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Abstract 

This thesis describes a system that can be used for the decoding of a three 

dimensional audio recording over headphones or two, or more, speakers.  A 

literature review of psychoacoustics and a review (both historical and current) 

of surround sound systems is carried out.  The need for a system which is 

platform independent is discussed, and the proposal for a system based on 

an amalgamation of Ambisonics, binaural and transaural reproduction 

schemes is given.  In order for this system to function optimally, each of the 

three systems rely on providing the listener with the relevant psychoacoustic 

cues.  The conversion from a five speaker ITU array to binaural decode is well 

documented but pair-wise panning algorithms will not produce the correct 

lateralisation parameters at the ears of a centrally seated listener.  Although 

Ambisonics has been well researched, no one has, as yet, produced a 

psychoacoustically optimised decoder for the standard irregular five speaker 

array as specified by the ITU as the original theory, as proposed by Gerzon 

and Barton (1992) was produced (known as a Vienna decoder), and example 

solutions given, before the standard had been decided on.  In this work, the 

original work by Gerzon and Barton (1992) is analysed, and shown to be 

suboptimal, showing a high/low frequency decoder mismatch due to the 

method of solving the set of non-linear simultaneous equations.  A method, 

based on the Tabu search algorithm, is applied to the Vienna decoder 

problem and is shown to provide superior results to those shown by Gerzon 

and Barton (1992) and is capable of producing multiple solutions to the 

Vienna decoder problem.  During the write up of this report Craven (2003) has 

shown how 4th order circular harmonics (as used in Ambisonics) can be used 

to create a frequency independent panning law for the five speaker ITU array, 

and this report also shows how the Tabu search algorithm can be used to 

optimise these decoders further.  A new method is then demonstrated using 

the Tabu search algorithm coupled with lateralisation parameters extracted 

from a binaural simulation of the Ambisonic system to be optimised (as these 

are the parameters that the Vienna system is approximating).  This method 

can then be altered to take into account head rotations directly which have 

been shown as an important psychoacoustic parameter in the localisation of a 
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sound source (Spikofski et al., 2001) and is also shown to be useful in 

differentiating between decoders optimised using the Tabu search form of the 

Vienna optimisations as no objective measure had been suggested.  

Optimisations for both Binaural and Transaural reproductions are then 

discussed so as to maximise the performance of generic HRTF data (i.e. not 

individualised) using inverse filtering methods, and a technique is shown that 

minimises the amount of frequency dependant regularisation needed when 

calculating cross-talk cancellation filters. 
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Chapter 1 - Introduction 

1.1 Background 

Surround sound has quickly become a consumer ‘must have’ in the audio 

world, due, in the main part, to the advent of the Digital Versatile Disk, Super 

Audio CD technology and the computer gaming industry.  It is generally taken 

to mean a system that creates a sound field that surrounds the listener.  Or, to 

be put another way, it is trying to recreate the illusion of the ‘you are there’ 

experience.  This is in contrast to the stereophonic reproduction that has been 

the standard for many years, which creates a ‘they are here’ illusion (Glasgal, 

2003c).   

 

The direction that the surround sound industry has taken, when referring to 

format and speaker layout, has depended, to some extent, on which system 

the technology has been used for.  As already mentioned, two main streams 

of surround sound development are taking place: 

• The DVD Video/Audio industry can be broadly categorised as follows: 

o These systems are predicated around audio produced for a 

standard 5 speaker (plus sub-woofer, or low frequency effects 

channel) layout as described in the ITU standard ‘ITU-R BS.775-

1’. 

o Few DVD titles deviate from this standard as most DVD players 

are hardware based and, therefore, of a fixed specification. 

o Some processors are available with virtual speaker surround 

(see crosstalk cancelled systems) and virtual headphone 

surround systems.  

o Recording/panning techniques are not fixed and many different 

systems are utilised including: 

 Coincident recording techniques 

 Spaced recording techniques 

 Pair-wise panned using amplitude or time or a 

combination of the two. 
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• The computer gaming industry can be broadly categorised as follows: 

o Number and layout of speakers are dictated by the soundcard 

installed in the computer.  Typically: 

 Two speakers – variable angular spacing. 

 Four speakers – based on a Quadraphonic arrangement 

or the ITU five speaker layout without a centre speaker. 

 Five speakers – based on ITU-R BS.755-1 layout. 

 Six speakers – same as above but with a rear centre 

speaker. 

 Seven speakers – typically, same as five speakers with 

additional speakers at +/- 900.   

o Two channel systems rely on binaural synthesis (using head 

related transfer functions) and/or crosstalk cancellation 

principles using: 

 Binaural/Transaural simulation of a more than two 

speaker system. 

 HRTF simulation of sources. 

o More than two speaker systems generally use pair-wise panning 

algorithms in order to place sounds. 

 

Both of the above viewpoints overlap, mainly due to the need for computers to 

be compatible with DVD audio/video.  However, the computer gaming industry 

has started moving away from five speaker surround with 7.1 surround sound 

being the standard on most new PCs.   

 

The systems described above all co-exist, often being driven by the same 

carrier signals.  For example, all surround sound output on a DVD is derived 

from the 5.1 speaker feeds that are stored on the actual disk.  So headphone 

surround processing can be carried out by simulating the 5.1 speaker array 

binaurally, and two speaker virtual surround systems can be constructed by 

playing a crosstalk cancelled version of the binaural simulation.  In the same 

fashion many crosstalk cancelled and binaural decodes provided by the audio 

hardware in computers is driven by the signal that would normally be sent to 

the 4, 5, 6 or 7 speaker array with other cards choosing to process the sound 
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effects and music directly with individual pairs of head related transfer 

functions (see CMedia, N.D. and Sibbald, A., 2000 for examples of these two 

systems).   

 

The above situation sounds ideal from a consumer choice, point of view, but 

there are a number of issues with the systems, described above, as a whole.  

The conversion from multi-speaker to binaural/transaural (crosstalk cancelled) 

system assumes that a, normally pair-wise panned, speaker presentation will 

provide the ear/brain system with the correct cues needed for the listener to 

experience a truly immersive, psychoacoustically correct aural presentation.  

However, the five speaker layout, as specified by the ITU, was not meant to 

deliver this, and is predicated on a stable 600 frontal image, with the surround 

speakers used only for effects and ambience information.  This is, of course, 

not a big issue for films, but as computer games and audio only presentations 

are based around the same, five speaker, layout, this is not ideal.  Computer 

games often do not want to give a preference to any particular direction with 

the surround sound audio experience hopefully providing extra cues to the 

game player in order to give them a more accurate auditory ‘picture’ of the 

environment around them and music presentations often want to try and 

simulate the space that the music was recorded in as accurately as possible, 

which will include material from the rear and sides of the listener.   

 

A less obvious problem with PC based audio systems is that although the final 

encoding and decoding of the material is handled by the audio hardware (as 

most sound sources for games are panned in real-time), and so it is the 

hardware that dictates what speaker/headphone setup to use, inserting pre-

recorded surround sound music can be problematic as no speaker layout can 

be assumed.  Conversely for the DVD systems, the playing of music is, 

obviously, well catered for but only as long as it is presented in the right 

format.  Converting from a 5.1 to a 7.1 representation, for example, is not 

necessarily a trivial matter and so recordings designed for a 5.1 ITU setup 

cannot easily use extra speakers in order to improve the performance of the 

recording.  This is especially true as no panning method can be assumed 

after the discrete speaker feeds have been derived and stored on the DVD. 
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The problems described above can be summarised as follows: 

• 5.1 DVD recordings cannot be easily ‘upmixed’ as: 

o No panning/recording method can be assumed. 

o Pair-wise panned material cannot be upmixed to another pair-

wise panned presentation (upmixing will always increase the 

number of speakers active when panning a single source). 

• Computer gaming systems produce surround sound material ‘on-the-

fly’ and so pre-recorded multi-channel music/material can be difficult to 

add as no presentation format can be assumed. 

• Both systems, when using virtual speaker technology (i.e. headphone 

or cross talk cancelled simulation of a multi-speaker representation) 

are predicated on the original speaker presentation delivering the 

correct psychoacoustical cues to the listener.  This is not the case for 

the standard, pair-wise panned method which relies on this crosstalk to 

present the listener with the correct psychoacoustic cues (see 

Blumlein’s Binaural Sound in chapter 3.2.2). 

