
(1-((LFVol*NoOfSpeakers)/P));//*((LFVol*NoOfSpeakers)-P);

if(P2) VFitnessH+=(1-((HFVol*NoOfSpeakers)/P2))*
(1-((HFVol*NoOfSpeakers)/P2)) ;//*((HFVol*NoOfSpeakers)-P2);

MFitnessL+=pow(1-

sqrt((VecLowX*VecLowX)+(VecLowY*VecLowY)),2);

MFitnessH+=pow(1-

sgrt((VecHighX*VecHighX)+(VecHighY*VecHighY)),2);

Ang=Rad-atan2(VecLowY ,VecLowX);

if(Ang>M_PI1) Ang-=(2*M_P1);

if(Ang<-M_P1) Ang+=(2*M_PIl);

AFitnessL+=(Ang)*(Ang);

if(VecHighY |] VecHighX)

Ang=Rad-atan2(VecHighY,VecHighX);

if(Ang>M_PI1) Ang-=(2*M_P1);

if(Ang<-M_P1) Ang+=(2*M_PIl);

AFitnessH+=Ang*Ang;

VecLowX*=MaxX;

VecLowY*=Maxy ;

VecHighX*=MaxX;

VecHighY*=MaxyY ;

VecLowX+=MaxX;

VecLowY+=Max ;

VecHighX+=MaxX;

VecHighY+=MaxyY;

i f(CheckBox1->Checked)

{
Bitmap->Canvas->Pen->Color = clRed;
Bitmap->Canvas->El lipse(VecLowX-2,

VecLowY-2,VecLowX+2,VecLowY+2);

}
i f(CheckBox2->Checked)
{
Bitmap->Canvas->Pen->Color = clGreen;
Bitmap->Canvas->El lipse(VecHighX-2,
VecHighY-2,VecHighX+2,VecHighY+2);

}
if(i==0]|i==11] | i==22| | i==45] | i==90] | i==135] | i==180)

Bitmap->Canvas->Pen->Color = clBlack;
Bitmap->Canvas->MoveTo(MaxX,MaxY) ;
Bitmap->Canvas->LineTo((XSig+1l)*MaxX,
(YSig+l)*MaxyY);
i f(CheckBox1->Checked)
{
Bitmap->Canvas->Pen->Color = clRed;
Bitmap->Canvas->MoveTo(MaxX,MaxY) ;
Bitmap->Canvas->LineTo(VecLowX,
VecLowY);

}

i F(CheckBox2->Checked)

{
Bitmap->Canvas->Pen->Color = clGreen;
Bitmap->Canvas->MoveTo(MaxX,MaxY);
Bitmap->Canvas->LineTo(VecHighX,

VecHighY);

}

}
i f(CheckBox3->Checked)
{ o
int Div=5;
Bitmap->Canvas->Pen->Color=clRed;
Bitmap->Canvas->MoveTo((int)VolLx[359],
(int)VolLy[359]);
for(int a=0;a<360;a++)
{
Bitmap->Canvas->LineTo((int)VolLx[a],
(int)VolLy[a]);
}
Bitmap->Canvas->MoveTo(
(int) ((VolLx[359]-MaxX)/Div)+MaxX,
(int) ((VolLy[359]-MaxY)/Div)+MaxY);
for(int a=0;a<360;a++)
{
Bitmap->Canvas->LineTo(
(int) ((VolLx[a]-MaxX)/Div)+MaxX,
(int) ((VolLy[a]-MaxY)/Div)+MaxyY);
¥
Bitmap->Canvas->Pen->Color=clGreen;
Bitmap->Canvas->MoveTo((int)VolHx[359],
(int)VolHy[359]);
for(int a=0;a<360;a++)
{
Bitmap->Canvas->LineTo((int)VolHx[a],
(int)VolHy[a]);
by
by
VFitnessL=sqgrt(VFitnessL/360.0T);
VFitnessH=sqgrt(VFitnessH/360.0T);
AFitnessL=sqrt(AFitnessL/360.0T);
AFitnessH=sqrt(AFitnessH/360.0F);
MFitnessL=sqrt(MFitnessL/360.0F);
MFitnessH=sqrt(MFitnessH/360.0T);
OFitnessL=VFitnessL + AFitnessL + MFitnessL;
OFitnessH=VFitnessH + AFitnessH + MFitnessH;

a = Bevell->Left + 2;

b = Bevell->Top + 2;

c = Bevell->Width + a -2;

d = Bevell->Height + b -2;
BitBlt(Forml->Canvas->Handle,a,b,c,d,

Bitmap->Canvas->Handle,0,0,SRCCOPY);
MFitL->Text=FloatToStrF(MFitnessL,ffFixed,5,5);
MFitH->Text=FloatToStrF(MFitnessH,ffFixed,5,5);
AFitL->Text=FloatToStrF(AFitnessL,ffFixed,5,5);
AFitL2->Text=FloatToStrF(AFitnessL,ffFixed,5,5);
AFitH->Text=FloatToStrF(AFitnessH, ffFixed,5,5);
VFitL->Text=FloatToStrF(VFitnessL,ffFixed,5,5);
VFitH->Text=FloatToStrF(VFitnessH, ffFixed,5,5);
OFitL->Text=FloatToStrF(OFitnessL,ffFixed,5,5);
OFitH->Text=FloatToStrF(OFitnessH, ffFixed,5,5);
LFEdit->Text=FloatToStrF(LFVol,ffFixed,3,3);
HFEdit->Text=FloatToStrF(HFVol ,ffFixed,3,3);
LevelMeterl->MeterReading=(int) (LFVol*75);
LevelMeter2->MeterReading=(int) (HFVol*75);

void TForml::RPaint()

{

long a,b,c,d;
int skip = 9;
Bitmap2->Canvas->Pen->Style
Bitmap2->Canvas->Pen->Color
Bitmap2->Canvas->Brush->Style bsSolid;
Bitmap2->Canvas->Brush->Color = clWhite;
Bitmap2->Canvas->Rectangle(0,0,
Bitmap2->Width,Bitmap2->Height);
for(int i=0;1i<360;i+=skip)

I
o
()
|w)

o

-+

{
if(RadioGroupl->I1temlndex==0)
Repl[i] = 0.5 * (0.7071 * WGain[0O] +
cos(Deg2Rad(i))*XGain[0]);
Rep2[i] = 0.5 * (0.7071 * WGain[1] +
cos(Deg2Rad(i))*XGain[1] + sin(Deg2Rad(i))*YGain[1]);
Rep3[i] = 0.5 * (0.7071 * WGain[2] +
cos(Deg2Rad(i))*XGain[2] + sin(Deg2Rad(i))*YGain[2]);
Rep4[i] = 0.5 * (0.7071 * WGain[2] +
cos(Deg2Rad(i))*XGain[2] - sin(Deg2Rad(i))*YGain[2]);
Rep5[i] = 0.5 * (0.7071 * WGain[1] +
cos(Deg2Rad(i))*XGain[1] - sin(Deg2Rad(i))*YGain[1]);
Repl[i]<0?Repl[i]=-Repl[i]:Repl[i]=Repl[i];
Rep2[i]1<0?Rep2[i]=-Rep2[i]:Rep2[i]=Rep2[i];
Rep3[i]<0?Rep3[i]=-Rep3[i]:Rep3[i]=Rep3[i];
Rep4[i1]<0?Rep4[i]=-Rep4[i]:Rep4[i]=Rep4[i];
Rep5[i1]<0?Rep5[i]=-Rep5[i]:Rep5[i]=Rep5[i];
}
else
{
Repl[i] = 0.5 * (0.7071 * WGainH[O] +
cos(Deg2Rad((i))*XGainH[0]);
Rep2[i] = 0.5 * (0.7071 * WGainH[1] +
cos(Deg2Rad(i))*XGainH[1] + sin(Deg2Rad(i))*YGainH[1]);
Rep3[i] = 0.5 * (0.7071 * WGainH[2] +
cos(Deg2Rad(i))*XGainH[2] + sin(Deg2Rad(i1))*YGainH[2]);
Rep4[i] = 0.5 * (0.7071 * WGainH[2] +
cos(Deg2Rad(i))*XGainH[2] - sin(Deg2Rad(i))*YGainH[2]);
Rep5[i] = 0.5 * (0.7071 * WGainH[1] +
cos(Deg2Rad(i))*XGainH[1] - sin(Deg2Rad(i))*YGainH[1]);
Repl[i]<0?Repl[i]=-Repl[i]:Repl[i]=Repl[i];
Rep2[1]<0?Rep2[i]=-Rep2[i]:Rep2[i]=Rep2[i];
Rep3[1]<0?Rep3[i]=-Rep3[i]:Rep3[i]=Rep3[i];
Rep4[i]<0?Rep4[i]=-Rep4[i]:Rep4[i]=Rep4[i];
Rep5[i]<0?Rep5[i]=-Rep5[i]:Rep5[i]=Rep5[i];
}
}

Bitmap2->Canvas->Pen->Width = 2;
Bitmap2->Canvas->Pen->Style=psSolid;
Bitmap2->Canvas->Pen->Color=clBlack;
PlotPolar(Bitmap2,Repl,skip);
Bitmap2->Canvas->Pen->Color=clRed;
PlotPolar(Bitmap2,Rep2,skip);
Bitmap2->Canvas->Pen->Color=clBlue;
PlotPolar(Bitmap2,Rep3,skip);
Bitmap2->Canvas->Pen->Color=clPurple;
PlotPolar(Bitmap2,Rep4,skip);
Bitmap2->Canvas->Pen->Color=clTeal ;
PlotPolar(Bitmap2,Rep5,skip);

a = Bevel2->Left + 2;

= Bevel2->Top + 2;

= Bevel2->Width + a -2;

= Bevel2->Height + b -2;

itBlt(Forml->Canvas->Handle,a,b,c,d,
Bitmap2->Canvas->Handle,0,0,SRCCOPY) ;

void __ fastcall TForml::ButtonlClick(TObject *Sender)
{

GPaint();

RPaint();
>
/)
void __ fastcall TForml::FormPaint(TObject *Sender)
{

GPaint();

RPaint();
}

if(RadioGroupl->I1temlndex==0)

{
OGainL =
(double)VolSliderl0->Position*2/SliderLength;
WGain[0] =
(double)OGainL*VolSliderl->Position/SliderLength;
WGain[1] =
(double)OGainL*VolSlider3->Position/SliderLength;
WGain[2] =
(double)OGainL*VolSlider6->Position/SliderLength;
XGain[0] =
(double)OGainL*VolSlider2->Position/SliderLength;
XGain[1] =
(double)OGainL*VolSlider4->Position/SliderLength;
XGain[2] =
-(double)0OGainL*VolSlider7->Position/SliderLength;
YGain[1] =
(double)OGainL*VolSlider5->Position/SliderLength;
YGain[2] =
(double)OGainL*VolSlider8->Position/SliderLength;
LamL =
(double)VolSlider9->Position*2/SliderLength;
if(LamL)

ILamL=1/LamL;

else if(RadioGroupl->ltemlndex==1)

{
WGainH[O] =
(double)OGainH*VolSliderl->Position/SliderLength;
WGainH[1] =
(double)OGainH*VolSlider3->Position/SliderLength;
WGainH[2] =
(double)OGainH*VolSlider6->Position/SliderLength;
XGainH[O0] =
(double)OGainH*VolSlider2->Position/SliderLength;
XGainH[1] =
(double)OGainH*VolSlider4->Position/SliderLength;
XGainH[2] =
-(double)0GainH*VolSlider7->Position/SliderLength;

YGainH[1] =
(double)OGainH*VolSlider5->Position/SliderLength;

YGainH[2] =
(double)OGainH*VolSlider8->Position/SliderLength;

LamH =
(double)VolSlider9->Position*2/SliderLength;

if(LamH)

ILamH=1/LamH;

OGainH =

(double)VolSlider10->Position*2/SliderLength;

else if(RadioGroupl->ltemlndex==2)

{
OGainH = OGainL =
(double)VolSliderl0->Position*2/SliderLength;
WGainH[0] = WGain[0] =
(double)OGainL*VolSliderl->Position/SliderLength;
WGainH[1] = WGain[1] =
(double)OGainL*VolSlider3->Position/SliderLength;
WGainH[2] = WGain[2] =
(double)OGainL*VolSlider6->Position/SliderLength;
XGainH[0] = XGain[0] =
(double)OGainL*VolSlider2->Position/SliderLength;
XGainH[1] = XGain[1] =
(double)OGainL*VolSlider4->Position/SliderLength;
XGainH[2] = XGain[2] = -
(double)OGainL*VolSlider7->Position/SliderLength;
YGainH[1] = YGain[1] =
(double)OGainL*VolSlider5->Position/SliderLength;
YGainH[2] = YGain[2] =
(double)OGainL*VolSlider8->Position/SliderLength;

LamH = LamL =
(double)VolSlider9->Position*2/SliderLength;
if(LamL)
ILamL=1/LamL;
if(LamH)
ILamH=1/LamH;
}
UpdateEdits();
GPaint();
RPaint();
3
/)
void TForml::UpdateEdits()
{

if(RadioGroupl->ItemIndex==0)
{
Editl->Text=FloatToStrF(WGain[0],
ffFixed,3,3);
Edit3->Text=FloatToStrF(WGain[1],
ffFixed,3,3);
Edit6->Text=FloatToStrF(WGain[2],
ffFixed,3,3);
Edit2->Text=FloatToStrF(XGain[0],
ffFixed,3,3);
Edit4->Text=FloatToStrF(XGain[1],
ffFixed,3,3);
Edit7->Text=FloatToStrF(XGain[2],
ffFixed,3,3);
Edit5->Text=FloatToStrF(YGain[1],
ffFixed,3,3);

Edit8->Text=FloatToStrF(YGain[2],
ffFixed,3,3);

Edit9->Text=FloatToStrF(LamL,ffFixed,3,3);

Edit1l0->Text=FloatToStrF(OGainL,ffFixed,3,3);

else if(RadioGroupl->ltemlndex==1)
{
Editl->Text=FloatToStrF(WGainH[O],
ffFixed,3,3);
Edit3->Text=FloatToStrF(WGainH[1],
ffFixed,3,3);
Edit6->Text=FloatToStrF(WGainH[2],
ffFixed,3,3);
Edit2->Text=FloatToStrF(XGainH[O],
ffFixed,3,3);
Edit4->Text=FloatToStrF(XGainH[1],
ffFixed,3,3);
Edit7->Text=FloatToStrF(XGainH[2],
ffFixed,3,3);
Edit5->Text=FloatToStrF(YGainH[1],
ffFixed,3,3);
Edit8->Text=FloatToStrF(YGainH[2],
ffFixed,3,3);
Edit9->Text=FloatToStrF(LamH,ffFixed,3,3);
Editl0->Text=FloatToStrF(OGainH,ffFixed,3,3);

void TForml::UpdateNewEdits()

{
if(RadioGroupl->IltemIndex==0)

GEditl->Text=FloatToStrF(
(float)GainSliderl->Position/100,ffFixed,3,3);
GEdit2->Text=FloatToStrF(
(float)GainSlider2->Position/100, ffFixed,3,3);
GEdit3->Text=FloatToStrF(
(float)GainSlider3->Position/100,ffFixed,3,3);
DEditl->Text=FloatToStrF(
(float)DSliderl->Position/100,ffFixed,3,3);
DEdit2->Text=FloatToStrF(
(float)DSlider2->Position/100,ffFixed,3,3);
DEdit3->Text=FloatToStrF(
(float)DSlider3->Position/100,ffFixed,3,3);
AEditl->Text=IntToStr(
(int)ASliderl->DotPosition);
AEdit2->Text=IntToStr(
(int)ASlider2->DotPosition);
AEdit3->Text=IntToStr(
(int)ASlider3->DotPosition);

}
else if(RadioGroupl->ltemlndex==1)

{
GEditl->Text=FloatToStrF(
(float)GainSliderl->Position/100,ffFixed,3,3);
GEdit2->Text=FloatToStrF(
(float)GainSlider2->Position/100,ffFixed,3,3);
GEdit3->Text=FloatToStrF(
(float)GainSlider3->Position/100,ffFixed,3,3);
DEditl->Text=FloatToStrF(
(float)DSliderl->Position/100,ffFixed,3,3);
DEdit2->Text=FloatToStrF(

(float)DSlider2->Position/100,ffFixed,3,3);
DEdit3->Text=FloatToStrF(
(float)DSlider3->Position/100,ffFixed,3,3);
AEditl->Text=FloatToStrF(
(float)ASliderl->DotPosition/100,ffFixed,3,3);
AEdit2->Text=FloatToStrF(
(float)ASlider2->DotPosition/100,ffFixed,3,3);
AEdit3->Text=FloatToStrF(
(float)ASlider3->DotPosition/100,ffFixed,3,3);

void _ fastcall TForml::ListBox1Click(TObject *Sender)

{

if(ListBox1l->1temlndex==0)

{

else if(ListBoxl->1temIndex==1)

{

VolSliderl->Position
VolSlider3->Position
VolSlider6->Position
VolSlider2->Position
VolSlider4->Position
VolSlider7->Position
VolSlider5->Position
VolSlider8->Position
VolSlider9->Position

0.34190f*SliderLength;
0.26813f*SliderLength;
0.56092f*SliderLength;
0.23322f*SliderLength;
0.38191f*SliderLength;
0.49852f*SliderLength;
0.50527fF*SliderLength;
0.45666F*SliderLength;
1*SliderLength/2;

VolSlider10->Position = 1*SliderLength/2;

VolSliderlChange(this);
WGainH[0]=0.38324T;
WGainH[1]=0.44022T;
WGainH[2]=0.78238T;
XGainH[0]=0.37228F;
XGainH[1]=0.23386F;
XGainH[2]=-0.55322F;
YGainH[1]=0.54094F;
YGainH[2]=0.42374F;
LamH=1;
ILamH=1/LamH;
OGainH=1;

RadioGroupl->1temIndex=

VolSliderl->Position
VolSlider3->Position
VolSlider6->Position
VolSlider2->Position
VolSlider4->Position
VolSlider7->Position
VolSlider5->Position
VolSlider8->Position
VolSlider9->Position

VolSliderl0->Position =

VolSliderlChange(this);
WGainH[0]=0.260;
WGainH[1]=0.320;
WGainH[2]=1.000;
XGainH[0]=0.200;
XGainH[1]=0.280;
XGainH[2]=-0.64;
YGainH[1]=0.480;

0;
0.58*SliderLength;
0.16*SliderLength;
1*SliderLength;
0.47*SliderLength;
0.53*SliderLength;
0.77*SliderLength;
0.55*SliderLength;
0.83*SliderLength;
1*SliderLength/2;
1*SliderLength/2;

YGainH[2]=0.340;
LamH=1;
ILamH=1/LamH;
OGainH=1;

else if(ListBox1l->1temIndex==2)

{

RadioGroupl->1temlndex=0;

VolSliderl->Position sqrt(2.0f)*SliderLength;

VolSlider3->Position sqrt(2.0f)*SliderLength;

VolSlider6->Position sqrt(2.0f)*SliderLength;

VolSlider2->Position cos(SpeakPos[0])*SliderLength;

VolSlider4->Position cos(Deg2Rad(45))*SliderLength;

VolSlider7->Position -cos(Deg2Rad(135))
*SliderLength;

sin(Deg2Rad(45))*SliderLength;

sin(Deg2Rad(135))
*SliderLength;

VolSlider9->Position = 1*SliderLength/2;

VolSlider10->Position = 1*SliderLength/2;

VolSliderlChange(this);

WGainH[0]=WGain[0];

WGainH[1]=WGain[1];

WGainH[2]=WGain[2];

XGainH[0]=XGain[0];

XGainH[1]=XGain[1];

XGainH[2]=XGain[2];

YGainH[1]=YGain[1];

YGainH[2]=YGain[2];

LamH=1;

ILamH=1/LamH;

OGainH=1;

VolSlider5->Position
VolSlider8->Position

else if(ListBox1l->1temIndex==3)

{

RadioGroupl->1temindex=
VolSliderl->Position
VolSlider3->Position
VolSlider6->Position
VolSlider2->Position
VolSlider4->Position
VolSlider7->Position
VolSlider5->Position
VolSlider8->Position -9062*SliderLength;
VolSlider9->Position *SliderLength/2;
VolSlider10->Position = 1*SliderLength/2;
VolSliderlChange(this);

WGainH[0]=0;

WGainH[1]=0.6086;

WGainH[2]=1.0290;

XGainH[0]=0;

XGainH[1]=0.4998;

XGainH[2]=-0.2058;

YGainH[1]=0.3861;

YGainH[2]=0.2489;

LamH=0.9270;

ILamH=1/LamH;

OGainH=1;

0;
0.023*SliderLength;
0.4232*SliderLength;
0.9027*SliderLength;
0.2518*SliderLength;
0.6014*SliderLength;
0.7245*SliderLength;
0.2518*SliderLength;
0
1

else if(ListBoxl->1temIndex==4)

{

RadioGroupl->I1temIndex=0;

VolSliderl->Position
VolSlider3->Position
VolSlider6->Position
VolSlider2->Position
VolSlider4->Position
VolSlider7->Position
VolSlider5->Position
VolSlider8->Position 0.587*SliderLength;
VolSlider9->Position 1*SliderLength/2;
VolSlider10->Position = 1*SliderLength/2;
VolSliderlChange(this);

WGainH[0]=0.312;

WGainH[1]=0.503;

WGainH[2]=0.868;

XGainH[0]=0.176;

XGainH[1]=0.563;

XGainH[2]=-0.41;

YGainH[1]=0.517;

YGainH[2]=0.510;

0.26*SliderLength;
0.34*SliderLength;
1*SliderLength;
0.247*SliderLength;
0.66*SliderLength;
0.78*SliderLength;
1*SliderLength;

LamH=1.030;
ILamH=1/LamH;
OGainH=1;
}
GPaint();
RPaint();
s

}
// -
void TForml::PlotPolar(Graphics::TBitmap *Bmap,double *Radius,
int skip)
{
int tl1,t2;
tl=(int) (Radius[360-skip]*cos(Deg2Rad(360-skip))*MaxX)+MaxX;
t2=(int) (Radius[360-skip]*sin(Deg2Rad(360-skip))*MaxyY)+Maxy ;
Bmap->Canvas->MoveTo(tl,t2);
for(int i=0;1i<360;i+=skip)
{
tl=(int) (Radius[i]*cos(Deg2Rad(i))*MaxX)+MaxX;
t2=(int) (Radius[i1]*sin(Deg2Rad(i))*MaxY)+Maxy;
Bmap->Canvas->LineTo(tl,t2);
}
}
// -

void __ fastcall TForml::RadioGrouplClick(TObject *Sender)
{
if(RadioGroupl->I1temlndex==0)
{
VolSliderl->Position
VolSlider3->Position
VolSlider6->Position
VolSlider2->Position
VolSlider4->Position
VolSlider7->Position
VolSlider5->Position
VolSlider8->Position
VolSlider9->Position
VolSliderl0->Position =

(int) (WGain[0]*SliderLength);
(int) (WGain[1]*SliderLength);
(int) (WGain[2]*SliderLength);
(int) (XGain[0]*SliderLength);
(int) (XGain[1]*SliderLength);
(int) (-XGain[2]*SliderLength);
(int) (YGain[1]*SliderLength);
(int) (YGain[2]*SliderLength);
(int) (LamL*SliderLength/2);

(int) (OGainL*SliderLength/2);

else if(RadioGroupl->ltemlndex==1)

{
VolSliderl->Position = (int)(WGainH[O]*SliderLength);
VolSlider3->Position = (int)(WGainH[1]*SliderLength);
VolSlider6->Position = (int)(WGainH[2]*SliderLength);
VolSlider2->Position = (int)(XGainH[0]*SliderLength);
VolSlider4->Position = (int)(XGainH[1]*SliderLength);
VolSlider7->Position =

(int) (-XGainH[2]*SliderLength);

VolSlider5->Position = (int)(YGainH[1]*SliderLength);
VolSlider8->Position = (int)(YGainH[2]*SliderLength);
VolSlider9->Position = (int)(LamH*SliderLength/2);
VolSlider10->Position = (int)(OGainH*SliderLength/2);

}

UpdateEdits();

RPaint(Q);

void __ fastcall TForml::GainSliderlChange(TObject *Sender)

{

if(RadioGroupl->1temlndex==0)

{

WGain[0] = (double)((double)GainSliderl->Position/100
*(2-(double)DSliderl->Position/100));
WGain[1] = (double)((double)GainSlider2->Position/100
*(2-(double)DSlider2->Position/100));
WGain[2] = (double)((double)GainSlider3->Position/100
*(2-(double)DSlider3->Position/100));
XGain[0] = (double)((double)GainSliderl->Position/100
*((double)DSliderl->Position/100
* cos(Deg2Rad((double)ASliderl->DotPosition))));
XGain[1] = (double)((double)GainSlider2->Position/100
*((double)DSlider2->Position/100
* cos(Deg2Rad((double)ASlider2->DotPosition))));
XGain[2] = (double)((double)GainSlider3->Position/100
*((double)DSlider3->Position/100
* cos(Deg2Rad((double)ASlider3->DotPosition))));
YGain[1] = (double)((double)GainSlider2->Position/100
*((double)DSlider2->Position/100
* sin(Deg2Rad((double)ASlider2->DotPosition))));
YGain[2] = (double)((double)GainSlider3->Position/100
*((double)DSlider3->Position/100
* sin(Deg2Rad((double)ASlider3->DotPosition))));

else if(RadioGroupl->ltemlndex==1)

{

WGainH[0] = (double)(GainSliderl->Position/100
*(2-DSliderl->Position/100));

WGainH[1] = (double)(GainSlider2->Position/100
*(2-DSlider2->Position/100));

WGainH[2] = (double)(GainSlider3->Position/100
*(2-DSlider3->Position/100));

XGainH[0] = (double)(GainSliderl->Position/100
*(DSliderl->Position/100
* cos(Deg2Rad((double)ASliderl->DotPosition))));

XGainH[1] = (double)(GainSlider2->Position/100
*(DSlider2->Position/100
* cos(Deg2Rad((double)ASliderl->DotPosition))));

XGainH[2] = (double)(GainSlider3->Position/100
*(DSlider3->Position/100
* cos(Deg2Rad((double)ASliderl->DotPosition))));

YGainH[1] = (double)(GainSlider2->Position/100
*(DSlider2->Position/100
* sin(Deg2Rad((double)ASliderl->DotPosition))));
YGainH[2] = (double)(GainSlider3->Position/100
*(DSlider3->Position/100
* sin(Deg2Rad((double)ASliderl->DotPosition))));

¥
UpdateNewEdits();
GPaint();
RPaint();

¥

if(RadioGroup2->ItemIndex==0)
{
Panell1->Show();
Panel2->Hide();

else if(RadioGroup2->Iltemlndex==1)
{
Panel2->Show();
Panell->Hide();

void _ fastcall TForml::Button2Click(TObject *Sender)

{
RadioGroupl->1temlndex=0;
double GainDif=HFVol/LFVol;
VolSliderl->Position*=GainDif;
VolSlider2->Position*=GainDif;
VolSlider3->Position*=GainDif;
VolSlider4->Position*=GainDif;
VolSlider5->Position*=GainDif;
VolSlider6->Position*=GainDif;
VolSlider7->Position*=GainDif;
VolSlider8->Position*=GainDif;
VolSliderlChange(this);
RPaint();
GPaint();

void __ fastcall TForml::Button3Click(TObject *Sender)

{
RadioGroupl->IltemIndex=1;
double GainDif=LFVol/HFVol;
VolSliderl->Position*=GainDif;
VolSlider2->Position*=GainDif;
VolSlider3->Position*=GainDif;
VolSlider4->Position*=GainDif;
VolSlider5->Position*=GainDif;
VolSlider6->Position*=GainDif;
VolSlider7->Position*=GainDif;
VolSlider8->Position*=GainDif;
VolSliderlChange(this);
RPaint();
GPaint();

void _ fastcall TForml::Button4Click(TObject *Sender)

Button4->Enabled=false;
RadioGroupl->1temlndex=0;
Iterations = StrTolnt(Editl2->Text);
int ItCount = lterations;
MaxTabu = StrTolnt(Editl3->Text);
StepSize = StrToFloat(Editl4->Text);
TempArray[0]=WGain[O0];
TempArray[2]=WGain[1];
TempArray[5]=WGain[2];
TempArray[1]=XGain[0];
TempArray[3]=XGain[1];
TempArray[6]=-XGain[2];
TempArray[4]=YGain[1];
TempArray[7]=YGain[2];
TempArray[8]=LamL;
TSearch = new Tabu(TempArray, SpeakPos,5);
TSearch->StepSize = StepSize;
TSearch->MMax = MaxTabu;
for(int a=0;a<lterations;a++)
{
TSearch->StartTabu(Q);
WGain[0]=TSearch->CBest[0];
XGain[0]=TSearch->CBest[1];
WGain[1]=TSearch->CBest[2];
XGain[1]=TSearch->CBest[3];
YGain[1]=TSearch->CBest[4];
WGain[2]=TSearch->CBest[5];
XGain[2]=-TSearch->CBest[6];
YGain[2]=TSearch->CBest[7];
LamL=TSearch->CBest[8];
TEditl->Text=FloatToStrF(
TSearch->CBest[0], ffFixed,3,3);
TEdit2->Text=FloatToStrF(
TSearch->CBest[1],ffFixed,3,3);
TEdit3->Text=FloatToStrF(
TSearch->CBest[2], ffFixed,3,3);
TEdit4->Text=FloatToStrF(
TSearch->CBest[3],ffFixed,3,3);
TEdit5->Text=FloatToStrF(
TSearch->CBest[4],ffFixed,3,3);
TEdit6->Text=FloatToStrF(
TSearch->CBest[5], ffFixed,3,3);
TEdit7->Text=FloatToStrF(
-TSearch->CBest[6],ffFixed,3,3);
TEdit8->Text=FloatToStrF(
TSearch->CBest[7],ffFixed,3,3);
TEdit9->Text=FloatToStrF(
TSearch->CBest[8],ffFixed,3,3);
TEditRes->Text=FloatToStrF(
TSearch->ResBestLocal ,ffFixed,5,5);
Editll->Text=FloatToStrF(
TSearch->ResBestOverall,ffFixed,5,5);
RadioGrouplClick(this);
VolSliderlChange(this);
Editl2->Text = IntToStr(--1tCount);
Application->ProcessMessages();
}
WGain[0]=TSearch->0Best[0];
XGain[0]=TSearch->0OBest[1];
WGain[1]=TSearch->0Best[2];
XGain[1]=TSearch->0Best[3];

YGain[1]=TSearch->0Best[4];
WGain[2]=TSearch->0Best[5];
XGain[2]=-TSearch->0Best[6];
YGain[2]=TSearch->0Best[7];
RadioGrouplClick(this);
VolSliderlChange(this);
Application->ProcessMessages();
delete TSearch;
Button4->Enabled=true;