 

These problems stem, to some extent, from the lack of separation between 

the encoding and the decoding of the material, with the encode/decode 

process generally taken as a whole.  That is the signals that are stored, used 

and listened to are always derived from speaker feeds.  This then leads to the 

problem of pre-recorded pieces needing to either be re-mixed and/or re-

recorded if the number or layout of the speakers is to be changed. 

1.2 The Research Problem 

How can the encoding be separated from the decoding in audio systems, and 

how can this system be decoded in a psychoacoustically aware manner for 

multiple speakers or headphone listening? 

 

While the transfer from multiple speaker systems to binaural or crosstalk 

cancelled systems is well documented, the actual encoding of the material 

must be carried out in such a way so as to ensure: 
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• Synthesised or recorded material can be replayed over different 

speaker arrays. 

• The decoded signal should be based on the psychoacoustical 

parameters with which humans hear sound thus allowing a more 

meaningful conversion from a multi-speaker signal to binaural or 

crosstalk cancelled decode. 

The second point would be best catered for using a binaural recording or 

synthesis technique.  However, upmixing from a two channel binaural 

recording to a multi-speaker presentation can not be carried out in a 

satisfactory way, with the decoder for such a system needing to mimic all of 

the localisation features of the ear/brain system in order to correctly separate 

and pan sounds into the correct position.  For this reason, it is a carrier signal 

based on a multi-speaker presentation format that will be chosen for this 

system. 

 

Many people sought to develop a multi-speaker sound reproduction system 

as early as the 1900s, with work by Bell Labs trying to create a truly ‘they are 

here’ experience using arrays of loudspeakers in front of the listener.  

Perhaps they were also striving for a true volume solution which, to a large 

extent, has still not been achieved (except in a system based on Bells’ early 

work called wavefield synthesis, see Chapter 3).  However, it was Alan 

Blumlein’s system, binaural sound, that was to form the basis for the system 

we now know as stereo, although it was to be in a slightly simplified form than 

the system that Blumlein first proposed. 

 

The first surround sound standard was the Quadraphonic format.  This system 

was not successful due to the fact that it was based on the simplified stereo 

technique and so had some reproduction problems coupled with 

Quadraphonics having a number of competing standards.  At around the 

same time a number of researchers, including Michael Gerzon, recognised 

these problems and proposed a system that took more from Blumlein’s 

original idea.  This new system was called Ambisonics, but due to the failings 

of the Quadraphonic system, interest in this new surround sound format was 

poor. 
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Some of the benefits of the Ambisonics system are now starting to be realised 

and it is this system that was used as the basis of this investigation.   

1.3 Aims and Objectives of the Research 

• Develop a flexible multi-channel sound listening room capable of the 

auditioning of several speaker positioning formats simultaneously. 

• Using the Matlab/Simulink software combined with a PC and a multi-

channel sound card, create a surround sound toolbox enabling a 

flexible and quick development environment used to encode/decode 

surround sound systems in real-time. 

• Carry out an investigation into the Ambisonic surround sound system 

looking at the optimisation of the system for different speaker 

configurations, specifically concentrating on the ITU standard five 

speaker layout. 

• Carry out an investigation into Binaural and Transaural sound 

reproduction and how the conversion from Ambisonics to these 

systems can be achieved. 

• Propose a hybrid system consisting of a separate encode and decode 

process, making it possible to create a three-dimensional sound piece 

which can be reproduced over headphones or two or more speakers. 

• Create a real-time implementation of this system. 

 

At the beginning of this project, a multi-channel sound lab was setup so 

different speaker layouts and decoding schemes could be auditioned.  The lab 

contained speakers placed in a number of configurations so that experiments 

and testing would be quick to set up, and flexible.  It consisted of a total of 

fourteen speakers as shown in Figure 1.1.  

 

Three main speaker system configurations have been incorporated into this 

array: 

• A regularly spaced, eight speaker, array  

• A standard ITU-R BS.755-1 five speaker array  

• A closely spaced front pair of speakers 
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600

1400

800 800 

 
Figure 1.1 Speaker configuration developed in the multi-channel surround sound 

laboratory 
 

The system, therefore, allows the main forms of multi-speaker surround 

formats to be accessed simultaneously.  A standard Intel® Pentium® III (Intel 

Corporation, 2003) based PC was used in combination with a Soundscape® 

Mixtreme® (Sydec, 2003) sixteen channel sound card.  This extremely 

versatile setup was originally used with the Matlab®/Simulink® program (The 

MathWorks, 2003), which was possible after rewriting Simulinks ‘To’ and 

‘From Wave Device’ blocks to handle up to sixteen channels of audio 

simultaneously and in real-time (the blocks that ship with the product can 

handle a maximum of two channels of audio, see Chapter 5).  This system 

was then superseded by custom C++ programs written for the Microsoft 

Windows operating system (Microsoft Corporation, 2003), as greater CPU 

efficiency could be utilised this way, which is an issue for filtering and other 

CPU intensive tasks. 

 

Using both Matlab/Simulink and dedicated C++ coded software it was 

possible to both test, evaluate and apply optimisation techniques to the 

decoding of an Ambisonics based surround sound system and to this end the 

aim of this project was to develop a surround sound format, based on the 

hierarchical nature of B-format, the signal carrier of Ambisonics, that was able 

 - 7 - 



Chapter 1 

to be decoded to headphones and speakers, and investigate and optimise 

these systems using head related transfer functions. 

1.4 Structure of this Report 

This report is split into three main sections as listed below: 

1. Literature review and discussion: 

a. Chapter 2 – Psychoacoustics and Spatial Sound Perception 

b. Chapter 3 – Surround Sound Systems 

2. Surround sound format proposal and system development research 

a. Chapter 4 – Hierarchical Surround Sound Format 

b. Chapter 5 – Surround Sound Optimisation Techniques 

3. System implementation and signal processing research 

a. Chapter 6 – Implementation of a Hierarchical Surround Sound 

System. 

Sections two and three detail the actual research and development aspects of 

the project with section one giving a general background into surround sound 

and the psychoacoustic mechanisms that are used to analyse sounds heard 

in the real world (that is, detailing the systems that must be fooled in order to 

create a realistic, immersive surround sound experience).  
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Chapter 2 - Psychoacoustics and Spatial Sound 
Perception 

2.1 Introduction 

This Chapter contains a literature review and discussion of the current 

thinking and research in the area of psychoacoustics and spatial sound 

perception.  This background research is important as it is impossible to 

investigate and evaluate surround systems objectively without first knowing 

how our brain processes sound, as it is this perceptual system that we are 

aiming to fool.  This is particularly true when optimisations are to be sought 

after, as unless it is known what parameters we are optimising for, only 

subjective and empirically derived alterations can be used to improve a 

system’s performance or, in the same way, help us explain why a system is 

not performing as we would have hoped. 

2.2 Lateralisation 

One of the most important physical rudiments of the human hearing system is 

that it possesses two separate data collection points, that is, we have two 

ears.  Many experiments have been conducted throughout history (for a 

comprehensive reference on these experiments see Blauert (1997) and 

Gulick et al. (1989)) concluding that the fact that we hear through two audio 

receivers at different positions on the head is important in the localisation of 

the sounds (although our monaural hearing capabilities are not to be under-

estimated). 

 

If we observe the situation shown in Figure 2.1 where a sound source 

(speaker) is located in an off-centre position, then there are a number of 

differences between the signals arriving at the two ears, after travelling paths 

‘a’ and ‘b’.  The two most obvious differences are: 

• The distances travelled by the sounds arriving at each ear are different 

(as the source is closer to the left ear). 

• The path to the further away of the two ears (‘b’) has the added 

obstacle of the head. 
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These two separate phenomena will manifest themselves at the ears of the 

listener in the form of time and level differences between the two incoming 

signals and, when simulated correctly over headphones, will result in an effect 

called lateralisation.  Lateralisation is the sensation of a source being inside 

the listener’s head.  That is, the source has a direction, but the distance of the 

listener to the source is perceived as very small. 

 

If we take the speed of sound as 342 ms-1 and the diameter of an average 

human head (based on a sphere, with the ears at 900 and 2700 of that sphere) 

as 18 cm, then the maximum path difference between the left and right ears 

(d) is half the circumference of that sphere, given by equation (2.1). 