Editl2->Text = IntToStr(lterations);

void _ fastcall TForml::Button5Click(TObject *Sender)
{
Button5->Enabled=false;
RadioGroupl->IltemIindex=1;
Iterations = StrTolnt(Editl2->Text);
int ItCount = Iterations;
MaxTabu = StrTolnt(Editl3->Text);
StepSize = StrToFloat(Editl4->Text);
TempArray[0]=WGainH[O0];
TempArray[2]=WGainH[1];
TempArray[5]=WGainH[2] ;
TempArray[1]=XGainH[O];
TempArray[3]=XGainH[1];
TempArray[6]=-XGainH[2];
TempArray[4]=YGainH[1];
TempArray[7]=YGainH[2];
TempArray[8]=LamH;
TSearchH = new HighTabu(TempArray,SpeakPos,5);
TSearchH->StepSize = StepSize;
TSearchH->MMax = MaxTabu;
for(int a=0;a<lterations;a++)
{
TSearchH->StartTabu();
WGainH[0]=TSearchH->CBest[0];
XGainH[0]=TSearchH->CBest[1];
WGainH[1]=TSearchH->CBest[2];
XGainH[1]=TSearchH->CBest[3];
YGainH[1]=TSearchH->CBest[4];
WGainH[2]=TSearchH->CBest[5];
XGainH[2]=-TSearchH->CBest[6];
YGainH[2]=TSearchH->CBest[7];
LamH=TSearchH->CBest[8];
TEditl->Text=FloatToStrF(
TSearchH->CBest[0], ffFixed,3,3);
TEdit2->Text=FloatToStrF(
TSearchH->CBest[1],ffFixed,3,3);
TEdit3->Text=FloatToStrF(
TSearchH->CBest[2],ffFixed,3,3);
TEdit4->Text=FloatToStrF(
TSearchH->CBest[3], ffFixed,3,3);
TEdit5->Text=FloatToStrF(
TSearchH->CBest[4],ffFixed,3,3);
TEdit6->Text=FloatToStrF(
TSearchH->CBest[5], ffFixed,3,3);
TEdit7->Text=FloatToStrF(
-TSearchH->CBest[6], ffFixed, 3,3);
TEdit8->Text=FloatToStrF(
TSearchH->CBest[7],ffFixed,3,3);
TEdit9->Text=FloatToStrF(
TSearchH->CBest[8], ffFixed,3,3);

TEditRes->Text=FloatToStrF(
TSearchH->ResBestLocal , ffFixed,5,5);

Editll->Text=FloatToStrF(
TSearchH->ResBestOverall ,ffFixed,5,5);

RadioGrouplClick(this);

VolSliderlChange(this);

Editl2->Text = IntToStr(--1tCount);

Application->ProcessMessages();

by
WGainH[0]=TSearchH->0Best[0];
XGainH[0]=TSearchH->0Best[1];
WGainH[1]=TSearchH->0Best[2];
XGainH[1]=TSearchH->0Best[3];
YGainH[1]=TSearchH->0Best[4];
WGainH[2]=TSearchH->0Best[5];
XGainH[2]=-TSearchH->0Best[6];
YGainH[2]=TSearchH->0Best[7];
RadioGrouplClick(this);
VolSliderlChange(this);
Application->ProcessMessages();
delete TSearchH;
Button5->Enabled=true;
Editl2->Text = IntToStr(lterations);

#define Write(a)
fwrite((FloatToStrF(a, ffFixed,5,5)).c_str(),1,5,File)
#define WriteTxt(a) fwrite(a,l,sizeof(a)-1,File)
#define NewLine fwrite(''\n",1,1,File)
void __ fastcall TForml::SaveButtonClick(TObject *Sender)
{
FILE *File;
iT(SaveDialogl->Execute())
{
File = fopen(SaveDialogl->FileName.c_str(),"w"
WriteTxt("WLow-C\t") ;Write(WGain[0]) ;NewLine;
WriteTxt(""XLow-C\t"") ;Write(XGain[0]) ;NewLine;
WriteTxt("WLow-F\t"™") ;Write(WGain[1]) ;NewLine;
WriteTxt("'XLow-F\t"™") ;Write(XGain[1]);NewLine;
WriteTxt("'YLow-F\t"") ;Write(YGain[1]);NewLine;
WriteTxt("WLow-R\t") ;Write(WGain[2]) ;NewLine;
WriteTxt("XLow-R\t") ;Write(XGain[2]) ;NewLine;
WriteTxt('YLow-R\t"™") ;Write(YGain[2]);NewLine;
NewLine;
WriteTxt("WHigh-C\t"") ;Write(WGainH[0]) ;NewLine;
WriteTxt("XHigh-C\t") ;Write(XGainH[0]) ;NewLine;
WriteTxt("WHigh-F\t") ;Write(WGainH[1]) ;NewLine;
WriteTxt("XHigh-F\t") ;Write(XGainH[1]) ;NewLine;
WriteTxt("'YHigh-F\t") ;Write(YGainH[1]) ;NewLine;
WriteTxt("WHigh-R\t") ;Write(WGainH[2]) ;NewLine;
WriteTxt("XHigh-R\t") ;Write(XGainH[2]) ;NewLine;
WriteTxt("YHigh-R\t") ;Write(YGainH[2]) ;NewLine;
fclose(File);

#ifndef MainH
#define MainH

#include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>
#include <ExtCtrls.hpp>
#include "VolSlider.h"
#include "RotorSlider.h"
#include "LevelMeter._h"
#include "Tabu.h"
#include "HighTabu.h"
#include <Dialogs.hpp>

class TForml : public TForm

__published: // IDE-managed Components
TBevel *Bevell;
TButton *Buttonl;
TListBox *ListBoxl;
TBevel *Bevel2;
TRadioGroup *RadioGroupl;
TGroupBox *GroupBox1;
TCheckBox *CheckBox2;
TCheckBox *CheckBox1;
TListBox *ListBox2;
TPanel *Panell;
TVolSlider *VolSliderl;
TVolSlider *VolSlider2;
TVolSlider *VolSlider3;
TVolSlider *VolSlider4;
TVolSlider *VolSlider5;
TVolSlider *VolSlider6;
TVolSlider *VolSlider7;
TVolSlider *VolSliders8;
TEdit *Editl;
TEdit *Edit2;
TEdit *Edit3;
TEdit *Edit4;
TEdit *Edit5;
TEdit *Edit6;
TEdit *Edit7;
TEdit *Edit8;
TLabel *CW;
TLabel *CX;
TLabel *Label?2;
TLabel *Label3;
TLabel *Label4;
TLabel *Label5;
TLabel *Label6;
TLabel *Label7;
TRadioGroup *RadioGroup?2;
TPanel *Panel?2;
TVolSlider *GainSliderl;
TRotorSlider *ASliderl;
TVolSlider *DSliderl;
TEdit *GEditl;
TEdit *AEditl;

TEdit *DEditl;

TLabel *Labell;

TLabel *Label8;
TVolSlider *GainSlider2;
TEdit *GEdit2;

TEdit *AEdit2;
TRotorSlider *ASlider2;
TVolSlider *DSlider2;
TEdit *DEdit2;

TLabel *Label9;
TVolSlider *GainSlider3;
TEdit *GEdit3;

TEdit *AEdit3;
TRotorSlider *ASlider3;
TVolSlider *DSlider3;
TEdit *DEdit3;
TLevelMeter *LevelMeterl;
TLevelMeter *LevelMeter?2;
TEdit *LFEdit;

TEdit *HFEdit;

TLabel *Labell0;

TLabel *Labelll;
TButton *Button?2;
TButton *Button3;
TCheckBox *CheckBox3;
TVolSlider *VolSlider9;
TVolSlider *VolSliderl0;
TLabel *Labell2;

TLabel *Labell3;

TEdit *Edit9;

TEdit *Editl0;

TLabel *Labell4;

TLabel *Labell5;

TLabel *Labell6;

TEdit *MFitL;

TEdit *AFitL;

TEdit *VFitL;

TLabel *Labell7;

TLabel *Labell8;

TLabel *Labell9;

TEdit *MFitH;

TEdit *AFitH;

TEdit *VFitH;

TLabel *Label20;

TLabel *Label21;

TEdit *OFitL;

TEdit *OFitH;

TLabel *Label22;

TLabel *Label23;

TPanel *Panel3;

TLabel *Label24;

TEdit *TEditl;

TEdit *TEdit2;

TEdit *TEdit3;

TEdit *TEdit4;

TEdit *TEdit5;

TEdit *TEdit6;

TEdit *TEdit7;

TEdit *TEdit8;

TEdit *TEdit9;

TLabel *Label25;

TEdit *TEditRes;

TButton *Button4;

TEdit *Editll;

TLabel *Label26;

TLabel *Label27;

TButton *Button5;

TEdit *Editl2;

TLabel *Label28;

TLabel *Label29;

TEdit *Editl3;

TLabel *Label30;

TEdit *Editl4;

TButton *SaveButton;

TSaveDialog *SaveDialogl;

TEdit *AFitL2;

TLabel *Label31;

void __ fastcall ButtonlClick(TObject *Sender);

void _ fastcall FormPaint(TObject *Sender);

void _ fastcall VolSliderlChange(TObject *Sender);

void __ fastcall ListBox1Click(TObject *Sender);

void __ fastcall CheckBox1Click(TObject *Sender);

void __ fastcall RadioGrouplClick(TObject *Sender);

void __ fastcall GainSliderlChange(TObject *Sender);

void _ fastcall RadioGroup2Click(TObject *Sender);

void __ fastcall Button2Click(TObject *Sender);

void __ fastcall Button3Click(TObject *Sender);

void __ fastcall Button4Click(TObject *Sender);

void __ fastcall Button5Click(TObject *Sender);

void _ fastcall SaveButtonClick(TObject *Sender);

private: // User declarations

bool InUse;

long MaxX, Maxy;

Graphics::TBitmap *Bitmap,*Bitmap2;

int NoOfSpeakers,SliderLength, Iterations;

double SpeakPos[8],SpGain[8],SpGainH[8],WSig,XSig,YSig,
WGain[3],XGain[3],YGain[3],WGainH[3],XGainH[3],
YGainH[3],WSigH,WSigL,XSigH,XSigL,YSigH,YSigL;

double P,P2,E,VecLowX,VecLowY,VecHighX,VecHighy,
Rep1[360],Rep2[360],Rep3[360],Rep4[360],Rep5[360],
LFVol ,HFVol ,VolLx[360],VolHx[360],VolLy[360],
VolHy[360],LamL, ILamL,LamH, ILamH,0GainL,0GainH;

double Deg2Rad(double Deq);

void PlotPolar(Graphics::TBitmap *Bitmap,double *Radius,

int skip);

void UpdateEdits();

void UpdateNewEdits();

double TempArray[9],StepSize,MaxTabu;

public: // User declarations

__Fastcall TForml1(TComponent* Owner);

void GPaint();

void RPaint();

Tabu *TSearch;

HighTabu *TSearchH;

#endi

#ifndef TabuH
#define TabuH

#include <math.h>
class Tabu
L
private:
double Current[32],SPosition[32],SGain[32],Vvx[512],Vy[512],
V2x[512],V2y[512];
double ResCurrent;
double MFit,VFit,AFit,AFit2,P,VolScale,E;
double NAngles,AStep;
double W,X,Y,WSig,XSig,YSig;
int NSpeakers,ResControl,CDir[32],ResCDir;
public:
double CBest[32],0Best[32],ResBestLocal ,ResBestOverall;
double StepSize;
int MUp[32],MDown[32],MMax;
Tabu(double *Array, double *SPos, int NPoints);
~Tabu(Q);
void StartTabu();
double CalcArrays(Q);

Tabu: :Tabu(double *Array, double *SPos, int NPoints)
{

NAngles=90;

StepSize=0.01;

AStep=M_PI1*2/NAngles;

NSpeakers=NPoints;

MMax=99999999;

for(int a=0;a<(NPoints*2)-1;a++)

{
//Copy initial Startup array
Current[a]=CBest[a]=0Best[a]=Array[a];
SPosition[a]=SPos[a];
MUp[a]=MDown[a]=0;

}
W=1/(sqrt(2.0F));
ResBestOverall=CalcArrays();

void Tabu::StartTabu(Q)
{
double CMax;
ResBestLocal=999999;
for(int control=0;control<(NSpeakers*2)-2;control++)

{
if(control==(NSpeakers*2)-2)
CMax=2.0f;
else
CMax=1.0f;

for(int test=1;test<3;test++)

if(!MUp[control] && test==1)
{

if(Current[control]>=CMax)

{
Current[control]=CMax;
MUp[control]+=5;
CDir[control]=0;

}

else

{ -
Current[control]+=StepSize;
CDir[control]=1;

he

}
else if(test==1)

CDir[control]=0;
}

if(IMDown[control] && test==2)

if(Current[control]<=0)

{
Current[control]=0;
MDown[control]+=5;
CDir[control]=0;

}

else

{ _
Current[control]-=StepSize;
CDir[control]=-1;

}

}
else if(test==2)

CDir[control]=0;
}

if(MUp[control]&&MDown[control])

CDir[control]=0;

}

if(CDir[control])

{
ResCurrent=CalcArrays();

}

else

{
ResCurrent=999999;

}

if(ResCurrent<ResBestLocal)

{
ResCDir=CDir[control];
ResControl=control;
for(int a=0;a<(NSpeakers*2)-1;a++)

CBest[a]=Current[a];

ResBestLocal=ResCurrent;

b

Current[control]-=StepSize

*((double)CDir[control]);

if(MDown[control]>MMax) MDown[control]=MMax;
if(MUp[control]>MMax) MUp[control]=MMax;

if(MDown[control]) MDown[control]--;
if(MUp[control]) MUp[control]--;

}
if(ResCDir==1) MDown[ResControl]+=5;
if(ResCDir==-1) MUp[ResControl]+=5;
for(int a=0;a<(NSpeakers*2)-1;a++)
{

Current[a]=CBest[a];

iT(ResBestLocal<ResBestOverall)

{
ResBestOveral I=ResBestLocal ;
for(int a=0;a<(NSpeakers*2)-1;a++)
OBest[a]=CBest[a];
}
by
/)
double Tabu::CalcArrays()
{

if(INSpeakers) Application->MessageBox(**'Stopl™,NULL,NULL);
double LEI=Current[8];
double wl=Current[0],x1=Current[1],y1=0;
double w2=Current[2],x2=Current|[3],y2=Current[4];
double w3=Current[5],x3=Current|[6],y3=Current[7];
double iLI=1/L1,P;
int i=0;
MFIt=VFit=AFit=E=0;
for(double Ang=0;Ang<2*M_PI ;Ang+=AStep)
{
X=cos(AnQg);
Y=sin(Ang);

WSig=(0.5*(LI+iLD)*W) + ((1/sgrt(8))*(LI-iLD)*X);
XSig=(0.5*(LI+iLD)*X) + ((/sgrt(2))*(LI-iLD)*W);
YSig=Y;

SGain[0]=(w1*WSig) + (X1*XSig) + (y1*YSig);
SGain[1]=(w2*WSig) (x2*XSig) + (y2*YSig);
SGain[2]=(w3*WSiQg) (x3*XSig) + (y3*YSig);
SGain[3]=(w3*WSiQg) (x3*XSig) - (y3*YSig);
SGain[4]=(w2*WSig) + (X2*XSig) (y2*YSig);

P=0;Vx[i1]=0;Vy[i]=0;E=0;V2x[i]=0;V2y[i]=0;
iT(INSpeakers)

Application->MessageBox(*'Stop2™ ,NULL ,NULL);
for(int a=0;a<NSpeakers;a++)

{

+

P+=SGain[a];
E+=SGain[a]*SGain[a];

by

if(i==0) VolScale=P;

for(int a=0;a<NSpeakers;a++)