 

0.28274m09.0 =×Π=Π= rd    

(2.1) 

where d is half the circumference of a sphere 

 r is the radius of the sphere 

 
 

a

b

 
Figure 2.1 The two paths, ‘a’ and ‘b’, that sound must travel from a source at 450 to 

the left of a listener, to arrive at the ears. 
 

Taking the maximum circumferential distance between the ears as 28 cm, as 

shown in equation (2.1), this translates into a maximum time difference 

between the sounds arriving at the two ears of 0.83 ms.  This time difference 

is termed the Interaural Time Difference (I.T.D.) and is one of the cues used 

by the ear/brain system to calculate the position of sound sources. 
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The level difference between the ears, termed I.L.D. (Interaural Level 

Difference) is not, substantially, due to the extra distance travelled by the 

sound.  The main difference here is obtained from the shadowing effect of the 

head.  So, unlike I.T.D., which will be the same for all frequencies (although 

the phase difference is not constant), I.L.D. is frequency dependent due to 

diffraction.  As a simple rule of thumb, any sound that has a wavelength larger 

than the diameter of the head will tend to be diffracted around and any sound 

with a wavelength shorter than the diameter of the head will tend to be 

attenuated causing a low pass filtering effect.  The frequency corresponding 

to the wavelength equal to the diameter of the head is shown in equation 

(2.2). 

 

kHzf 89.134218.0
1 =×=  

(2.2) 

where 0.18 is the diameter of the head. 

 

There is, however, a smooth transition from low to high frequencies that 

means that the attenuation occurring at the opposite ear will increase with 

frequency.  A graph showing an approximation of the I.L.D. of a sphere, up to 

2 kHz, is shown in Figure 2.2 (equations taken from Duda (1993)).  This figure 

shows the increasing I.L.D. with increasing frequency and angle of incidence. 
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Figure 2.2 Increasing I.L.D. with frequency and angle of incidence. 

2.2.1 Testing the Lateralisation Parameters. 

A few simple experiments can be set up in order to test the working frequency 

ranges, and the effectiveness of the sound source position artefacts described 

above.  The two cues presented, I.L.D. and I.T.D. actually result in three 

potential auditory cues.  They are: 

• An amplitude difference between the two ears (I.L.D). 

• A time difference between the two ears (I.T.D). 

• A phase difference between the sounds at the ears (I.T.D.). 

 

Simulink models that can be used to test these three localisation parameters, 

under headphone listening conditions, are shown in Figure 2.3.  Several data 

sources are utilised in these models (also shown in Figure 2.3) and are 

discussed below.   
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Figure 2.3 Simulink models showing tests for the three localisation cues provided 
by I.L.D. and I.T.D.. 

 

Arrays ‘g1’ and ‘g2’ are a rectified sine wave and a cosine wave, and are used 

to represent an amplitude gain, a phase change or a time delay.  In order for 

the various lateralisation cues to be tested, the models must be configured as 

described below: 

• Level Difference – If ‘g1’ is taken as the gain of the left channel, and a 

rectified version of ‘g2’ is used for the gain of the right channel, then the 

sound source is level panned smoothly between the two ears, and this is 

what the listener perceives, at any given frequency. 

• Phase Difference – A sine wave of any phase can be constructed using a 

mixture of a sine wave at 00 and a sine wave at 900 (a cosine).   So 

applying the gains ‘g1’ and ‘g2’ to a sine and a cosine wave which are then 

summed, will create a sine wave that changes phase from -Π/2 to Π/2.  At 

low frequencies this test will tend to pan the sound between the two ears.  

However, as the frequency increases the phase difference between the 

signals has less effect.  For example, at 500 Hz the sounds lateralises 

very noticeably.  At 1000 Hz only a very slight source movement is 
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perceivable and at 1500 Hz, although a slight change in timbre can be 

noted, the source does not change position. 

• Time Difference – For this test a broad band random noise source was 

used so that the sound contained many transients.   The source was also 

pulsed on and off (see Figure 2.3) so that as the time delay between the 

two ears changed the pulsed source would not move significantly while it 

was sounding.  The time delay was achieved using two fractional delay 

lines, using ‘g1’ and a rectified ‘g2’ scaled to give a delay between the ears 

varying from –0.8 ms to 0.8 ms (+/- 35 samples at 44.1 kHz), which 

roughly represents a source deflection of –900 to 900 from straight ahead.  

Slight localisation differences seem to be present up to a higher frequency 

than with phase differences, but most of this cue’s usefulness seems to 

disappear after around 1000 Hz. 

 

It is clear that the phase and time differences between the two ears of the 

listener are related, but they should be considered as two separate cues to 

the position of a sound source.  For example if we take a 1 kHz sine wave, the 

period is equal to 0.001 seconds.  If this sound is delayed by 0.00025 

seconds, the resulting phase shift will be 900.  However, if the sine wave is 

delayed by 0.00125 seconds the phase shift seen will be 4500.  As the ears 

are not able to detect absolute phase shift they must compare the two ears’ 

signals, which will still give a phase shift of 900 as shown in Figure 2.4. It is 

also apparent from Figure 2.4 that if a sound of a different frequency is used, 

the same time delay will give a different phase difference between the ears.  

As frequency increases the phase change due to path differences between 

the ears becomes greater, but once the phase difference between the two 

ears is more than 1800 then the brain can no longer decide which signal is 

lagging and the cue becomes ambiguous (Gulick, 1989). 
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Figure 2.4 Relative phase shift for a 1 kHz sine wave delayed by 0.00025 and 
0.00125 seconds 

 
The difference between time and phase cues is significant, as they will need 

to be utilised by the ear/brain system for different localisation situations.  If we 

take the situation where the listener is trying to localise a continuous sine 

wave tone, the time of arrival cues seen in Figure 2.4 will be not be present 

and only phase and amplitude cues can be used (it should also be noted that 

a pure sine wave tone can be a difficult source to locate anyway).  

Alternatively, if the listener is trying to localise a repeating ‘clicking’ sound, 

then the time of arrival cues due to source position will be present.  Also, it 

has been found that, even for higher frequency sounds, time/phase cues can 

still be utilised with regards to the envelope of the sound arriving at the head, 

as shown in Figure 2.5.  
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Figure 2.5 An 8 kHz tone with a low frequency attack envelope  

 

Using a combination of the cues described above, a good indication of the 

angle of incidence of an incoming sound can be constructed, but the sound 

will be perceived as inside the head with the illusion of sounds coming from 

behind the listener being more difficult to achieve.  The reason for this is the 

so-called ‘Cone of Confusion’ (Begault, 2000).  Any sound that is coming from 

a cone of directions (shown as grey circles in Figure 2.6) will have the same 

level, phase and time differences associated with it making the actual position 

of the source potentially ambiguous.    
 

 
Figure 2.6 Cone of Confusion – Sources with same I.L.D. and I.T.D. are shown as 

grey circles. 
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So how does the ear/brain system cope with this problem?  There are two 

other mechanisms that help to resolve the position of a sound source.  They 

are: 

• Head movement. 

• Angular dependent filtering. 

Head movement can be utilised by the ear/brain system to help strengthen 

auditory cues.  For example if a source is at 450 to the left (where 00 

represents straight ahead), then turning the head towards the left would 

decrease the I.L.D. and I.T.D. between the ears and turning the head to the 

right would increase the I.L.D. and I.T.D. between the ears.  If the source 

were located behind the listener the opposite would be true, giving the 

ear/brain system an indication of whether the source is in the front or the back 

hemi-sphere.  In a similar fashion, up/down differentiation can also be 

resolved with a tilting movement of the head.  This is a very important cue in 

the resolution of front/back reversals perfectly demonstrated by an experiment 

carried out by Spikofski et al. (2001).  In this experiment a subject listens to 

sounds recorded using a fixed dummy head with small microphones placed in 

its ears.  Although reported lateralisation was generally good, many front back 

reversals are present for some listeners.  The same experiment is then 

conducted with a head tracker placed on the listeners head which controls the 

angle that the dummy head is facing (that is, the recording dummy head 

mirrors the movements of the listener in real-time).  In this situation virtually 

no front/back reversals are perceived by the listener.  Optimising binaural 

presentations by utilising the head turning parameter is well documented, 

however, its consideration in the optimisation of speaker based systems has 

not been attempted, but will be investigated in this project. 

 

Angular dependant filtering is another cue used by the ear/brain system, and 

is the only angular direction cue that can be utilised monaurally, that is, sound 

localisation can be achieved by using just one ear (Gulick, 1989).  The filtering 

results from the body and features of the listener, the most prominent of which 

is the effect of the pinnae, the cartilage and skin surrounding the opening to 

the ear canal, as shown in Figure 2.7. 
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Figure 2.7 The Pinna 
 

The pinna acts as a very complex filtering device, imprinting a unique phase 

and frequency response onto pressure waves impinging on the head, 

depending on the angular direction of this pressure wave.   This implies that 

sound sources made up of certain bands are more likely to be heard as 

emanating from a particular location due to the natural peaks and troughs that 

are apparent in the HRTF data due to pinna filtering, and this has been shown 

in experiments using narrow-band sound sources.  For example, Zwicker & 

Fastl (1999) found that narrow band sources of certain frequencies are 

located at certain positions on the median plane, irrespective of the position of 

the sound source as indicated in Table 2.1. 

Narrow band source 

centre frequency 

Perceived position (in 

the median plane) 

300Hz, 3kHz Front 

8kHz Above 

1kHz, 10kHz Behind 
Table 2.1 Table indicating a narrow band source’s perceived position in the 

median plane, irrespective of actual source position. 
 

The example filters shown in Figure 2.8 (taken from HRTF data measured at 

the MIT media lab by Gardner & Martin (1994)) shows the phase/magnitude 

response at the right ear due to a source at 00,450 and 900 to the right of the 

listener.   Interestingly, if the complex filtering from a moving source is heard 

from a stationary sound source using both ears (e.g. if an in-ear recording is 

replayed over speakers), the listener will perceive timbral changes in the 

heard material. 
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Figure 2.8 Frequency and phase response at the right ear when subjected to an 

impulse at 00,450 and 900 to the right of the listener. 
 

Using the points discussed above, a number of simple assumptions can be 

made about the human auditory system. 

• Amplitude differences between the ears will only be present, and 

therefore can only be utilised, in sounds greater than some frequency 

(that is, when the sound no longer diffracts around the head). 

• Phase cues can only be totally unambiguous if the sound is delayed by 

less than half the corresponding wavelength of the sound’s frequency 

(i.e. low frequencies), but may still be utilised together with other cues 

(such as I.L.D.) up to a delay corresponding to a full wavelength (a 

phase change of 3600) (Gulick, W.L. et al., 1989).  

• Time cues can only be useful when transients are apparent in the 

sound source, e.g. at the beginning of a sound. 

2.2.2 Analysis of the Lateralisation Parameters 

In order to quantify what frequency ranges the lateralisation parameters are 

valid for, an example ‘head’ is now used.  This head was measured at the 

M.I.T. media lab in the U.S.A. and the impulse response measurements for a 

great many source positions were taken in an anechoic room.  The resulting 

impulse responses are measures of the Head Related Transfer Function 
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(which result in Head Related Impulse Responses, but are still generally 

known as HRTFs) due to the dummy head.  As the tests were carried out in 

an anechoic chamber, they are a very good measure of how we lateralise 

sound sources, that is, the minimum of auditory cues are present as no 

information regarding the space in which the recordings are made is apparent.  

Figure 2.9 shows a plot representing the amplitude difference (z-axis) 

measured between the two ears for frequencies between 0 Hz and 20 kHz (x-

axis) and source angles between 0 and 1800 (y-axis).  The red colouring 

indicates that there is no amplitude difference between the ears, and is most 

apparent at low frequencies, which is expected as the head does not obstruct 

the sound wave for these, longer, wavelengths.  The amplitude differences in 

the signals arriving at the ears can be seen to occur at around 700 Hz and 

then can be seen to increase after this point.  This graph shows a significant 

difference between modelling the head as a sphere (as in Figure 2.2) and 

measuring the non-spherical dummy head with amplitude peaks and troughs 

becoming very evident.   

 

 

 
Figure 2.9 The relationship between source incidence angle, frequency and 

amplitude difference between the two ears. 
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Figure 2.10 shows a very similar graph, but this time, representing the phase 

difference between the two ears.  The colour scaling now goes from –1800 to 

1800 (although the scale on this graph is in radians, from -3.142 to 3.142).   A 

clear pattern can be observed with the limit of unambiguous phase differences 

between the ears following a crescent pattern with no phase differences 

occurring when sounds are directly in front of or behind the listener.  The 

largest phase difference between the ears is to be found from a source at an 

angle of 900 to the listener where unambiguous phase differences occur up to 

approximately 800 Hz.  The anomalies apparent in this figure (negative phase 

difference) could be due to one of two effects: 

• Pinna, head and torso filtering. 

• Errors in the measured HRTF data. 

Of the two possible effects, the second is most likely, as the compact set of 

HRTFs were used (see Gardner & Martin (1994)).  The compact set of HRTFs 

has been processed in such a way as to cut down their size and inverse 

filtered in a crude manner.  Given these limitations, a good trend in terms of 

the phase difference between the two ears is still evident. 

 
Figure 2.10 Relationship between source incidence angle, frequency and the phase 

difference between the two ears. 
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Figure 2.11 shows the time of arrival difference between the two ears, and 

also indicates why interaural time difference and interaural phase difference 

should be considered as two separate auditory cues.  Usable time differences 

are apparent for every frequency of sound as long as the source is at an off-

centre position, and this is the only lateralisation cue for which this is the case.  

This graph also shows that filtering due to the pinna, head and torso create 

differing time delays which are dependent upon the frequency of the incoming 

sound.  If some form of time delay filtering were not present (i.e. no 

head/torso or pinna filtering), the time difference for each source angle of 

incidence would be constant across the audio spectrum. 

  

 
Figure 2.11 Relationship between source incidence angle, frequency and the time 

difference (in samples) between the two ears. 
 

The three graphs shown in Figure 2.9, Figure 2.10 and Figure 2.11 usefully 

provide an insight into possible reasons for a number of psychoacoustic 

phenomena.  If we consider the minimum audible angle (M.A.A.) for sounds of 

differing frequencies, and source azimuths (where the M.A.A. is taken as the 

angle a source has to be displaced by, until a perceived change in location is 

noted), it can be seen that the source’s M.A.A. gets larger the more off-centre 

the source’s original position (see Figure 2.12 and Gulick (1989)).  This is 
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coupled with the M.A.A. increasing for all source positions between the 

frequencies of 1 kHz and 3 kHz.   

 

The question arises; can the M.A.A. effect be explained using the three 

H.R.T.F. analysis figures given above?  Firstly, why would the minimum 

audible angle be greater the more off-centre the sound source for low 

frequencies?  If the phase difference graph is observed, then it can be seen 

that the gradient of the change of phase difference with respect to head 

movement is greatest when a source is directly behind or directly in front of 

the listener.  That is, if the head is rotated 10, then a source directly in front of 

the listener will create a greater phase change between the two listening 

conditions when compared to a source that is at an azimuth of 900 implying an 

increased resolution to the front (and rear) of the listener.   
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Figure 2.12 Minimum audible angle between successive tones as a function of 

frequency and position of source (data taken from Gulick (1989)). 
 

It should also be noted that the M.A.A. worsens between 1 kHz and 3 kHz.   If 

the interaural amplitude is studied, it can be seen that the difference between 

the ears starts to become pronounced after approximately 1 kHz and does not 

become more obvious until higher frequencies.  Also, 1 kHz is around the 

frequency where unambiguous phase cues start to disappear (and more so as 

the angle of incidence of the source increases).  It is this cross-over period 

between the brain using level and phase cues where the M.A.A. is at its 
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largest.  Another interesting result, that can also be seen from Figure 2.12, is 

that phase cues (used primarily at low frequencies) perform better, on 

average, than higher frequency cues (pinna filtering and level differences) and 

it is often mentioned that low frequency, temporal, cues are the more robust 

cues (for example, Wightman, F.L. and Kistler, D.J., 1992 and Huopaniemi, J. 

et al, 1999). 

2.3 Sound Localisation 

The term localisation differs from lateralisation in that not only is source 

direction angle arrived at, but a listener can gain information on the type of 

location a sound is emanating from and the distance from the source to the 

listener.  Also, information on the size of a sound source as well as which way 

it may be facing can be gleaned just by listening for a short time. 