{
Vx[1]+=SGain[a]*cos(SPosition[a]);
Vy[i]+=SGain[a]*sin(SPosition[a]);
V2x[i]+=SGain[a]*SGain[a]*cos(SPosition[a]);
V2y[i]+=SGain[a]*SGain[a]*sin(SPosition[a]);

b
it(P)
{

I}
o

Vy[i]l/
V2x[i]/=E;
V2y[i]/=E;
}
VFit+=(1-(VolScale/P))*(1-(VolScale/P));
MFiIt+=pow(1-sqrt((VXLi1*VxL[iD+(VyLi1*Vy[il1)).2);
double tAng=Ang-atan2(Vy[i],Vx[il);
if(tAng>M_PI1) tAng-=(2*M_PI);
iF(tAng<-M_PI1) tAng+=(2*M_PI);
double tAng2=Ang-atan2(V2y[i],V2x[i]);
if(tAng2>M_P1) tAng2-=(2*M_PI1);
iT(tAng2<-M_PI1) tAng2+=(2*M_P1);
AFit2+=tAng2*tAng2;
i++;
by
VFit=sgrt(VFit/(double)NAngles);
MFit=sqrt(MFit/(double)NAngles);
AFit=sgrt(AFit/(double)NAngles);
AFit2=sqrt(AFit2/(double)NAngles);
return(AFit+(AFit2)+(MFit*4.0f/5.0F)+(VFit));

#endif

#ifndef HighTabuH
#define HighTabuH

#include <math.h>

class HighTabu

L
private:
double Current[32],SPosition[32],SGain[32],Vx[512],Vy[512];
double ResCurrent;
double MFit,VFit,AFit,AFit2,P,VolScale,E;
double NAngles,AStep;
double W,X,Y,WSig,XSig,YSig;
int NSpeakers,ResControl,CDir[32],ResCDir;
public:
double CBest[32],0Best[32],ResBestLocal ,ResBestOverall;
double StepSize;
int MUp[32],MDown[32],MMax;
HighTabu(double *Array, double *SPos, int NPoints);
~HighTabu(Q;
void StartTabu();
double CalcArrays(Q);
}:
/)

HighTabu: :HighTabu(double *Array, double *SPos, int NPoints)
{

NAngles=90;

StepSize=0.01;

AStep=M_PI1*2/NAngles;

NSpeakers=NPoints;

MMax=99999999;

for(int a=0;a<(NPoints*2)-1;a++)

{
//Copy initial Startup array
Current[a]=CBest[a]=0Best[a]=Array[a];
SPosition[a]=SPos[a];
MUp[a]=MDown[a]=0;

}
W=1/(sqrt(2.0F));
ResBestOverall=CalcArrays();

void HighTabu: :StartTabu()
{
double CMax;
ResBestLocal=999999;
for(int control=0;control<(NSpeakers*2)-1;control++)

{
if(control==(NSpeakers*2)-2)
CMax=2.0f;
else
CMax=1.0f;

for(int test=1;test<3;test++)

if(!MUp[control] && test==1)
{

if(Current[control]>=CMax)

{
Current[control]=CMax;
MUp[control]+=5;
CDir[control]=0;

}

else

{ -
Current[control]+=StepSize;
CDir[control]=1;

he

}
else if(test==1)

CDir[control]=0;
}

if(IMDown[control] && test==2)

if(Current[control]<=0)

{
Current[control]=0;
MDown[control]+=5;
CDir[control]=0;

}

else

{ _
Current[control]-=StepSize;
CDir[control]=-1;

}

}
else if(test==2)

CDir[control]=0;
}

if(MUp[control]&&MDown[control])

CDir[control]=0;

}

if(CDir[control])

{
ResCurrent=CalcArrays();

}

else

{
ResCurrent=999999;

}

if(ResCurrent<ResBestLocal)

{
ResCDir=CDir[control];
ResControl=control;
for(int a=0;a<(NSpeakers*2)-1;a++)

CBest[a]=Current[a];

ResBestLocal=ResCurrent;

b

Current[control]-=StepSize*

((double)CDir[control]);

if(MDown[control]>MMax) MDown[control]=MMax;
if(MUp[control]>MMax) MUp[control]=MMax;

if(MDown[control]) MDown[control]--;
if(MUp[control]) MUp[control]--;

}
if(ResCDir==1) MDown[ResControl]+=5;
if(ResCDir==-1) MUp[ResControl]+=5;
for(int a=0;a<(NSpeakers*2)-1;a++)
{

Current[a]=CBest[a];

iT(ResBestLocal<ResBestOverall)

{
ResBestOveral I=ResBestLocal ;
for(int a=0;a<(NSpeakers*2)-1;a++)
OBest[a]=CBest[a];
}
by
/)
double HighTabu::CalcArrays()
{

if(INSpeakers) Application->MessageBox(**'Stopl™,NULL,NULL);
double LEI=Current[8];
double wl=Current[0],x1=Current[1],y1=0;
double w2=Current[2],x2=Current|[3],y2=Current[4];
double w3=Current[5],x3=Current|[6],y3=Current[7];
double iLI=1/L1,P;
int i=0;
MFIt=VFit=AFit=0;
for(double Ang=0;Ang<2*M_PI ;Ang+=AStep)
{
X=cos(AnQg);
Y=sin(Ang);

WSig=(0.5*(LI+iLD)*W) + ((1/sgrt(8))*(LI-iLD)*X);
XSig=(0.5*(LI+iLD)*X) + ((/sgrt(2))*(LI-iLD)*W);
YSig=Y;

SGain[0]=(w1*WSig) + (X1*XSig) + (y1*YSig);
SGain[1]=(w2*WSig) (x2*XSig) + (y2*YSig);
SGain[2]=(w3*WSiQg) (x3*XSig) + (y3*YSig);
SGain[3]=(w3*WSiQg) (x3*XSig) - (y3*YSig);
SGain[4]=(w2*WSig) + (X2*XSig) (y2*YSig);

+

P=0;Vx[i1]=0;Vy[i]=0,E=0;
for(int a=0;a<NSpeakers;a++)
{
P+=SGain[a]*SGain[a];
E+=SGain[a]*SGain[a];

}

if(i==0) VolScale=P;

for(int a=0;a<NSpeakers;a++)

{
Vx[i]+=SGain[a]*SGain[a]*cos(SPosition[a]);
Vy[i]+=SGain[a]*SGain[a]*sin(SPosition[a]);

}

if(E)

Vx[i]/=E;

Vy[i]/=E;

VFit+=(1-(VolScale/P))*(1-(VolScale/P));
MFIt+=pow(1-sqrt((VXLi]*Vx[i])+(Vy[i1*Vy[i]1)).2);
double tAng=Ang-atan2(Vy[i],Vx[i]);
if(tAng>M_PI1) tAng-=(2*M_PI);
if(tAng<-M_PI1) tAng+=(2*M_PI);
AFit+=tAng*tAng;

i++;

VFit=sqgrt(VFit/(double)NAngles);
MFit=sqrt(MFit/(double)NAngles);
AFit=sgrt(AFit/(double)NAngles);
return(AFit+MFit/3+VFit/2);

b

#endif

9.2.2 Windows C++ Code used in the Real-Time Audio System

Software

#include <vcl.h>
#pragma hdrstop

#include "Main.h"
#include "WigSound2._h"

#pragma package(smart_init)
#pragma resource "*._.dfm"
TAmbiToAIl *AmbiToAll;
WigSound2 *WAudio;

Y T e T
___Fastcall TAmbiToAll::TAmbiToAll(TComponent* Owner)

: TForm(Owner)
{
ks
[~

void _ fastcall TAmbiToAll: :FormCreate(TObject *Sender)

{

WAudio = new WigSound2(this); //Gives this pointer to the
form class

Button2->Enabled=Ffalse;

Button3->Enabled=false;

Button4->Enabled=false;

ScrollBar2Change(ScrollBar2);

ScrollBar3Change(ScrollBar3);

void _ fastcall TAmbiToAll::ButtonlClick(TObject *Sender)
{
unsigned short Buff=2049;
int nchan = (NumChannels->ltemlndex+1)*2;
m_volume = -ScrollBar2->Position/100.0F;
if(SampleRate->I1temlndex==1)

WAudio->InitMem(nchan,Buff,48000) ;
WAudio->SkipAudio(ScrolIBarl->Position);
WAudio->Initialise(nchan,48000,Buff,4,4);

}

else

{
WAudio->InitMem(nchan,Buff,44100);
WAudio->SkipAudio(ScrolIBarl->Position);
WAudio->Initialise(nchan,44100,Buff,4,4);

by

WAudio->0OpenDevice(1);
Buttonl->Enabled=false;
Button3->Enabled=true;
Button4->Enabled=false;

void __ fastcall TAmbiToAll: :Button3Click(TObject *Sender)

{
WAudio->Pause();

Button2->Enabled=true;

Button3->Enabled=false;
Button4->Enabled=true;

void __ fastcall TAmbiToAll::Button2Click(TObject *Sender)
{
WAudio->SkipAudio(ScrolIBarl->Position);
WAudio->UnPause();
Button2->Enabled=false;
Button3->Enabled=true;
Button4->Enabled=false;

unsigned short Buff=2049;
Buttonl->Enabled=true;
Button2->Enabled=false;
Button3->Enabled=false;
Button4->Enabled=false;
WAudio->CloseDevice(l);
WAudio->UniInitMem(2,Buff);
ScrollBarl->Position = 0;

void __ fastcall TAmbiToAll::FormDestroy(TObject *Sender)

{
if(Button3->Enabled)

{
Button3Click(Button3);
Sleep(400);
}
if(Button4->Enabled)
{
Button4Click(Buttond);
Sleep(400);
by
delete WAudio;
by
/)~

void __ fastcall TAmbiToAll: :WButClick(TObject *Sender)
{
TEdit *ptr
char *cptr
bool result;
if(cptr[0]!="c")
result = OpenDialogl->Execute();

(TEdit *)Sender;
ptr->Name.c_str();

else
result = true;
if(result)
{
switch(cptr[0])
{
case “"W-":

WFName = OpenDialogl->FileName;
WEdit->Text = WFName;

break;

case "X":
XFName = OpenDialogl->FileName;
XEdit->Text = XFName;

break;

case "Y":

YFName = OpenDialogl->FileName;
YEdit->Text = YFName;

break;

case “Z-":
ZFName = OpenDialogl->FileName;
ZEdit->Text = ZFName;

case "c":
switch(cptr[1])

case “W":

WFName = NULL;
WEdit->Text = WFName;
break;

case "X":

XFName = NULL;
XEdit->Text = XFName;
break;

case "Y":

YFName = NULL;
YEdit->Text = YFName;
break;

case "Z":

ZFName = NULL;
ZEdit->Text = ZFName;
break;

void TAmbiToAll: :UpdateWaveTime(unsigned long WRead)
{

WaveRead = WRead;
ScrollBarl->Position =
(int) ((float) (WaveRead)*200.0f/ (Float) (WaveSize));

void __ fastcall TAmbiToAll::RotorSliderlChange(TObject *Sender)
Labell->Caption = IntToStr((int)(360 —

RotorSliderl->DotPosition + 0.5F));
RotAngle = -RotorSliderl->DotPosition*M_P1/180.0f;

void __ fastcall TAmbiToAll::AmbiEffectClick(TObject *Sender)

{
m_effect = AmbiEffect->1temindex;

void __ fastcall TAmbiToAll::RotorSlider2Change(TObject *Sender)
{
Label2->Caption = IntToStr((int)(360 - RotorSlider2-

>DotPosition+0.5%F));
monopan = -RotorSlider2->DotPosition*M_P1/180.0f;

void _ fastcall TAmbiToAll::TransFilterClick(TObject *Sender)
{

}

WAudio->UpdateFilter = true;

float db;
m_volume = -ScrollBar2->Position/100.0f;
if(n_volume)

db = 20 * logl0(m_volume);
Label5->Caption = FloatToStrF(db,ffFixed,3,1) + "dB";

void __ fastcall TAmbiToAll::RearFilterClick(TObject *Sender)

{
WAudio->UpdateRearFilter = true;

void __ fastcall TAmbiToAll::ScrollBar3Change(TObject *Sender)
{
m_width = -ScrollBar3->Position/100.0f;
Label6->Caption = FloatToStrF(m_width,ffFixed,4,2);

void _ fastcall TAmbiToAll::RotorSlider3Change(TObject *Sender)
{
Label9->Caption = IntToStr(
(int) (RotorSlider3->DotPosition - 90.0F + 0.5F));
TiltAngle = (RotorSlider3->DotPosition - 90.0F)*M_P1/180.0F;

#ifndef
#define

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

class TA

{
__publis

MainH
MainH

<Classes.hpp>
<Controls.hpp>
<StdCtrls.hpp>
<Forms.hpp>
"RotorSlider.h"
"LevelMeter2.h"
"Oscilloscope.h”
"GLGraph.h"
<ComCtrls.hpp>
<ExtCtrls.hpp>
<Dialogs.hpp>

mbiToAll - public TForm

hed: // 1DE-managed Components

TButton *Buttonl;

TButton *Button?2;

TButton *Button3;

TButton *Button4;

TEdit *WEdit;

TEdit *XEdit;

TEdit *YEdit;

TEdit *ZEdit;

TButton *WBuUt;

TButton *XBut;

TButton *YBut;

TButton *ZBut;

TOpenDialog *OpenDialogl;
TScrollBar *ScrollBarl;
TButton *cW;

TButton *cX;

TButton *cY;

TButton *cZ;

TRotorSlider *RotorSliderl;
TLabel *Labell;
TOscilloscope *Oscilloscopel;
TOscilloscope *Oscilloscope?2;
TRadioGroup *AmbiEffect;
TRadioGroup *Ambilnput;
TRotorSlider *RotorSlider2;
TLabel *Label2;

TLabel *Label3;

TLabel *Label4;

TRadioGroup *NumChannels;
TRadioGroup *SampleRate;
TRadioGroup *TransFilter;
TRadioGroup *RearFilter;
TScrollBar *ScrollBar?2;
TLabel *Label5;

TScrollBar *ScrollBar3;
TLabel *Label6;

TLabel *Label7;

TLabel *Label8;
TRotorSlider *RotorSlider3;
TLabel *Label9;

TLabel *Labell0;

void __ fastcall ButtonlClick(TObject *Sender);

void __ fastcall Button3Click(TObject *Sender);

void __ fastcall Button2Click(TObject *Sender);

void __ fastcall Button4Click(TObject *Sender);

void __ fastcall FormCreate(TObject *Sender);

void __ fastcall FormDestroy(TObject *Sender);

void _ fastcall WButClick(TObject *Sender);

void _ fastcall RotorSliderlChange(TObject *Sender);
void __ fastcall AmbiEffectClick(TObject *Sender);
void __ fastcall RotorSlider2Change(TObject *Sender);
void __ fastcall TransFilterClick(TObject *Sender);
void _ fastcall ScrollBar2Change(TObject *Sender);
void _ fastcall RearFilterClick(TObject *Sender);
void __ fastcall ScrollBar3Change(TObject *Sender);
void __ fastcall RotorSlider3Change(TObject *Sender);

private: // User declarations
bool TWriting;
public: // User declarations

unsigned long WaveRead;

unsigned long WaveSize;

void UpdateWaveTime(unsigned long WRead);
___Fastcall TAmbiToAll(TComponent* Owner);
AnsiString WFName, XFName, YFName, ZFName;
short m_effect;

float m_volume,m width;

float RotAngle,monopan,TiltAngle;