2.3.1 Room Localisation 

When walking into an acoustic space for the first time, the brain quickly makes 

a number of assumptions about the listening environment.  It does this using 

the sound of the room (using any sounds present) and the reaction of the 

listener inside this room.  One example of this is when walking into a 

cathedral.  In this situation one of the first sounds possibly heard will be your 

own footsteps, and this will soon give the impression that the listener is in a 

large, enclosed space.  This is also the reason that people susceptible to 

claustrophobia are ill advised to enter an anechoic chamber, as the lack of 

any reverberation in the room can be very disconcerting, and bring on a 

claustrophobic reaction.  Interestingly, listening to sound sources in an 

anechoic chamber will often give the impression that the sound source is 

almost ‘inside the head’ (much like listening to conventional sound sources 

through headphones).  The human brain is not used to listening to sounds 

without a corresponding location (even large open expanses have sound 

reflections from the floor), and the only time this will happen is if the source is 

very close to the head, somebody whispering in your ear, for example, and so 

the brain decides that any sound without a location is likely to be very close.   
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If we are listening to a sound source in a real location, a large number of 

reflections may also reach the ears.  The first sound that is heard will be the 

direct sound, as this has the shortest path length (assuming nothing obstructs 

the source).  Then, the first order reflections will be heard.  Figure 2.13 shows 

a simplified example of this (in two dimensions).  Here it can clearly be seen 

that the direct sound has the shortest path length, which implies that this 

signal has the properties listed below: 

• The direct sound will be the loudest signal from the source to reach the 

listener (both due to the extra path length and the fact that some of the 

reflected source’s energy will be absorbed by the reflective surface). 

• The direct sound will be the first signal to reach the ears of the listener. 

• The direct sound may be the only signal that will be encoded (by the 

head of the listener) in the correct direction. 
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Figure 2.13 Simple example of a source listened to in a room.  Direct, four 1st order 

reflections and one 2nd order reflection shown (horizontal only). 
 

In the example shown above (Figure 2.13) a simple square room is shown 

along with four of the 1st order sound reflections (there are two missing, one 

from the floor and one from the ceiling) and one 2nd order reflection.  These 

signal paths will also be attenuated due to absorption associated with the wall 

and the air.  Surfaces in a room, and the air itself, possess an absorption 

coefficient, a numerical grade of acoustic absorption, although a more 
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accurate measure is the frequency dependent absorption coefficient.   As 

reflections in the room build up to higher and higher orders, a diffuse sound 

field is created, where the individual echoes are more difficult to analyse.  

Figure 2.14 shows an example impulse response of an actual room.  The 

room has a reasonably short reverberation time as the walls are acoustically 

treated with foam panels.  The graph shows ¼ of a second in time (11025 

samples at 44.1 kHz sampling rate). 
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Figure 2.14 Impulse response of an acoustically treated listening room. 
 

As mentioned at the beginning of this section, the response of a room gives 

listeners significant insight into the type of environment that they are in.  

However, Figure 2.14 shows a very complicated response.  So how does the 

brain process this?  An extremely important psychoacoustic phenomenon and 

one that the ear/brain system uses in this type of situation has been termed 

the precedence effect (Begault, 2000).  The precedence effect is where the 

brain gives precedence to the sound arriving at the listener first, with the 

direction of this first sound taken as the angular direction indicator.  This 

sounds very simple, but as we have two ears, the initial sound arrives at the 

ears twice and, therefore, has two arrival times associated with it.  Figure 2.15 

shows the equivalent reverberation impulse responses that arrive at both 

ears.  The source used in this graph is at 300 to the left of the listener very 
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close to the rear wall, and about 1 metre away from the left wall.  It can clearly 

be seen that the source’s direct sound arrives at the left ear first, followed, 

around 11 samples later (0.25 ms at 44.1 kHz), by the right ear.  As the 

ear/brain system uses this time difference to help lateralise the incoming 

sound, the precedence effect does not function for such short time 

differences.  Under laboratory tests it has been noted that if the same signal is 

played into each ear of a pair of headphones, but one channel is delayed 

slightly (Begault, 2000): 

• For a delay between 0 and 0.6mS the source will move from the centre 

towards the undelayed side of the listeners head. 

• Between approximately 0.7 and 35mS the source will remain at the 

undelayed side of the listeners head, that is, the precedence effect 

employs the first source to determine the lateralisation.  However, 

although the source position will not change, the perceived tone, and 

width of the source will tend to alter as the delay between the left and 

right ears is increased (note that this implies an effect analogous to 

comb filtering which occurs during the processing of the sounds 

arriving at the two ears by the brain of the listener). 

• Finally, increasing the time delay still further will create the illusion of 

two separate sources one to the left of the listener and one to the right.  

The delayed source is perceived as an echo. 
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Figure 2.15 Binaural impulse response from a source at 300 to the left of the 

listener.  Dotted lines indicate some discrete reflections arriving at left 
ear. 

 

The above points help to explain why the ear/brain system uses the 

precedence effect.  If a source has many early reflections (i.e. the source is in 

a reverberant room) the ear/brain system needs a way of discriminating 

between the direct sound and the room’s response to that sound (reflections 

and diffuse field).  The precedence effect is the result of this phenomenon.   If 

we take a source in a room (as given in figure 2.13), assuming the room is a 4 

m by 4 m, square room and the initial source is 0.45m away from the listener 

(that is, the listener and source positions are as in Figure 2.13).  The direct 

sound will take 1.3ms to reach the listener (taking the speed of sound in air as 

342 ms-1).   The source is at an azimuth of approximately 630 from straight 

ahead which will lead to a time difference between the ears of around 0.5 ms 

(using the approximate binaural distance equation from Gulick (1989)).   The 

nearest reflection has a path length of around 3.2 m from the source to the 

listener which equates to a delay time of 9.4 ms.  Because of the precedence 

effect, the first time delay between the ears will be utilised in the lateralisation 

of the sound source, and the first discrete echo will not be heard as an echo, 

but it will not change the perceived position of the sound source either, and 
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will just change the width or timbre of the source.  It is this type of processing 

in the ear/brain system that gives us vital information about the type of space 

we are situated in.  However, as the above points suggest, it may be at the 

expense of localisation accuracy, with the precedence effect breaking down if 

the echo is louder than the direct sound, which normally only occurs if the 

source is out of sight, but a reflection path off a wall is the loudest sound to 

reach the listener. 

2.3.2 Height and Distance Perception 

Although lateralisation has been discussed, no explanation has yet been 

given to resolution of sources that appear above or below the listener.   As the 

ears of the listener are both on the same plane, horizontally, the sound 

reaching each ear will not contain any path differences due to elevation 

(although, obviously, if a sound is elevated and off-centre, the path 

differences for the lateral position of the sound will be present), and as there 

are no path differences the only static cue that can be utilised for an elevated 

cue is the comb filtering introduced by head and pinna.  Figure 2.16 shows a 

3-axis graph representing a source straight in front of the listener changing 

elevation angle from –400 to 900.   Perhaps the most notable feature of this 

plot is the pronounced trough that originates at around 7 kHz for an elevation 

of –400, which goes through a smooth transition to around 11 kHz at an 

elevation of 600.  It is most probably these pinna filtering cues (combined with 

head movements) that are used to resolve sources that are above and below 

the listener (Zwicker & Fastl, 1999).  Interestingly, it has also been shown in 

Zwicker & Fastl (1999) that narrow, band-limited sources heard by a listener 

can have a ‘natural’ direction.  For example, an 8 kHz centre frequency is 

perceived as coming from a location above the head of the subject, whereas a 

1 kHz centre frequency is perceived as coming from a location behind the 

listener.   
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Figure 2.16 Relationship between source elevation angle, frequency and the 

amplitude at an ear of a listener (source is at an azimuth of 00). 
 

In order to assess the apparent distance of a source to the listener, a number 

of auditory cues are used.  The first and most obvious cue is that of 

amplitude.  That is, a source that is near by will be louder than a source that is 

further away.  The relationship between a point source’s amplitude and 

distance, in the free field, is known as the inverse square law as for each 

doubling of distance, the amplitude of the source will reduce by a quarter 

(1/[22]).  This is, of course, the simplest case, only holding true for a point 

source in the free field.  Sources are rarely a perfect point source, and rarely 

heard in the perfect free field (i.e. anechoic circumstances) so, in reality, the 

amplitude reduction is normally less than the inverse square law suggests.  In 

addition to the pure amplitude changes, distance dependant filtering can be 

observed, due to air absorption (Savioja, 1999).  This will result in a more low-

pass filtered signal, the further away the source.  The direct to reverberant 

ratio of the sound will change depending on the source’s distance to the 

listener with a source close to the listener exhibiting a large amount of direct 

sound when compared to the reverberation, but a sound further away will 

have a similar amount of reverberation, but a lower level of direct sound 
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(Begault, 2000).  There are two reasons for this.  Firstly, the diffuse part of the 

room’s response (i.e. the part not made up of direct sound or first order 

reflections) is made up from the sound bouncing off many surfaces, and as 

such, will be present all through the room.  This means that the level of this 

part of the reverberation is reasonably constant throughout the room.  Also, as 

the source moves away from the listener, the distance ratio between the path 

length of the direct sound and the early reflections becomes closer to one.  

This means that the first reflections will arrive closer (in time), and have an 

amplitude that is more similar to the level of the direct sound.  This is shown in 

Figure 2.17.   
 

 
Figure 2.17 A graph showing the direct sound and early reflections of two sources 

in a room. 
 

Evidence suggests that the reverberation cue is one of the more robust cues 

in the simulation of distance and has been shown to create the illusion of a 

sound source outside of the head under headphone listening conditions 

(McKeag & McGrath, 1997). 

 

Of all the cues available to differentiate source distances, the least apparent is 

that the source’s incidence angle from the listener’s ears will change as the 

source is moved away from a listener (Gulick, 1989).  Figure 2.18 shows two 

source examples, one source very close to the listener, and one source at 
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infinity.  The close source has a greater binaural distance associated with it 

when compared to the far source.  This means that as sources move off-

centre, the binaural distance for a far source will not increase as quickly as 

the binaural distance for a near source (that is, the maximum binaural time 

difference is less for a far source). 
 

Near Source Far Source 
 

Figure 2.18 A near and far source impinging on the head. 

2.4 Summary 

In summary, the ear/brain system uses a number of different cues when trying 

to make sense of the sounds that we hear.  These consist of the low level 

cues that are a result of the position and shape of the ears, such as: 

• Interaural level differences. 

• Interaural phase and time differences. 

• Head/torso and pinna filtering. 

These cues are used by the ear/brain system to help determine the angular 

direction of a sound, but are also combined and processed using higher order 

cognitive functions in order to help make sense of such things as the 

environment that the sounds have occurred in.  It is these higher order 

functions that give us the sense of the environment that we are in, assigning 

more information to the object than a directional characteristic alone.  Such 

attributes as distance perception are formed in this way, but other attributes 

can also be attached in a similar manner, such as the size of an object, or an 

estimation as to whether the sounding object is facing us, or not (in the case 

of a person talking, for example). 
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If a successful surround sound system is to be developed then it is apparent 

that not only should the low-level cues be satisfied, but they should also be as 

coherent with one another as possible so that the higher order cognitive 

functions of the ear/brain system can also be satisfied in a useful and 

meaningful way. 
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Chapter 3 - Surround Sound Systems 

3.1 Introduction 

In this chapter past and current surround sound algorithms and techniques 

will be discussed starting with a historical account of the first systems, 

proposed by Bell Labs and Alan Blumlein, how Blumlein’s early system was 

used as a loose basis for stereo, and then on to the theory and rationale 

behind the systems that are used presently.    

 

The early systems are of importance as most surround sound systems in use 

today base themselves on the techniques and principles of this early work.  In 

the context of this research, one main system will be decided upon as 

warranting further research in order to fulfil the research problem detailed in 

Chapter 1, with the following criteria needing to be met: 

• A hierarchical carrier format must be decided upon. 

• This carrier must be able to be decoded for multi-speaker systems 

with different speaker arrangements. 

• This decode must be able to provide the listener with the relevant 

auditory cues which will translate well into a binaural representation. 

As the above system is to be converted into a binaural and transaural 

representation, these systems will also be discussed. 

3.2 Historic Review of Surround Sound Techniques and 
Theory 

Although standard stereo equipment works with two channels, early work was 

not necessarily fixed to that number, with the stereo arrangement familiar to 

us today not becoming a standard until the 1950s.  Bell labs original work was 

predicated on many more speakers than this initially (Rumsey & McCormick, 

1994) and is the first system described in this section. 

3.2.1 Bell Labs’ Early Spaced Microphone Technique 

The early aims of the first directional sound reproduction techniques tried at 

Bell Labs was that of trying to reproduce the sound wave front from a source 
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on a stage (Rumsey & McCormick, 1994).  A sound source was placed on a 

stage in a room; this was then picked up by a large number of closely spaced 

microphones in a row, in front of the source.  These signals were then 

transmitted to an equal number of similarly spaced loudspeakers (as shown in 

Figure 3.1).   

 

Source 

 
Figure 3.1 Graphical depiction of early Bell Labs experiments.  Infinite number of 

microphones and speakers model. 
 

The result was an accurate virtual image that did not depend on the position 

of the listener (within limits) as the wave front approaching the speakers is 

reproduced well, much like wave-field synthesis (to be discussed later in this 

chapter).  Bell Labs then tried to see if they could recreate the same idea 

using a smaller number of speakers (Figure 3.2), but this did not perform as 

accurately (Steinberg, J. & Snow, W., 1934).  The main problem with such a 

setup is that once the many speakers are removed, the three sources (as in 

the example shown in Figure 3.2) do not reconstruct the wave front correctly.   

 

Let us consider the three speaker example shown in Figure 3.2.  If the source 

is recorded by three microphones, as shown, the middle microphone will 

receive the signal first, followed then by the microphone on the right, and 

lastly captured by the microphone on the left.  These three signals are 

reproduced by the three loudspeakers.  If the listener is placed directly in front 

of the middle loudspeaker, then the signal from the middle speaker will reach 

them first, followed by the right and left loudspeakers together.  However, as 

the signal from the source was delayed in reaching the left and right 
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microphones, the delay from each of the left and right speakers is increased 

even more.  Now, if the combined spacing between the microphones and 

speakers equates to a spacing greater than the diameter of the head, then the 

time delays reproduced at the ears of the listener will be greater than the 

maximum interaural time difference of a real source.  This will then result in 

either the precedence effect taking over (i.e. the source will emanate from the 

centre loudspeaker) or, worse still, echoes will be perceived.  This is due to a 

phenomenon known as ‘spatial aliasing’ and will be described in more detail in 

section 3.3.2.  The spacing of the microphones was necessary as directional 

microphones had not been invented at this point in time, and only pressure 

sensitive, omnidirectional microphones were available. 

 

 

Source

 
Figure 3.2 Early Bell Labs experiment.  Limited number of microphones and 

speakers model. 

3.2.2 Blumlein’s Binaural Reproduction System 

While carrying out research into the work of Alan Blumlein, it was soon 

discovered that there seems to be some confusion, in the audio industry, 

about certain aspects of his inventions.  This seems mainly due to the fact 

that the names of the various techniques he pioneered have been changed, 

or misquoted, from the names that he originally gave.  Alan Blumlein delivered 

a patent specification in 1931 (Blumlein, 1931) that both recognised the 

problems with the Bell Labs approach and defined a method for converting 

spaced microphone feeds to a signal suitable for loudspeaker reproduction.   

Blumlein called his invention Binaural Reproduction.  This recording technique 

comprised of two omni-directional microphones spaced at a distance similar 
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to that found between the ears, with a round panel baffle in between them.  

This technique was known to work well for headphone listening, but did not 

perform as accurately when replayed on loudspeakers.  Blumlein realised that 

for loudspeaker reproduction, phase differences at the speakers (i.e. in the 

spaced microphone recording) did not reproduce phase differences at the 

listener’s ears.  This was due to the unavoidable crosstalk between the two 

speakers and the two ears of the listener, as shown in Figure 3.3. 

 

 

 

x x 

Figure 3.3 Standard “stereo triangle” with the speakers at +/-300 to the listener (x 
denotes the crosstalk path). 

 

Blumlein had discovered that in order to reproduce phase differences at the 

ears of a listener, level differences needed to be presented by the speakers.  

His invention included the description of a ‘Shuffling’ circuit, which is a device 

that converts the phase differences, present in spaced microphone 

recordings, to amplitude differences at low frequencies (as at higher 

frequencies the amplitude differences would already be present due to the 

sound shadow presented by the disk between the two microphones).   