#endif

#ifndef WigSoundH
#define WigSoundH

#include <mmsystem.h>

class WigSound
{
private:
WAVEHDR *WaveHeadersOut,*WaveHeadersln,*SampleBuffer;
HWAVEOUT hWaveOut;
HWAVEIN hWaveln;
MMRESULT Error;
unsigned int NoOfBuffers,NoOfQueueBuffers;
unsigned short NoOfChannels,BufferLengthPerChannel;

friend void CALLBACK WaveOutCallback(HWAVEOUT hwo, UINT uMsg,
WORD dwlnstance,DWORD dwParaml, DWORD dwParam2);

friend void CALLBACK WavelnCallback(HWAVEIN hwi, UINT uMsg,
DWORD dwlnstance,DWORD dwParaml, DWORD dwParam2);

void ClearBufferFromFIFOQ);
void ProcesskErrorIn(MMRESULT Error);
void ProcesskErrorOut(MMRESULT Error);
protected:
WAVEFORMATEX WaveFormat;
public:
WigSound();
void Initialise(unsigned short usNoOfChannels,
unsigned long usSampleRate,unsigned short usBufferLengthPerChannel,
unsigned int uiNoOfBuffers,unsigned int uiNoOfQueueBuffers);
virtual void ProcessAudio(WAVEHDR *pWaveHeader,
unsigned short usNoOfChannels,
unsigned short usBufferLengthPerChannel);
virtual void MonitorAudio(WAVEHDR *pWaveHeader,
unsigned short usNoOfChannels,
unsigned short usBufferLengthPerChannel);
void ProcessAudioln(WAVEHDR *pWaveHeader,
unsigned short usNoOfChannels,
unsigned short usBufferLengthPerChannel);
void OpenDevice(UINT Device);
void CloseDevice(UINT Device);
void Pause();
void UnPause();
void WavelnFunc(WAVEHDR *pWaveHeader) ;
void WaveOutFunc(WAVEHDR *pWaveHeader);
bool Closing,Paused;
WAVEHDR *ReadBuffer ,*WriteBuffer;

void WigSound::Initialise(
unsigned short usNoOfChannels,unsigned long usSampleRate,
unsigned short usBufferLengthPerChannel,
unsigned int uiNoOfBuffers,unsigned int uiNoOfQueueBuffers)

WaveFormat.wFormatTag = WAVE_FORMAT_PCM;

WaveFormat.nChannels = usNoOfChannels;
WaveFormat.nSamplesPerSec = usSampleRate;
WaveFormat.wBitsPerSample = 16;

WaveFormat.nBlockAlign
(unsigned short)(usNoOfChanneIs*16/8)
WaveFormat.nAvgBytesPerSec =
(unsigned Iong)(usSampIeRate*WaveFormat nBlockAlign);

WaveFormat.cbSize = 0;
NoOfBuffers = ulNoOfBuffers;
NoOfQueueBuffers = uiNoOfQueueBuffers;
NoOfChannels = usNoOfChannels;
BufferLengthPerChannel = usBufferLengthPerChannel;
SampleBuffer =

new WAVEHDR[NoOfQueueBuffers];
WriteBuffer = SampleBuffer;
ReadBuffer = SampleBuffer;
WaveHeadersOut = new WAVEHDR[NoOfBuffers];
WaveHeadersln = new WAVEHDR[NoOfBuffers];
Closing = false;
Paused = true;

for(UINT i=0;i<NoOfBuffers;i++)
{
WaveHeadersOut[i].dwBufferLength =
usBufferLengthPerChannel*16*usNoOfChannels/8;
WaveHeadersOut[i].- IpData =
new char[WaveHeadersOut[i].dwBufferLength];

memset(WaveHeadersOut[i].- IpData,0,WaveHeadersOut[i].dwBufferLength);
WaveHeadersOut[i] .dwFlags=0;
WaveHeadersOut[i] .dwLoops=0;

WaveHeaderslIn[i].dwBufferLength =
usBufferLengthPerChannel*16*usNoOfChannels/8;
WaveHeaderslIn[i].lIpData =
new char[WaveHeadersiIn[i].dwBufferLength];

memset(WaveHeaderslIn[i] .- IpData,0,WaveHeadersIn[i].dwBufferLength);
WaveHeadersIn[i].dwFlags=0;
WaveHeadersIn[i].dwLoops=0;

}

Ffor(UINT i=0;i<NoOfQueueBuffers;i++)
{
SampleBuffer[i].dwBufferLength =
usBufferLengthPerChannel*16*usNoOfChannels/8;
SampleBuffer[i].IpData =
new char[SampleBuffer[i].dwBufferLength];

memset(SampleBuffer[i]. IpData,O, SampleBuffer[i]_deufferLength);
SampleBuffer[i].dwFlags = O;
SampleBuffer[i].dwLoops = O;

}
}
/)
void WigSound: :OpenDevice(UINT Device)
{

Device?Device--:Device=WAVE_MAPPER;

Error = waveOutOpen(&hWaveOut,Device,&WaveFormat,
(DWORD)WaveOutCal lback,

(DWORD)this,CALLBACK_FUNCTION);
if(Error) ProcessErrorOut(Error);

Error = waveOutPause(hWaveOut);
if(Error) ProcessErrorOut(Error);

Ffor(UINT i=0;i<NoOfBuffers;i++)
{
Error = waveOutPrepareHeader (hWaveOut,
&WaveHeadersOut[i1],sizeof(WaveHeadersOut[i]));
if(Error) ProcessErrorOut(Error);

Error = waveOutWrite(hWaveOut,
&WaveHeadersOut[i1],sizeof(WaveHeadersOut[i]));
if(Error) ProcessErrorOut(Error);

}

Error = wavelnOpen(&hWaveln,Device,&VaveFormat,
(DWORD)WaveInCal lback,
(DWORD) this,CALLBACK_FUNCTION);
if(Error) ProcessErroriIn(Error);

for(UINT i=0;i<NoOfBuffers;i++)
{

Error = wavelnPrepareHeader(hWaveln,
&WaveHeaderslIn[i],
sizeof(WaveHeadersIn[i]));

if(Error) ProcessErrorin(Error);

Error = wavelnAddBuffer(hWaveln,&VaveHeaderslIn[i],
sizeof(WaveHeadersIn[i]));
if(Error) ProcessErrorin(Error);

}

Error = waveOutRestart(hWaveOut);
if(Error) ProcessErrorOut(Error);

Error = wavelnStart(hWaveln);
if(Error) ProcessErrorin(Error);
Paused=false;

void WigSound: :CloseDevice(UINT Device)
{

Closing=true;
Error = wavelnReset(hWaveln);

if(Error) ProcessErrorin(Error);
Error = waveOutReset(hWaveOut);
if(Error) ProcessErrorOut(Error);
Sleep(300);

Ffor(UINT i=0;i<NoOfBuffers;i++)
{
Error = waveOutUnprepareHeader(hWaveOut,
&WaveHeadersOut[1],sizeof(WaveHeadersOut[i]));
if(Error) ProcessErrorOut(Error);
if(WaveHeadersOut[i]. IpData)
delete [] WaveHeadersOut[i].IpData;

Error = wavelnUnprepareHeader(hWaveln,
&WaveHeadersIn[i],
sizeof(WaveHeadersIn[i]));

if(Error) ProcessErrorin(Error);
if(WaveHeadersIn[i]. IpData)
delete [] WaveHeadersiIn[i].IpData;

}
Ffor(UINT i=0;i<NoOfQueueBuffers;i++)

if(SampleBuffer[i].IpData)
delete [] SampleBuffer[i].IpData;
}
if(WaveHeadersOut) delete [] WaveHeadersOut;
if(WaveHeaderslIn) delete [] WaveHeadersin;
if(SampleBuffer) delete [] SampleBuffer;

Error = wavelnClose(hWaveln);

if(Error) ProcessErrorin(Error);
Error = waveOutClose(hWaveOut);
if(Error) ProcessErrorOut(Error);

WigSound: :Pause()

Paused=true;

WigSound: :UnPause()

Paused=false;

WigSound: :ProcessError In(MMRESULT Error)

char Text[256];
wavelnGetErrorText(Error,Text,sizeof(Text));
MessageBox(NULL,Text,"Error' ,MB_OK);

WigSound: :ProcessErrorOut(MMRESULT Error)

char Text[256];
waveOutGetErrorText(Error,Text,sizeof(Text));
MessageBox(NULL , Text,"Error' ,MB_OK);

WigSound: :Wave InFunc(WAVEHDR *pWaveHeader)

ProcessAudioln(pWaveHeader ,NoOfChannels,
BufferLengthPerChannel);

Error = wavelnAddBuffer(hWaveln,pWaveHeader,
sizeof(*pWaveHeader));

WigSound: :WaveOutFunc(WAVEHDR *pWaveHeader)

ProcessAudio(pWaveHeader ,NoOfChannels,
BufferLengthPerChannel);

ClearBufferFromFIFOQ);

Error = waveOutWrite(hWaveOut, pWaveHeader,
sizeof(*pWaveHeader));

void CALLBACK WaveOutCal lback(HWAVEOUT hwo, UINT uMsg,
DWORD dwlnstance,DWORD dwParaml, DWORD dwParam2)

{
WigSound *me = (WigSound *)dwlnstance;
switch(uMsg)
{
case WOM_DONE:
{
if(Ime->Closing)
me->WaveOutFunc((WAVEHDR *)dwParaml);
break;
>
default:
break;
}
}
// -

void CALLBACK WavelnCallback(HWAVEIN hwi, UINT uMsg, DWORD
dwlnstance,
DWORD dwParaml, DWORD dwParam2)

{
WigSound *me = (WigSound *)dwlnstance;
switch(uMsg)
case WIM_DATA:
{
if(Ime->Closing)
me->Wave InFunc((WAVEHDR *)dwParaml);
break;
by
default:
break;
he
by
/)=

void WigSound: :ProcessAudio(WAVEHDR *pWaveHeader,
unsigned short usNoOfChannels,
unsigned short usBufferLengthPerChannel)

void WigSound: :MonitorAudio(WAVEHDR *pWaveHeader, unsigned short
usNoOfChannels,
unsigned short usBufferLengthPerChannel)

void WigSound: :ProcessAudioln(WAVEHDR *pWaveHeader, unsigned short
usNoOfChannels,

{

unsigned short usBufferLengthPerChannel)

memcpy (WriteBuffer->1pData, pWaveHeader->IpData,
pWaveHeader->dwBufferLength);
WriteBuffer++;
if(WriteBuffer>&SampleBuffer[NoOfQueueBuffers-1])
WriteBuffer=&SampleBuffer[NoOfQueueBuffers-1];

MonitorAudio(pWaveHeader ,usNoOfChannels,
usBufferLengthPerChannel);

/)
void WigSound: :ClearBufferFromFIFO()
{
Ffor(UINT i=0;i<NoOfQueueBuffers-1;i++)
{
memcpy(SampleBuffer[i]. IpData,
SampleBuffer[i+1].IpData,
SampleBuffer[i].dwBufferLength);
}
if(WriteBuffer>SampleBuffer) WriteBuffer--;
}
/)

#ifndef WigSoundH2
#define WigSoundH2

#include <fstream.h>
#include "WigSound.h"
#include "WigAmbi._.h"
#include "WaveFile.h"
#include "FastConv.h"
#include "AllPass.h"
#include "Main.h"

#define BLEN 4096
#define FFTORDER 12
#define FFTSIZE 4096

class WigSound2 : public WigSound

{
private:
float **Samples,**Decode,*SElev,*SAzim,*mono;
bool bSkip;
long SkipOffset;
AmbiBuffer *ABuf,*BBuf;
int NoOfSpeakers,SampleRate;
AnsiString DIR;
//For 2 ears
FastFilter *WF,*XF,*YF,*ZF;
FastFilter *WF2D,*XF2D,*YF2D;
//For 4 ears
FastFilter *WFf,*WFr,*XFF,*XFr,*YFf,*YFr;
//For Front...
FastFilter *h1fl,*h2fl,*h1fr,*h2fr;
// and Back X-Talk Cancellation Filters
FastFilter *hlrl,*h2rl,*hlrr,*h2rr;
//AllPass Filters for cheap Ambisonics decoder
AllPass *WAP,*XAP,*YAP;
void LoadFilters(int SRate);
void UnloadFilters(Q);
void ChooseFilter(int SRate);
void ChooseRearFilter(int SRate);
void B2Headphones(AmbiBuffer *Signal, float **Samples,
int NoOfChannels);
void B2Headphones2D(AmbiBuffer *Signal, float **Samples,
int NoOfChannels);
void B2Headphones4(AmbiBuffer *Signal, AmbiBuffer *Signal2,
float **Samples, int NoOfChannels);
void B2Trans(AmbiBuffer *Signal,float *Left,float *Right,
int NoOfChannels,FastFilter *hl, FastFilter *h2,
FastFilter *hlr, FastFilter *h2r);
public:

WigSound2(TAmbiToAll *Sender);
~WigSound2(Q);
void InitMem(unsigned short usNoOfChannels,
unsigned short usBufferLengthPerChannel,
int SRate);
void UnlnitMem(unsigned short usNoOfChannels,
unsigned short usBufferLengthPerChannel);

void ProcessAudio(WAVEHDR *pWaveHeader,

unsigned short usNoOfChannels,

unsigned short usBufferLengthPerChannel);
void MonitorAudio(WAVEHDR *pWaveHeader,

unsigned short usNoOfChannels,

unsigned short usBufferLengthPerChannel);
void SkipAudio(int Offset);
WigFile WFile,XFile,YFile,ZFile;
TAmbiToAll *Window;
bool UpdateFilter,UpdateRearFilter;

}:
// -
WigSound2: :WigSound2(TAmbiToAll *Sender)
{
Window = Sender;
NoOfSpeakers=8;
SkipOffset = 0O;
bSkip = false;
UpdateFilter = fTalse;
DIR = GetCurrentDir();
DIR+="\\"";
}
WigSound2: :~WigSound2()
{
}
void WigSound2::LoadFilters(int SRate)
{
AnsiString wname,xXname,yname,zname;
ZF=NULL;
i f(SRate==48000)
{
wname = DIR + ""Wh481024.dat";
xname = DIR + "Xh481024.dat";
yname = DIR + "Yh481024.dat";
zname = DIR + "Zh481024.dat"';
WF = new FastFilter(FFTORDER,&wname,1024);
XF = new FastFilter(FFTORDER, &xname,1024);
YF = new FastFilter(FFTORDER,&yname,1024,1);
ZF = new FastFilter(FFTORDER,&zname,1024);

wname = DIR + ""Wh4810242D.dat";

xname = DIR + "Xh4810242D.dat"";

yname = DIR + "Yh4810242D.dat"';

WF2D = new FastFilter(FFTORDER,&wname,1024);
XF2D = new FastFilter(FFTORDER,&xname,1024);
YF2D = new FastFilter(FFTORDER, &yname,1024,1);
wname = DIR + "WhFrontl1024.dat";

xname = DIR + "XhFrontl1024.dat";

yname = DIR + "YhFront1024.dat";

WFF new FastFilter(FFTORDER,&wname,1024);