 

If we consider the stereo pair of loudspeakers shown in Figure 3.3, it can be 

seen that there are two paths from each speaker to each ear of the listener.  If 

the sound that is recorded from the Blumlein stereo pair of microphones is to 

the left of centre, then the left channel’s signal will be greater in amplitude 

than the right channel’s signal.   Four signals will then be transmitted to the 

ears: 

1. The left speaker to the left ear. 
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2. The left speaker to the right ear. 

3. The right speaker to the right ear. 

4. The right speaker to the left ear. 

If we take the case of a low frequency sound (where the interaural phase 

difference is the major cue), as the paths from the speaker to the contralateral 

ear is longer than from the speaker to the ipsilateral ear, the signal will appear 

delayed in time (but not changed in amplitude, due to the wave diffracting 

around the head, see Chapter 2).  The resulting signals that arrive at each ear 

are shown in Figure 3.4.   

 
Figure 3.4 Low frequency simulation of a source recorded in Blumlein Stereo and 

replayed over a pair of loudspeakers.  The source is to the left of centre. 
 

It can be clearly seen that low frequency phase cues can be encoded into a 

stereo signal using just amplitude differences and once the head starts to 

become a physical obstacle for the reproduced signals (at higher 

frequencies), a level difference between the ears will also become apparent. 

 

It may seem strange that Blumlein used a spaced microphone array to model 

what seems to be a coincident, amplitude weighted, microphone technique, 

but only omnidirectional microphones were available at this time.  However, 

less than a year later a directional, ribbon microphone appeared that had a 

figure of eight polar response.  This microphone was better suited to 

Blumlein’s Binaural Reproduction technique. 

 - 38 - 



Chapter 3 

 

 
Figure 3.5 Polar pickup patterns for Blumlein Stereo technique 

 

Blumlein’s coincident microphone technique involved the use of two 

coincident microphones with figure of eight pickup patterns (Blumlein, 1931) 

(as shown in Figure 3.5) and has a number of advantages over the spaced 

microphone set-up shown in Figure 3.2.  Firstly, this system is mono 

compatible, whereas spaced microphone techniques are generally not (if not 

shuffled).  If we again consider the microphone arrangement given in Figure 

3.2 then each of the microphones receives the same signal, but changed in 

delay and amplitude.  As there are delays involved, adding up the different 

channels will produce comb-filtering effects (as different frequencies will 

cancel out and reinforce each other depending on their wavelengths).  

However, this will not be the case using Blumlein’s binaural sound as the two 

microphones will pick up the same signal, differing only in amplitude.  A mono 

signal can be constructed by adding the left and right signals together 

resulting in a forward facing figure of eight response.  The Blumlein approach 

also has the added advantage that the actual signals that are presented from 

each loudspeaker can be altered after the recording process.  For example, 

the apparent width of the sound stage can be altered using various mixtures 

of the sum and difference signals (see spatial equalisation, later in this 

section). Also, Blumlein based his work on what the ear would hear, and 
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described how a stereo image, made up of amplitude differences alone, could 

create low frequency phase cues at the ears of a listener (Blumlein, 1931).   

 

Blumlein did foresee one problem with his two microphone arrangement, 

however.  This was that the amplitude and phase cues for mid and low 

frequencies, respectively, would not be in agreement (Blumlein, 1931; 

Glasgal, 2003a).  It was possible to solve this problem using the fact that the 

signals fed to each speaker could be altered after recording using the sum 

and difference signals.  This technique is now known as spatial equalisation 

(Gerzon, 1994), and consisted of changing the low frequency signals that fed 

the left and right speaker by boosting the difference signal and cutting the 

sum signal by the same amount (usually around 4dB).  This has the effect of 

altering the pickup pattern for the recorded material in a manner shown in 

Figure 3.6.  This technique is still used today, and is a basis for parts of the 

Lexicon Logic 7™ (Surround Sound Mailing List Archive, 2001) and 

Ambisonic systems (Gerzon, 1974), the principles of which will be discussed 

in detail later in this chapter.   

 
Figure 3.6 Graph showing the pick up patterns of the left speaker’s feed after 

spatial equalisation. 
 

Blumlein’s binaural reproduction technique is one of the few that truly 

separates the encoding of the signal from the decoding, which allows for the 

various post recording steps that can be carried out in a clearly defined, 
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mathematically elegant way.  Blumlein was soon employed by the military to 

work on radar, amongst other things.  It may be because of this that 

Blumlein’s work was not openly recognised for a number of years (Alexander, 

1997), but his principles were later used in the formulation of a three 

dimensional sound system (see Ambisonics, later in this chapter). 

3.2.3 Stereo Spaced Microphone Techniques 

Although the Blumlein Stereo technique has many advantages as a recording 

format when used for reproduction over loudspeakers, there is another school 

of thought on this matter.  This is that such ‘summation localisation theories’ 

cannot hope to accurately reproduce recorded material as no onset time delay 

is introduced into the equation, and if this is the case, then although steady 

state (continuous) signals can be reproduced faithfully, the onset of sounds 

cannot be reproduced with strong enough cues present to successfully fool 

the ear/brain system.  To this end, a number of spaced microphone 

techniques were developed that circumvented some of the problems 

associated with Bell Labs wave front reconstruction technique described 

above.  It must be noted, however, that Blumlein did use spaced microphone 

techniques to record sound as he was well aware that, for headphone 

listening, this produced the best results.  However, in order to replay these 

recordings over speakers, to achieve externalisation, a Blumlein shuffler was 

used, that converted the signals, at low frequencies, to consist of only 

amplitude differences. 

  

If we recall from the Bell Labs system, anomalies occurred because of the 

potentially large spacing between the microphones that were picking up the 

sound sources.  A more logical approach is a near-coincident microphone 

technique that will limit the time of arrival errors so that the maximum time 

difference experienced by a listener will not be perceived as an echo.  The 

ORTF method uses a pair of spaced directional microphones usually spaced 

by around 17 cm (roughly equal to the diameter of a human head) and at an 

angle of separation of 1100 (as shown in Figure 3.7).  This means that the 

largest possible time difference between the two channels is comparable with 

the largest time of arrival difference experienced by a real listener.  Directional 
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microphones are used to simulate the shadowing effect of the head.   This 

arrangement is a trade off between spaced and coincident microphone 

techniques as it has the increased spaciousness of spaced microphones (due 

to the increased de-correlation of the two signals) but also has reasonably 

good mono compatibility due to the close proximity of the microphone 

capsules.   

1100 

17cm 

 
Figure 3.7 ORTF near-coincident microphone technique. 
 

Another widely used technique is the Decca Tree (Rumsey and McCormick, 

1994).  This is a group of three microphones matrixed together to create two 

loudspeaker feeds.  An example of the Decca Tree arrangement is shown in 

Figure 3.8.  In this arrangement the centre microphone feed is sent to both 

channels, the left microphone feed is sent to the left channel and the right 

microphone is sent to the right channel.  In this way, the differences between 

the two channels outputs are lessened, giving a more stable central image, 

and alleviating the ‘hole in the middle’ type effect of a spaced omni technique 

(the sound always seeming to originate from a specific speaker, as in the Bell 

Labs set-up).   

 

 - 42 - 



Chapter 3 

 

1.
5m

 

2m 
 

Figure 3.8 Typical Decca Tree microphone arrangement (using omni-directional 
capsules). 

3.2.4 Pan-potted Stereo 

The systems that have been discussed thus far have been able to record 

events for multiple speaker playback, but a system was needed that could be 

used to artificially place sources in the desired location to create the illusion of 

a recorded situation.  Due to the simplicity of Blumlein stereo, as opposed to 

spaced microphone techniques, creating a system where individual sources 

could be artificially positioned was based on amplitude panning (Rumsey and 

McCormick, 1994).   So, a simulation of the Blumlein coincident microphone 

system was needed.  As the coincident microphones were figure of eight 

responses the gains needed to artificially pan a sound from the left speaker to 

the right speaker are given in equation (3.1).   The SPos offset parameter is 

basically to ‘steer’ the virtual figure-of-eight responses so that a signal at one 

speaker position will have no gain at the opposite speaker, i.e. a virtual source 

at the speaker position is an actual source at the speaker position. 

 

)cos(
)sin(

SPosRightGain
SPosLeftGain
+=

+=
θ

θ
    

 (3.1) 

where: SPos is the absolute angular position of the speaker. 

θ is the desired source position (from SPos0 to –SPos0). 
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Figure 3.9 A stereo panning law based on Blumlein stereo. 