XFf = new FastFilter(FFTORDER,&xname,1024);
YFFf = new FastFilter(FFTORDER,&yname,1024,1);
= DIR + "WhRear1024.dat";
xname = DIR + "XhRearl1024.dat";
= DIR + "YhRearl1024.dat";
= new FastFilter(FFTORDER, &wname,1024);
XFr = new FastFilter(FFTORDER,&xname,1024);
= new FastFilter(FFTORDER, &yname,1024,1);
wname = DIR + "hl1348.dat"';
xname = DIR + "h2348._dat'"';
hi1fl = new FastFilter(FFTORDER,&wname,2048);

h2fl

new FastFilter(FFTORDER, &xname,2048);

hifr = new FastFilter(FFTORDER,&wname,2048);
h2fr = new FastFilter(FFTORDER, &xname,2048);
by
else
{
wname = DIR + "Wh1024.dat"';
xname = DIR + "Xh1024.dat"';
yname = DIR + "Yh1024.dat";
zname = DIR + ""Zh1024_dat";
WF = new FastFilter(FFTORDER,&wname,1024);
XF = new FastFilter(FFTORDER, &xname,1024);
YF = new FastFilter(FFTORDER,&yname,1024,1);
ZF = new FastFilter(FFTORDER,&zname,1024);
wname = DIR + "Wh1024._dat";
xname = DIR + ""Xh1024._.dat";
yname = DIR + "Yh1024.dat";
WF2D = new FastFilter(FFTORDER,&wname,1024);
XF2D = new FastFilter(FFTORDER, &xname,1024);
YF2D = new FastFilter(FFTORDER,&yname,1024,1);
wname = DIR + "WhFrontl1024.dat";
xname = DIR + "XhFrontl024.dat"';
yname = DIR + "YhFrontl1024.dat";
WFf = new FastFilter(FFTORDER, &wname,1024);
XFf = new FastFilter(FFTORDER,&xname,1024);
YFf = new FastFilter(FFTORDER,&yname,1024,1);
wname = DIR + "WhRear1024._dat"';
xname = DIR + "XhRear1024.dat"';
yname = DIR + "YhRearl1024._dat";
WFr = new FastFilter(FFTORDER, &wname,1024);
XFr = new FastFilter(FFTORDER,&xname,1024);
YFr = new FastFilter(FFTORDER,&yname,1024,1);
wname = DIR + "hl3.dat"';
xname = DIR + "h23.dat";
hifl = new FastFilter(FFTORDER,&wname,2048);
h2fl = new FastFilter(FFTORDER, &xname,2048);
hifr = new FastFilter(FFTORDER,&wname,2048);
h2fr = new FastFilter(FFTORDER, &xname,2048);
he
be
void WigSound2: :UnloadFilters()
{
delete WF;
delete XF;
delete YF;
delete ZF;
delete WF2D;
delete XF2D;
delete YF2D;
delete WFT;
delete XFfF;
delete YFT;
delete WFr;
delete XFr;
delete YFr;
delete hilfl;
delete h2fl;
delete hifr;
delete h2fr;
void WigSound2::InitMem(unsigned short usNoOfChannels,

unsigned short usBufferLengthPerChannel,

int SRate)

SampleRate = SRate;

Samples = AllocSampleBuffer(usNoOfChannels,
usBufferLengthPerChannel);

ABuf = AmbiAllocate(usBufferLengthPerChannel,0,1);

//BBuf used for 4-ear algorithms

BBuf = AmbiAllocate(usBufferLengthPerChannel,0,1);

SElev = new float[NoOfSpeakers];
SAZiIm new Float[NoOfSpeakers];
mono = new Float[usBufferLengthPerChannel];
for(int i1=0;i<NoOfSpeakers;i++)

{
SElev[i]=0;
SAzim[i]=(M_PIl/(float)NoOfSpeakers)+
i*2*M_PI1/(Float)NoOfSpeakers;
}

Decode=Al locDecodeArray(NoOfSpeakers,0);
DecoderCalc(SAzim,SElev,NoOfSpeakers,0,sqrt(2) ,Decode);

WFile.WaveFile(Window->WFName.c_str());
XFile_.WaveFile(Window->XFName.c_str());
YFile.WaveFile(Window->YFName.c_str());
ZFile.WaveFile(Window->ZFName.c_str());
Window->WaveSize = WFile.GetWaveSize();

WAP = new AllPass(usBufferLengthPerChannel);
XAP = new AllPass(usBufferLengthPerChannel);
YAP = new AllPass(usBufferLengthPerChannel);

WAP->SetCutOff(500.0f, (Float)SRate);
XAP->SetCutOff(500.0F, (Float)SRate);
YAP->SetCutOff(500.0F, (Float)SRate);

Application->GetNamePath();
LoadFilters(SRate);
Window->0scilloscopel->Prepare();
Window->0scilloscope2->Prepare();
UpdateFilter = UpdateRearFilter = true;

void WigSound2::UnInitMem(unsigned short usNoOfChannels,
unsigned short usBufferLengthPerChannel)
{

Window->0scilloscopel->Unprepare();
Window->0scilloscope2->Unprepare();
UnloadFilters();

delete WAP;

delete XAP;

delete YAP;

WFile.CloseWaveFile();
XFile_CloseWaveFile();
YFile.CloseWaveFile();
ZFile.CloseWaveFile();
FreeSampleBuffer(Samples,usNoOfChannels);
delete[] mono;

delete[] SAzim;

delete[] SElev;
FreeDecodeArray(Decode,0);
AmbiFree(ABuf);

AmbiFree(BBuf);

void WigSound2: :MonitorAudio(WAVEHDR *pWaveHeader, unsigned short
usNoOfChannels,

{

unsigned short usBufferLengthPerChannel)

//Input Callback
//Not Much Here as using Wave Files as input.

}
void WigSound2: :ProcessAudio(WAVEHDR *pWaveHeader, unsigned short
usNoOfChannels,
unsigned short usBufferLengthPerChannel)
{

bytes)

short *inPtr = (short *)ReadBuffer->IpData;
short *outPtr = (short *)pWaveHeader->lpData;
float yn;

//0utput Callback

if('Paused)

i f(bSkip)
{

bSkip = false;
//Scale Offset from 0->200 to O->WaveSize
SkipOffset =
(long) (((double)SkipOffset/200.0)*
(double)WFile.GetWaveSize());

//Guarantee an even number (as offset is in

//and wave file data is iIn shorts
SkipOffset = SkipOffset/2;
SkipOffset = SkipOffset*2;
//0ffset all files
WFile.SkipIntoFile(SkipOffset);
XFile.SkipIntoFile(SkipOffset);
YFile.SKipIntoFile(SKkipOffset);
ZFile_SkipIntoFile(SkipOffset);

switch(Window->Ambi Input->I1temlndex)
{

case O:
//Wave File

WFile.GetWaveSamples(ABuf->W,ABuf->Length);
XFile.GetWaveSamples(ABuf->X,ABuf->Length);
YFile.GetWaveSamples(ABuf->Y,ABuf->Length);
ZFile.GetWaveSamples(ABuf->Z,ABuf->Length);
Window->UpdateWaveTime(WFile.GetWaveRead());
break;

case 1:
//Mono in to be panned
WFile.GetWaveSamples(mono,ABuf->Length);
Window->UpdateWaveTime(WFile.GetWaveRead());
Mono2B(mono , ABuf,Window->monopan,0.0T);
break;

case 2:
//Live in
Delnterlace(ReadBuffer,

Samples,usNoOfChannels);

break;

}

BTilt(ABuf,Window->TiltAngle);
BRotate (ABuf,Window->RotAngle);
const float vol = Window->m_volume;

switch(Window->m_effect)

{

case O:

case 1:

case 2:

case 3:

case 4:

case 5:

default:

WAP->ProcessAudio(ABuf->W,1.33,1.15);

XAP->ProcessAudio(ABuf->X,1.33,1.15);

YAP->ProcessAudio(ABuf->Y,1.33,1.15);

B2Speakers(Decode,ABuf,Samples,
usNoOfChannels,8,0);

break;

B2Headphones(ABuf,Samples,
usNoOfChannels);
break;

B2Headphones2D(ABuf,Samples,
usNoOfChannels);
break;

if(UpdateFilter)

ChooseFilter(SampleRate);
UpdateFilter = false;

}

B2Headphones(ABuf,Samples,
usNoOfChannels);

B2Trans(ABuf,Samples[0],Samples[1],

usNoOfChannels,h1fl ,h2fl ,hl1fr, h2fr);

break;

if(UpdateFilter)

ChooseFilter(SampleRate);
UpdateFilter = false;

}
if(UpdateRearFilter)

ChooseRearFilter(SampleRate);
UpdateRearFilter = false;

}
B2Headphones4 (ABuf,BBuf,
Samples,usNoOfChannels);

B2Trans(ABuf,Samples[0],Samples[1],

usNoOfChannels,h1fl ,h2fl ,h1fr, h2fr);

if(usNoOfChannels>=4)

B2Trans(ABuf,Samples[2],

Samples[3],
usNoOfChannels,hlrl, h2rl,
hirr,h2rr);

break;

if(UpdateFilter)

{
ChooseFilter(SampleRate);

UpdateFilter = false;

}
B2Trans(ABuf,Samples[0],Samples[1],

usNoOfChannels,h1fl ,h2fl ,h1fr, h2fr);
break;

B2Speakers(Decode,ABuf,Samples,

usNoOfChannels,8,0);
break;

}

//Do Volume
for(int i=0;i<usBufferLengthPerChannel;i++)

{
for(int j=0;j<usNoOfChannels;j++)
{
Samples[j][i]*= vol;
}
}

Window->0scilloscopel->SampleArray = Samples[0];
Window->0scilloscope2->SampleArray = Samples[1];
Window->0scilloscopel->UpdateGraph();
Window->0scil loscope2->UpdateGraph();
Relnterlace(pWaveHeader,Samples,usNoOfChannels);

}
else
{
memset(pWaveHeader->IpData,0,
pWaveHeader->dwBufferLength);
}
¥
void WigSound2: :SkipAudio(int Offset)

{
SkipOffset = (unsigned long)Offset;

bSkip = true;

}
void WigSound2: :B2Headphones(AmbiBuffer *Signal, float **Samples, int
NoOfChannels)
{
const int Len = Signal->Length;
const float Wid = Window->m_width;
if(Window->m_effect==1 || Window->m_effect==2)

{
WF->0OverAddFir(Signal->W,Wid);
XF->0verAddFir(Signal->X,Wid);
YF->0OverAddFir(Signal->Y,Wid);
if(ZF)
ZF->0verAddFir(Signal->Z,Wid);
}
else
{
WF->0OverAddFir(Signal->W);
XF->0verAddFir(Signal->X);
YF->0verAddFir(Signal->Y);
iT(ZF)
ZF->0verAddFir(Signal->72);
}
for(int 1=0;i<Len;i++)
{
Samples[O][1] = 0.5*(Signal->W[i] + Signal->X[i] +
Signal->Y[i] + Signal->Z[i]);
Samples[1][i] = 0.5*(Signal->W[i] + Signal->X[i] -
Signal->Y[i] + Signal->Z[i]);
¥
for(int 1=2;i<NoOfChannels;i++)
{

for(int j=0;j<Len;j++)

}

Samples[i][]j] = 0.0F;
}

void WigSound2: :B2Headphones4(AmbiBuffer *Signal,

{

AmbiBuffer *Signal2, float **Samples, int NoOfChannels)

const iInt Len = Signal->Length;

if(NoOfChannels>=4)

{
memcpy(Signal2->W,Signal->W,sizeof(float)*Len);
memcpy(Signal2->X,Signal->X,sizeof(Float)*Len);
memcpy(Signal2->Y,Signal->Y,sizeof(Float)*Len);

WFf->0verAddFir(Signal->W);
XFf->0verAddFir(Signal->X);
YFf->0verAddFir(Signal->Y);
WFr->0verAddFir(Signal2->W);
XFr->0verAddFir(Signal2->Xx);
YFr->0verAddFir(Signal2->Y);
for(int 1=0;i<Len;i++)
{
Samples[O0][i] Signal->W[i] + Signal->X[i]
+ Signal->Y[i];
Signal->W[i] + Signal->X[i]
- Signal->Y[i];
Signal2->W[i] + Signal2->X[i]
+ Signal2->Y[i];
Samples[3][i1] = Signal2->W[i] + Signal2->X[i]
- Signal2->Y[i];

Samples[1][1]

Samples[2][1]

}

for(int i=4;i<NoOfChannels;i++)

{
for(int j=0;j<Len;j++)
Samples[i][]J] = 0.0F;

}

¥
void WigSound2: :B2Headphones2D(AmbiBuffer *Signal,

{

float **Samples, int NoOfChannels)

const int Len = Signal->Length;
const float Wid = Window->m width;
if(Window->m_effect==1 || Window->m_effect==2)

{
WF2D->0OverAddFir(Signal->W,Wid);
XF2D->0verAddFir(Signal->X,Wid);
YF2D->0verAddFir(Signal->Y,Wid);
by
else
{
WF2D->0OverAddFir(Signal->W);
XF2D->0verAddFir(Signal->X);
YF2D->0verAddFir(Signal->Y);
by
for(int 1=0;i<Len;i++)
{
Samples[O][1] = Signal->W[i]
+ Signal->X[1]
+ Signal->Y[i];
Samples[1][i] = Signal->W[i]

+ Signal->X[i]
- Signal->Y[i];
}

for(int 1=2;i<NoOfChannels;i++)

for(int j=0;j<Len;j++)
Samples[i][j] = 0.0f;
}

}

void WigSound2: :B2Trans(AmbiBuffer *Signal,float *Left,
float *Right, int NoOfChannels,
FastFilter *hll, FastFilter *h2l,
FastFilter *hlr, FastFilter *h2r)

{
const iInt Len = Signal->Length;
const float Width = Window->m_width;
float *tL = new float[Signal->Length];
float *tR = new float[Signal->Length];
memcpy (tL,Left,sizeof(Float)*Len);
memcpy (tR,Right,sizeof(float)*Len);
h1l->0OverAddFir(Left);
h21->0verAddFir(tL);
hlr->OverAddFir(Right);
h2r->0OverAddFir(tR);
for(int 1=0;i<Len;i++)
{

Left[i] = Left[i] + (Width * tR[i]);
Right[i] = Right[i] + (Width * tL[i]);

}
delete[] tL;
delete[] tR;

}

void WigSound2::ChooseFilter(int SRate)

{

AnsiString hlname,h2name;
iT(SRate==44100)

{

switch(Window->TransFilter->1temlndex)

{

case O:
hilname = DIR + "hl3.dat";
h2name = DIR + "h23.dat";
break;

case 1:
hlname = DIR + "hl5.dat";
h2name = DIR + "h25.dat";
break;

case 2:
hlname = DIR + "h1l1l0.dat";
h2name = DIR + "h210.dat";
break;

case 3:
hlname = DIR + "hl120.dat";
h2name = DIR + "h220.dat";
break;

case 4:

hilname = DIR + "h130.dat";

h2name DIR + "h230.dat";

break;
case 5:
hlname = DIR + "h13b.dat";
h2name = DIR + "h23b.dat";
break;
3
3
else i1T(SRate==48000)
{
switch(Window->TransFilter->1temlndex)
{
case O:
hlname = DIR + "h1348.dat";
h2name = DIR + ""h2348.dat";
break;
case 1:
hlname = DIR + "hl548.dat";
h2name = DIR + ""h2548.dat";
break;
case 2:
hlname = DIR + "h11048.dat";
h2name = DIR + "h21048.dat";
break;
case 3:
hilname = DIR + ""h12048.dat";
h2name = DIR + "h22048.dat";
break;
case 4:
hlname = DIR + "h13048.dat";
h2name = DIR + ""h23048.dat";
break;
case 5:
hlname = DIR + "h13b48.dat";
h2name = DIR + ""h23b48.dat";
break;
3
s

delete hifl;
delete h2fl;
delete hilfr;
delete h2fr;

hifl = new FastFilter(FFTORDER,&hlname,2048);
h2fl = new FastFilter(FFTORDER,&h2name,2048);
hifr = new FastFilter(FFTORDER,&hlname,2048);
h2fr = new FastFilter(FFTORDER,&h2name,2048);

void WigSound2: :ChooseRearFilter(int SRate)
{

AnsiString hlname,h2name;
iT(SRate==44100)

{

switch(Window->RearFilter->Itemlndex)

{

case O:
hilname = DIR + "h1175.dat";
h2name = DIR + "h2175.dat";
break;

case 1:
hlname = DIR + "hl1170.dat";
h2name = DIR + ""h2170.dat";

break;

case 2:

hlname = DIR + "h1160.dat";
h2name = DIR + "h2160.dat";
break;
case 3:
hilname = DIR + '"h1150.dat";
h2name = DIR + "h2150.dat";
break;
case 4:
hlname = DIR + "h1110.dat";
h2name = DIR + '""h2110.dat";
break;
}
3
else i1T(SRate==48000)
{
switch(Window->RearFilter->ltemlndex)
{
case O:
hlname = DIR + ""h117548.dat";
h2name = DIR + "h217548.dat"';
break;
case 1:
hlname = DIR + ""h117048.dat";
h2name = DIR + ""h217048.dat";
break;
case 2:
hlname = DIR + "h116048.dat";
h2name = DIR + ""h216048.dat";
break;
case 3:
hlname = DIR + "h115048.dat";
h2name = DIR + "h215048.dat";
break;
case 4:
hilname = DIR + "h111048.dat"';
h2name = DIR + "h211048.dat";
break;
3
¥
hirl = new FastFilter(FFTORDER,&hlname,2048);
h2rl = new FastFilter(FFTORDER,&h2name,2048);
hirr = new FastFilter(FFTORDER,&hlname,2048);
h2rr = new FastFilter(FFTORDER,&h2name,2048);

3
#endif

#itndet HALLPASS
#define HALLPASS

#include <math.h>

class AllPass
{
private:

float fs,fc,alpha,*Buffer;

float ff,fb,in,out;

const int BuflLen;

void DoAllPass(float *signal, int iLen, float aval);
public:

AllPass(int iLen);

~AllPass();

void SetCutOff(float fcut, float fsam);

void ProcessAudio(float *signal, float dBLP, float dBHP,

bool dummy);
void ProcessAudio(float *signal, float LinLP, float LinHP);

/)=
/)
AllPass::AllPass(int iLen) : BufLen(iLen)
{
//Constructor - Set Default Cutoff, incase user doesn"t ;-)
SetCutOff(700.0F,44100.0F);
ff=fb=in=out=0.0F;
Buffer = new float[BufLen];
}

AllPass: :~AllPass()

delete[] Buffer;

}
inline void AllPass::SetCutOff(float fcut,float fsam)
{
fs = fsam;
fc = fcut;
float fcnorm = fc/fs;
float w = 2*M_PI*fcnorm;
float cw = cos(w);
alpha = ((2-sgrt(pow(-2,2) - 4 * cw * cw)))/(2*cw);
>
/)
inline void AllPass::DoAllPass(float *signal, int iLen, float aval)
{
float a,b;
a = Tf;
b = fb;
for(int 1=0;i<ilLen;i++)
{
out = (aval * signal[i]) - fF + (aval * fb);
fb = out;
f = signal[i];
signal[i] = out;
}

void AllPass::ProcessAudio(float *signal, float dBLP, float dBHP
, bool dummy)
{

float LinLP,LinHP,HP,LP;
LinLP = pow(10,dBLP/20);
LinHP pow(10,dBHP/20);

memcpy(Buffer,signal,sizeof(float) * BuflLen);
DoAllPass(Buffer,BufLen,alpha);

for(int i=0;i<BuflLen;i++)

{
HP = 0.5 * (signal[i] + Buffer[i]);
LP = 0.5 * (signal[i] - Buffer[i]);
signal[i] = LP * LinLP + HP * LinHP;

void AllPass::ProcessAudio(float *signal, float LinLP, float LinHP)

{
float HP,LP;

memcpy(Buffer,signal,sizeof(float) * BuflLen);
DoAllPass(Buffer,BufLen,alpha);

for(int i=0;i<BufLen;i++)

{
HP = 0.5 * (signal[i] + Buffer[i]);
LP = 0.5 * (signal[i] - Buffer[i]);
signal[i] = (LP * LinLP) + (HP * LinHP);
}
ks
/)~

#endi T

#itndet HFASTCONV
#define HFASTCONV

#ifndef nsp_UsesTransform
extern "C" {
#define nsp_UsesTransform
#include "‘nsp.h"

}
#endi

#include <math.h>
#include <fstream.h>

class FastFilter

{
private:
int order,fftsize,siglen,implen;
float *OldArray,*Signal,*tconv,*h;
SCplIx *fh,*fSig,*fconv;
public:
FastFilter(int FFTOrder,AnsiString *FName, int FLength);
FastFilter(int FFTOrder,AnsiString *FName,
int FLength,bool inv);
void ReLoadFilter(AnsiString *FName, int FLength);
~FastFilter();
void OverAddFir(float *signal);
void OverAddFir(float *signal,float Qg);
}:
/-

FastFilter::FastFilter(int FFTOrder,AnsiString *FName, int FLength)
{

order = FFTOrder;

fftsize = pow(2,order);
siglen = (fftsize/2) + 1;
implen = fftsize/2;
OldArray = new float[fftsize];
Signal = new float[fftsize];
tconv = new Float[fftsize];
h = new float[fftsize];

fth = new SCplx[fftsize];
fSig = new SCplx[fftsize];
fconv = new SCplx[fftsize];

ReLoadFilter(FName,FLength);

nspsReal FFtNip(NULL,NULL ,order ,NSP_Init);
nspsRealFftNip(h,fh,order,NSP_Forw);

FastFilter::FastFilter(int FFTOrder,AnsiString *FName, int
FLength,bool inv)
{

order = FFTOrder;

fftsize = pow(2,order);

siglen = (fftsize/2) + 1;

implen = fftsize/2;

OldArray = new float[fftsize];
Signal = new float[fftsize];
tconv = new Float[fftsize];

h = new float[fftsize];

th = new SCplIx[fftsize];
fSig = new SCplx[fftsize];
fconv = new SCplx[fftsize];

ReLoadFilter(FName,FLength);
for(int i=0;i<FLength;i++)

h[i] = -h[i];

}
nspsReal FFtNip(NULL ,NULL ,order ,NSP_Init);
nspsRealFftNip(h,fh,order ,NSP_Forw);

FastFilter::~FastFilter()

{

VO

{

Fi

VO

{

delete[] tconv;
delete[] OldArray;
delete[] Signal;
delete[] h;

delete[] fh;
delete[] fSig;
delete[] fconv;

id FastFilter::ReLoadFilter(AnsiString *FName, int FLength)

FILE *f;
int c;

memset(OldArray,0,sizeof(float)*fftsize);
memset(Signal,0,sizeof(float)*fftsize);
memset(tconv,0,sizeof(Float)*fftsize);
memset(h,0,sizeof(float)*fftsize);

memset(fth,0,sizeof(SCplx)*fftsize);
memset(fSig,0,sizeofF(SCpIx)*fftsize);
memset(fconv,0,sizeof(SCplx)*fftsize);

f = fopen(FName->c_str(),"rb");

if(P)
{
c = fread(h,sizeof(float),FLength,T);
if(cl=FLength)
MessageBox(NULL ,FName->c_str(),
"Wrong Filter Length",NULL);
fclose(T);
¥
else
MessageBox(NULL ,FName->c_str(),"Couldn"t Open
le',NULL);

id FastFilter::OverAddFir(float *signal)

static unsigned int i,j=0,k;
memcpy(Signal,signal,siglen*sizeof(float));

//FFT Real

Input Signal

nspsReal FFtNip(Signal,fSig,order ,NSP_Forw);

//Do processing in unrolled loop to maximise pipeline

//usage
for(i=0;i<implen;i+=4)
{
fconv[i].re = (fh[i]-re * fSig[i]-re) -
(fh[i]-im * FSig[i]-im);
fconv[i]-im = (fh[i]-re * fSig[i]-im) +
(fh[i]-im > FSig[i]-re);
fconv[i+l].re (fh[i+1].re * fSig[i+1l]-re) -
(fh[i+1].im * FSig[i+1].im);
fconv[i+1].im (fh[i+1].re * fSig[i+1].im) +
(fh[i+1].im * fSig[i+1l].re);
fconv[i+2].re (fh[i+2].re * fSig[i+2]-re) -
(Fh[i+2].im * fSig[i+2]-.im);
fconv[i+2].im (fh[1+2].re * fSig[i+2].im) +
(Fh[i+2].im * FSig[i+2].re);
fconv[i+3].re (fh[i+3].re * fSig[i+3].re) -
(Fh[i+3].im * fSig[i+3]-im);
fconv[i+3].Im (fh[i+3].re * fSig[i+3].im) +
(Fh[1+3].im * FSig[i+3].re);
fconv[i+l].re = (fh[i+1].re * fSig[i+1l].re) -
(fh[i+1].im * fSig[i+1]-im);
fconv[i+1l].im = (Fh[i+1].re * fSig[i+1].im) +
(fh[i+1].im * FSig[i+l].re);

//do inverse FFT
nspsCcsFftNip(fconv, tconv,order ,NSP_Inv);

//Do overlap add
for(i=0;i<siglen;i++)
signal[i]=Ctconv[i]+OldArray[i]);

//update storage of "old" samples
for(i=siglen,k=0;i<siglentimplen-1;i++,k++)

OldArray[k]=tconv[i];
OldArray[i]=0;

}
by
/)~
void FastFilter::OverAddFir(float *signal, float Q)
{

static unsigned int i,j=0,k;
memcpy(Signal,signal,siglen*sizeof(float));

//FFT Real Input Signal
nspsRealFFtNip(Signal ,fSig,order ,NSP_Forw);

//Do processing in unrolled loop to maximise pipeline

//usage
for(i=0;i<implen;i+=4)
{
fconv[i].re = (fh[i]-.re * fSig[i].re) -
(fh[i]-im * FSig[i]-im);
fconv[i].im = (fh[i]-re * fSig[i]-im) +
(fh[i]-im * fSig[i]-re);

fconv[i+l].re = (fFh[i+1].re * fSig[i+1].re) -

(Fh[i+1].im
fconv[i+1l].im = (Fh[i+1l].re
(fh[i+1].1m
fconv[i+2].re = (fh[i+2].re
(Fh[i+2].im
fconv[i+2].im = (Fh[i+2].re
(Fh[i+2].im
fconv[i+3].re = (Fh[i+3].re
(Fh[i+3].im
fconv[i+3].im = (Fh[i+3].re
(fh[i+3].im

fSig[i+1].im);
fSig[i+1].im) +
fSig[i+1].re);
fSig[i+2].re) -
fSig[i+2].im);
fSig[i+2].im) +
fSig[i+2].re);
fSig[i+3].re) -
fSig[i+3].im);
fSig[i+3]-.im) +
fSig[i+3].re);

ook ok 3 % % X X X % %

}

fconv[i+l].re

(fh[i+1].re
(fh[i+1].im
fconv[i+1l].im = (Fh[i+1l].re
(Fh[i+1].im

fSig[i+1l].re) -
fSig[i+1].im);
fSig[i+1]-.im) +
fSig[i+1l].re);

* ok % %

//do inverse FFT
nspsCcsFftNip(fconv, tconv,order ,NSP_Inv);

//Do overlap add
for(i=0;i<siglen;i++)
signal[i]=((1.0F - g) * signal[i]) +
(g * (tconv[i]+OldArray[i]));

//update storage of "old" samples
for(i=siglen,k=0;i<siglen+timplen-1;i++,k++)
{
OldArray[k]=tconv[i];
OldArray[i]=0;

#endi T

#ifndef WaveFileH
#define WaveFileH

#include <windows.h>
#include <mmsystem.h>
class WigFile
L
private:

HMMIO FileHandle;

MMCKINFO Filelnfo,CkInfo,CkSublnfo;

MMIOINFO lolnfo;

long WaveSize,WavRead, InitialOffset;

//char FileBuffer[16384];
public:

wigFile(Q);

~WigFile(Q);

void WaveFile(char *FileName);

void GetWaveSamples(float *samples, UINT length);

void SkiplIntoFile(long Skip);

void CloseWaveFile();

unsigned long GetWaveSize() {return(WaveSize);};

unsigned long GetWaveRead() {return(WavRead);};

PCMWAVEFORMAT WaveFormat;
}:
/)
//Function Declarations---——————————————— -
/)
WigFile: :WigFile(Q
{
by
/)=
WigFile::~WigFile()
{
ks
/)=

void WigFile::WaveFile(char *FileName)

{

FileHandle = mmioOpen(FileName,NULL,
MMIO_READ |MMIO_ALLOCBUF) ;
if(FileHandle==NULL){
return;
}

CkInfo.fccType=mmioFOURCC("W*","A","V","E");

if(mmioDescend(FileHandle,&CklInfo,
NULL ,MMIO_FINDRIFF))
{

mmioClose(FileHandle,0);
ShowMessage(*'Invalid WaveFormat for file:
+ *FileName);

b

CkSubInfo.ckid = mmioFOURCC("f", " m","t"," ");

if(mmioDescend(FileHandle,& CkSublnfo,
&CkInfo,MMIO_FINDCHUNK))

{

mmioClose(FileHandle,0);
ShowMessage(*'Invalid Format Chunk for file: "

+ *FileName);

unsigned long n = CkSubInfo.cksize;
mmioRead(FileHandle, (LPSTR)&WaveFormat,n);

if(WaveFormat.wf._wFormatTag!=WAVE_FORMAT_PCM)

{
mmioClose(FileHandle,0);
ShowMessage (*Fi leName
+ " is not a Wave File!l');
}

mmioAscend(FileHandle,& CkSubInfo,0);
CkSubInfo.ckid = mmioFOURCC(*d*","a","t","a");

if(nmioDescend(FileHandle,&CkSubInfo,
&CkInfo,MMIO0_FINDCHUNK))

{
mmioClose(FileHandle,0);
ShowMessage(*'Could not descend into
data chunk: " + *FileName);
}
WavRead = O;

WaveSize = CkSublnfo.cksize;
InitialOffset = CkSubInfo.dwDataOffset;

void WigFile: :GetWaveSamples(float *samples, UINT length)
{

long cl;

short *buf = new short[length];

//0ffset file reading by Pos bytes

if(FileHandle)

{
cl = mmioRead(FileHandle, (char *)buf,length * 2);
//Increase wavefile position counter
if(cl<=0) WavRead=WaveSize;
else WavRead+=c1;
if(WavRead<WaveSize)
{
for(int 1=0;i<cl/2;i++)
{
samples[i] = (Float)(buf[i]);
for(int 1=cl/2;i<length;i++)
{
samples[i] = 0.0f;
}
}
iT(cl<=0)
{
if(FileHandle)
{
mmioClose(FileHandle,0);
FileHandle = NULL;
s
}
}
else
{

for(int i=0;i<length;i++)
{

samples[i] = 0.0f;

}
¥
delete[] buf;
bs
/[-
void WigFile::SkiplIntoFile(long Skip)
{

long res = mmioSeek(FileHandle,Skip +
InitialOffset,SEEK_SET);
WavRead = res - InitialOffset;

}
void WigFile::CloseWaveFile()

{
if(FileHandle)
mmioClose(FileHandle,0);
FileHandle=NULL;
}

#endi T

#ifndef WigAmbiH
#define WigAmbiH

#include <math.h>
#include <mmsystem.h>

#ifndef nsp_UsesTransform
extern "C" {
#define nsp_UsesTransform
#include "'nsp.h"

#endi T

struct AmbiBuffer

{
float *W,*X,*Y,*Z,*R,*S,*T,*U,*V;
int Length;
bool Order;

};

void Delnterlace(WAVEHDR *,float **,int NoOfChannels);

void Relnterlace(WAVEHDR *,float **,int NoOfChannels);

void BGain(AmbiBuffer *,float Gain);

void BRotate(AmbiBuffer *,float RadAngle);

void BTilt(AmbiBuffer *,float RadAngle);

void Mono2B(float *Mono,AmbiBuffer *,float RadAzim, float RadElev);

void BPlusB(AmbiBuffer *,AmbiBuffer *);

void AssignChannel (AmbiBuffer *,float *,char);

AmbiBuffer * AmbiAllocate(int Length,bool Order,bool WithChannels);

void AmbiFree(AmbiBuffer *);

float ** AllocDecodeArray(int NoOfSpeakers,bool Order);

float ** AllocSampleBuffer(int Channels, int BufferLength);

void FreeDecodeArray(float **,bool Order);

void FreeSampleBuffer(float **,int Channels);

void DecoderCalc(float *Azim,float *Elev, int NoOfSpeakers,bool Order,
float WGain,float **Gains);

void B2Speakers(float **SGains,AmbiBuffer *Ambi, float **Samples,
int NoOfChannels, int NoOfSpeakers,bool Order);

float MaxSample(float *Samples, int BufferLength);

void MaxSample(WAVEHDR *,float *,int BufferLength, int NoOfChannels);

float MaxSample(float *Samples, int BufferLength)

{
float Max=0;
for(int i1=0;i<BufferLength;i++)
if(Max<Samples[i]) Max=Samples[i];
return (Max);
>
/)

void MaxSample(WAVEHDR *pWaveHeader,float *Max, int BufferLength,
int NoOfChannels)
{

for(int i=0;i<NoOfChannels;i++) Max[i]=0;
short *Data=(short *)pWaveHeader->lpData;
for(int 1=0;i<BufferLength;i++)
{
for(int j=0;j<NoOfChannels;j++)
{

if(Max[j1<(float)Data[j])
Max[j]=(float)Data[j];
}
Data+=NoOfChannels;

void Delnterlace(WAVEHDR *WaveBuffer,float **Samples,
int NoOfChannels)

{
//Sort out channels
short *Buffer = (short *)WaveBuffer->IpData;
int count=0;
for(unsigned int i=0;
i<WaveBuffer->dwBufferLength/(2*NoOfChannels);i++)
{
for(int j=0;j<NoOfChannels;j++)
Samples[j][1]=Buffer[count++];
by
}
ks
/)

void Relnterlace(WAVEHDR *WaveBuffer,float **Samples,
int NoOfChannels)
{

//Sort out channels

short *Buffer = (short *)WaveBuffer->lIpData;

int count=0;

for(unsigned int i=0;
i<WaveBuffer->dwBufferLength/(2*NoOfChannels);i++)

for(int j=0;j<NoOfChannels;j++)

{
Buffer[count++]=(short)Samples[j][i];

void BRotate(AmbiBuffer *a,float RadAngle)
{

float x,y;

float s = sin(RadAngle);

float c cos(RadAngle)

for(int ;i<a->Length;)

{

-I 1
O

a->X[i] * ¢ + a->Y[i] * s;
>Y[|] * c + a->X[i] * s

a-—
->X[1] =
->Y[i] =

-'S’D 9>‘<><

+

}

}
void BTilt(AmbiBuffer *a,float RadAngle)
{
float x,z;
float s = sin(RadAngle);
= cos(RadAngle);
i=0;i<a->Length;)

float c
for(int
{

a->X[i] * ¢ - a->Z[i1] * s;
a->Z[i] * c + a->X[i] * s;

N X

a->X[i] = x;
a->Z[i] = z;
i++;
}
}
void BGain(AmbiBuffer *Ambi, float Gain)
{
if(Ambi->0rder)
{
for(int 1=0;i<Ambi->Length;i++)
{
Ambi->W[i]*=Gain;
Ambi->X[1]*=Gain;
Ambi->Y[i]*=Gain;
Ambi->Z[1]*=Gain;
Ambi->R[1]*=Gain;
Ambi->S[i]*=Gain;
Ambi->T[i1]*=Gain;
Ambi->U[1]*=Gain;
Ambi->V[i]*=Gain;
}
}
else
{
for(int 1=0;i<Ambi->Length;i++)
{
Ambi->W[i]*=Gain;
Ambi->X[1]*=Gain;
Ambi->Y[i]*=Gain;
Ambi->Z[1]*=Gain;
}
}
>
/)

void Mono2B(float *Mono,AmbiBuffer *Ambi,float RadAzim,
float RadElev)
{

float SinA=sin(RadAzim);
float CosA=cos(RadAzim);
float SinE=sin(RadElev);
float CosE=cos(RadElev);
float Sin2E=sin(2*RadElev);
float Sin2A=sin(2*RadAzim);
float Cos2A=cos(2*RadAzim);
float Sample,Gain[9];

Gain[0] = 0.70710678119f;
Gain[1] = CosA * CosE;
Gain[2] = SinA * CosE;

Gain[3] = SinE;
if(Ambi->0rder)

{
Gain[4] = 1.5F*SInE*SInE-0.5F;
Gain[5] = CosA*Sin2E;
Gain[6] = SInA*Sin2E;
Gain[7] = Cos2A*CosE*CoskE;
Gain[8] = Sin2A*CosE*CoskE;

for(int 1=0;i<Ambi->Length;i++)

{
Sample=Mono[i];
Ambi->W[i]=Sample*Gain[0];

Ambi->X[1]=Sample*Gain[1];
Ambi->Y[i]=Sample*Gain[2];
Ambi->Z[1]=Sample*Gain[3];
Ambi->R[1]=Sample*Gain[4];
Ambi->S[i]=Sample*Gain[5];
Ambi->T[i]=Sample*Gain[6];
Ambi->U[i]=Sample*Gain[7];
Ambi->V[i]=Sample*Gain[8];

by
he
else
{
for(int 1=0;i<Ambi->Length;i++)
{
Sample=Mono[i];
Ambi->W[i]=Sample*Gain[0];
Ambi->X[1]=Sample*Gain[1];
Ambi->Y[i]=Sample*Gain[2];
Ambi->Z[1]=Sample*Gain[3];
by
}
ks
/)

void BPlusB(AmbiBuffer *Ambil,AmbiBuffer *Ambi2)

iT(Ambil->Order && Ambi2->0Order)
{
for(int 1=0;i<Ambil->Length;i++)
{
Ambi2->W[i]+=Ambil1->W[i];
Ambi2->X[i]+=Ambi1l->X[i];
Ambi2->Y[i]+=Ambil->Y[i];
Ambi2->Z[1]+=Ambil->Z[i];
Ambi2->R[1]+=Ambil1->R[i];
Ambi2->S[1]+=Ambil1->S[i];
Ambi2->T[i]+=Ambi1->T[i];
Ambi2->U[1]+=Ambil1l->U[i];
Ambi2->V[i]+=Ambil->V[i];

else

for(int i=0;i<Ambil->Length;i++)
{
Ambi2->W[i]+=Ambil1->W[i];
Ambi2->X[i]+=Ambi1->X[i];
Ambi2->Y[i]+=Ambil->Y[i];
Ambi2->Z[1]+=Ambil->Z[i];

AmbiBuffer * AmbiAllocate(int Length,bool Order,bool WithChannels)
{

AmbiBuffer *Ambi;

Ambi = new AmbiBuffer;

if(WithChannels)
Ambi->W = new float[Length];

memset(Ambi->W,0,sizeof(float)*Length);
Ambi->X = new float[Length];

memset(Ambi->X,0,sizeof(float)*Length);
Ambi->Y = new Float[Length];

memset(Ambi->Y,0,sizeof(float)*Length);
Ambi->Z = new float[Length];

memset(Ambi->Z,0,sizeof(float)*Length);

iT(Order)

{
Ambi->R = new float[Length];
Ambi->S = new float[Length];
Ambi->T = new float[Length];
Ambi->U = new float[Length];
Ambi->V = new Ffloat[Length];

¥

3}
Ambi->Length=Length;
Ambi->0Order=0rder;

return(Ambi);
3
/-
void AmbiFree(AmbiBuffer *Ambi)
{
iF(Ambi->W) delete [] Ambi->W;
iT(Ambi->X) delete [] Ambi->X;
iT(Ambi->Y) delete [1 Ambi->Y;
iT(Ambi->2) delete [1 Ambi->Z;
iT(Ambi->R && Ambi->Order) delete [] Ambi->R;
iT(Ambi->S && Ambi->Order) delete [] Ambi->S;
iT(Ambi->T && Ambi->Order) delete [] Ambi->T;
iT(Ambi->U && Ambi->Order) delete [] Ambi->U;
iT(Ambi->V && Ambi->Order) delete [] Ambi->V;
delete Ambi;
3
/-

void AssignChannel (AmbiBuffer *Ambi,float *Samples,char Channel)

{
switch (Channel)

{

case “"W-":
Ambi->W=Samples;
break;

case "X":
Ambi->X=Samples;
break;

case °"Y-":
Ambi->Y=Samples;
break;

case "Z°:
Ambi->Z=Samples;
break;

case "RT":
Ambi->R=Samples;
break;

case °"S*:
Ambi->S=Samples;
break;

case "T":
Ambi->T=Samples;
break;

case "U":
Ambi->U=Samples;
break;

case "V":
Ambi->V=Samples;

break;
default:
break;
}
¥
/)

float ** AllocSampleBuffer(int Channels, int BufferLength)
{

float **Samples;

int Rows,Cols;

Rows=Channels;

Cols = BufferLength;

Samples = new float*[Rows];

for (int i=0;i<Rows;i++)

Samples[i] = new float[Cols];

return(Samples);
ks
// -
void FreeSampleBuffer(float **Samples, int Channels)
{

int Rows;

Rows = Channels;

for (int i = 0; 1 < Rows; i++)

delete[] Samples[i];

delete[] Samples;
ks
[e

float ** AllocDecodeArray(int NoOfSpeakers,bool Order)
{

float **Gains;

int Rows,Cols;

Order?Rows=9:Rows=4;

Cols = NoOfSpeakers;

Gains = new Ffloat*[Rows];

for (int i=0;i<Rows;i++)

Gains[i] = new float[Cols];

return (Gains);

by
// -
void FreeDecodeArray(float **Gains,bool Order)
{

int Rows;

Order?Rows=9:Rows=4;

for (int i = 0; 1 < Rows; i++)

delete[] Gains[i];

delete[] Gains;
}
// -

void DecoderCalc(float *Azim,float *Elev, int NoOfSpeakers,bool Order,
float WGain, float **Gains)

float SinA,CosA,SinE,Cosk,Sin2E,Sin2A,Cos2A;
if(Order)
{
//Create 2 dimensional coefs array
for(int 1=0;i<NoOfSpeakers;i++)
{
SinA=sin(Azim[i]);

CosA=cos(Azim[i]);
SinE=sin(Elev[i]);
CosE=cos(Elev[i]);
Sin2E=sin(2*Elev[i]);
Sin2A=sin(2*Azim[i]);
Cos2A=cos(2*Azim[i]);

Gains[0][i] = 0.5*(WGain);
Gains[1][i] = 0.5*(CosA * CosE);
Gains[2][i] = 0.5*(SinA * CosE);
Gains[3][i] = 0.5*(SinE);
Gains[4][i] = 0.5*(1.5F*SInE*SIinE-0.5F);
Gains[5][i] = 0.5*(CosA*Sin2E);
Gains[6][1] = 0.5*(SinA*SiIn2E);
Gains[7][1] = 0.5*(Cos2A*CosE*CosE) ;
Gains[8][i] = 0.5*(Sin2A*CosE*CosE) ;
+
}
else
for(int i1=0;i<NoOfSpeakers;i++)
{
SinA=sin(Azim[i]);
CosA=cos(Azim[i]);
SinE=sin(Elev[i]);
CoskE=cos(Elev[i]);
Gains[O][1] = 0.5*(WGain);
Gains[1][i] = 0.5*(CosA * CosE);
Gains[2][i] = 0.5*(SinA * CosE);
Gains[3][i] = 0.5*(SinE);
}
he
bs
/-

void B2Speakers(float **SGains,AmbiBuffer *Ambi, float **Samples, int
NoOfChannels,
int NoOfSpeakers,bool Order)

for(int i=0;i<Ambi->Length;i++)

{
for(int j=0;j<NoOfSpeakers && j<NoOfChannels;j++)

if(Order)

{
Samples[jJ1[i]1=Ambi->W[i]*SGains[0][]j]
+Ambi->X[1]*SGains[1]1[i]
+Ambi->Y[i]*SGains[2][]]
+Ambi->Z[1]*SGains[3][j]
+Ambi->R[i]*SGains[4][]]
+Ambi->S[i]*SGains[5][j]
+Ambi->T[1]*SGains[6]1[i]
+Ambi->U[i1]*SGains[7]L[i]
+Ambi->V[1]*SGains[8][i]:;

else

Samples[jJ][1]=Ambi->W[i]*SGains[0][j]
+Ambi->X[1]*SGains[1][]j]
+Ambi->Y[1]*SGains[2][j]
+Ambi->Z[1]*SGains[3]Li]:

Appendix

b
#endif

- 348 -

	List of Equations
	List of Tables
	Acknowledgements
	Abstract
	Introduction
	Background
	The Research Problem
	Aims and Objectives of the Research
	Structure of this Report

	Psychoacoustics and Spatial Sound Perception
	Introduction
	Lateralisation
	Testing the Lateralisation Parameters.
	Analysis of the Lateralisation Parameters

	Sound Localisation
	Room Localisation
	Height and Distance Perception

	Summary

	Surround Sound Systems
	Introduction
	Historic Review of Surround Sound Techniques and Theory
	Bell Labs’ Early Spaced Microphone Technique
	Blumlein’s Binaural Reproduction System
	Stereo Spaced Microphone Techniques
	Pan-potted Stereo
	Enhanced Stereo
	Dolby Stereo
	Quadraphonics

	Review of Present Surround Sound Techniques
	Ambisonics
	Theory
	Psychoacoustic Decoder Design Using the Energy and Velocity
	B-Format Encoding
	Higher Order Ambisonics
	Summary

	Wavefield Synthesis
	Theory
	Summary

	Vector Based Amplitude Panning
	Theory
	Summary

	Two Channel, Binaural, Surround Sound
	Transaural Surround Sound
	Ambiophonics

	Summary

	Development of a Hierarchical Surround Sound Format
	Introduction
	Description of System
	B-Format to Binaural Reproduction
	Conclusions

	Surround Sound Optimisation Techniques
	Introduction
	The Analysis of Multi-channel Sound Reproduction Algorithms
	The Analysis of Surround Sound Systems
	Analysis Using HRTF Data
	Listening Tests
	HRTF Simulation
	Impulse Response Analysis
	Summary

	Optimisation of the Ambisonics system
	Introduction
	Irregular Ambisonic Decoding
	Decoder system
	The Heuristic Search Methods
	Validation of the Energy and Velocity Vector
	HRTF Decoding Technique – Low Frequency
	HRTF Decoding Technique – High Frequency
	Listening Test
	Introduction
	Decoders Chosen for Testing
	Listening Test Methodology
	Listening Test Results
	Listening Test Conclusions

	The Optimisation of Binaural and Transaural Surround Sound S
	Introduction
	Inverse Filtering
	Inverse Filtering of H.R.T.F. Data
	Inverse Filtering of H.R.T.F. Data to Improve Crosstalk Canc

	Conclusions
	Ambisonic Optimisations Using Heuristic Search Methods
	Further Work for Ambisonic Decoder Optimisation.
	Binaural and Transaural Optimisations Using Inverse Filterin
	Further Work for Binaural and Transaural Optimisations.
	Conversion of Ambisonics to Binaural to Transaural Reproduct

	Implementation of a Hierarchical Surround Sound System.
	Introduction
	Digital Signal Processing Platform
	Host Signal Processing Platform (home computer).
	Hybrid System

	Hierarchical Surround Sound System – Implementation
	System To Be Implemented.
	Fast Convolution
	Decoding Algorithms

	Implementation - Platform Specifics
	Example Application
	Conclusions

	Conclusions
	Introduction
	Ambisonics Algorithm development
	Further Work

	Binaural and Transaural Algorithm Development
	B-format to Binaural Conversion
	Binaural to Two Speaker Transaural
	Binaural to Four Speaker Transaural
	Further Work

	References
	Appendix
	Matlab Code
	Matlab Code Used to Show Phase differences created in Blumle
	Matlab Code Used to Demonstrate Simple Blumlein Spatial Equa
	Matlab Code Used To Plot Spherical Harmonics
	Code used to plot A-format capsule responses (in 2D) using o
	Code Used to Create Free Field Crosstalk Cancellation Filter
	Code Used to Create Crosstalk Cancellation Filters Using HRT
	Matlab Code Used in FreqDip Function for the Generation of C
	Matlab Code Used To Generate Inverse Filters

	Windows C++ Code
	Code Used for Heuristic Ambisonic Decoder Optimisations
	Windows C++ Code used in the Real-Time Audio System Software