 

This is, however, really a simplification of Blumlein’s stereo technique as his 

spatial equalisation circuit is generally not used in amplitude stereo panning 

techniques.   

 

Simple amplitude (or pair-wise panning) has now been used for many years, 

but does suffer from a few problems.  It has been shown that the maximum 

speaker separation that can be successfully utilised is +/- 300 and that side-

imaging is very hard to achieve using this method (Glasgal, 2003b).  Both of 

these facts are not necessarily detrimental to simple two-speaker stereo 

reproduction, but will present a larger problem with surround sound 

techniques as this would mean a minimum of six equally spaced speakers 

placed around the speaker would need to be used (based on only the angular 

spacing assumption). 

 

In summary, there are basically two schools of thought when it comes to the 

recording of live situations for replay over a stereo speaker array (pan-potted, 

stereo, material is almost always amplitude panned, although artificial 

reverberation devices often mimic a spaced microphone array rather than a 

coincident setup).  There are those that abide by spaced microphone 

techniques, reasoning that the time onset cues are very important to the 
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ear/brain system (i.e. the precedence effect) and these are impossible to 

recreate using a coincident microphone arrangement.  On the other side there 

are those who prefer the mathematical simplicity of coincident microphone 

arrangements, believing that the potential phase/time misalignment of the 

signals originating from the speakers in spaced microphone techniques to be 

detrimental to both the timbre and accuracy of the recorded material.   Of 

course, both are correct to a certain degree and both coincident and spaced 

techniques can produce very pleasing results.  However, the main problem 

with spaced microphone techniques is that, because potentially unknown time 

differences will be present between the two channels, the practical 

reprocessing of new signal feeds becomes much more difficult, while not an 

issue for two-speaker stereo, will become an issue for larger arrays of 

speakers. 

3.2.5 Enhanced Stereo 

As can be deduced from both Blumlein and Bell Labs early work, stereo 

sound (which, incidentally, neither Blumlein or Bell Labs referred to their work 

as ‘Stereo’ sound) was never limited, theoretically, to just two speakers, as 

their work was mainly geared towards film sound reproduction that needed to 

encompass large audiences.  Three speakers was a good minimum for such 

a situation as it was soon found that angular distortion was not too detrimental 

to the experience, except when it came to dialogue (Blumlein’s original idea of 

the dialogue following the actors was not widely taken up).  Dialogue needed 

to always sound as if it was coming from the screen and not the nearest 

speaker to the listener, which could happen due to the precedence effect.  To 

this end the centre speaker was useful for both fixing dialogue to the centre of 

the sound stage, and also for increasing the useful listening area of the room.  

If a source is panned between two speakers, then a mixture of the time 

difference and the level difference between the ears will be used to calculate 

where the sound source is originating from.  So, if the listener is in the centre 

of the two speakers the time (phase) cues will be constructed from the level 

differences between the speakers.  However, as the listener moves off-centre 

the time delay from the two speakers will change the perceived direction of 

the sound source.  This time difference can be counteracted by the amplitude 
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differences between the two speakers, but angular distortion will always 

occur, and once the listener is much closer to one speaker than the other, all 

but the hardest panned material will tend to emanate from the closer of the 

two loudspeakers.  Hence, having a centre speaker not only fixed dialogue to 

the screen, but also lessened the maximum time difference that could be 

experienced between two speakers at any one time.   

3.2.6 Dolby Stereo 

Much of the motivation for early surround sound implementations was the 

cinema, and early multi-channel playback was attempted as early as 1939 in 

the Disney film, Fantasia (Kay et al. 1998).  However, although a magnetic 

multi-channel standard had been available since the 1950’s (Dolby Labs, 

2002), it was not as robust or long lasting as the mono optical track that was 

used at this time.  Dolby was to change this in 1975 mainly due to the use of 

their noise reduction techniques that had revolutionised the professional 

recording industry since the 1960’s.  The optical system in use at that time 

had a number of problems associated with it.  The standard for the mono 

track’s frequency response was developed in the 1930’s which, although 

making the soundtrack replayable in almost any cinema in the world, reduced 

the bandwidth to that of a telephone.  This response, called the Academy 

characteristic (Dolby Labs, 2002), also meant that the soundtracks were 

recorded with so much high frequency pre-emphasis that considerable 

distortion was also present in the audio.  Dolby’s research found that most of 

these problems were because of the low signal to noise ratio of the optical 

transmission medium, and in the late 1960’s looked at using their type A noise 

reduction systems in order to improve the response of the sound.  Although 

this worked very well, the noise reduction was not embraced as 

enthusiastically as for the professional audio industry and Dolby decided that 

if it was to make serious ground in the film industry it was the number of 

channels available, and not solely the sound quality that would gain success.  

In 1975 Dolby made public their film sound breakthrough.  Using the same 

optical technology as was already in place, a new four-channel stereo system 

was introduced (Dolby Labs, 2002).  It worked by storing just two channels of 

audio which represented the left and right speaker feeds.  Then, the sum of 
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these two channels represented the centre channel, and the difference 

between these two signals represented the surround feed.  These principles 

were updated slightly due to the nature of the storage mechanism and replay 

situations. 

1. Due to the potential phase misalignment and other analogue 

imperfections in the replay medium, high frequency sounds intended 

for the centre front speaker could leak back into the surround speakers.  

For this reason, the surround channels were band limited to around 7 

kHz. 

2. The surround speakers found in cinemas were often closer to the 

listener than the front speakers were.  To make sure that the 

precedence effect didn’t pull much of the imaging to the back and 

sides, the surround feeds were delayed. 

3. The surround feed was phase shifted by +/- 900 prior to being added to 

the left and right channels.  This meant that any material added to the 

surround channel would be summed, equally out of phase, with the left 

and right channels (as opposed to one in phase, one out of phase). 

A simplified block diagram of the Dolby encode/decode process is shown in 

Figure 3.10.  This, matrix, surround sound technique had a number of points 

in its favour: 

1. It could be distributed using just two channels of audio 

2. It was still an optical, and therefore cheap and robust, recording 

method. 

3. The stereo track was mono compatible. 

4. A new curve characteristic was used which, when coupled with Dolby 

noise reduction, greatly improved the fidelity of cinema sound. 

For these reasons, the film industry took to the new Dolby Stereo format. 
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Figure 3.10 Simplified block diagram of the Dolby Stereo encode/decode process 

3.2.7 Quadraphonics 

While Dolby was concentrating on film sound reproduction, surround sound 

techniques were being developed for a wider audience (in the home) and the 

first of these systems was termed Quadraphonics.  Quadraphonics worked on 

the principle that if the listener wanted to be surrounded by sound then all that 

would be needed was an extension of the stereo panning law described 

above, but moving between four loudspeakers.  The loudspeakers were setup 

in a square (usually) and sounds could theoretically be pair-wise panned to 

any azimuth around the listener.  However, it was soon shown that +/- 450 

was too wide a panning angle at the front and back, and side images could 

not be formed satisfactorily using pair-wise panning techniques (Gerzon, 

1974b & 1985).  This, coupled with a number of incompatible formats, the 

extra expense needed for more speakers/amplifiers and the poor performance 

of early Quadraphonic matrix decoders meant that Quadraphonics was not a 

commercial success. 
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3.3 Review of Present Surround Sound Techniques 

This section describes systems that are now still generating work and interest 

within the surround sound community (not necessarily any newer than some 

systems mentioned in section 3.2).   

 

Systems in use today can be separated into two distinct categories: 

1. Systems that define a speaker layout and/or carrier medium but 

with no reference to how signals are captured and/recorded for the 

system.  Examples include 

o Dolby Digital - Ac-3 (Dolby Labs, 2004) 

o DTS (Kramer, N.D.) 

o Meridian Lossless packaging (De Lancie, 1998) 

2. Systems that define how material is captured and/or panned for 

replay over a specified speaker layout.  Examples include 

o Ambisonics 

o Wavefield Synthesis 

o Ambiophonics 

This thesis will concentrate on the systems in the 2nd of these categories, that 

define how material is captured and replayed over a system as the 1st type of 

system is just defining a standard for which the 2nd category of system could 

be applied to (for example, both DTS and Dolby Digital are both lossy, 

perceptual codecs used to efficiently store 6 discrete channels to be played 

over a standard, ITU, 5.1 speaker array) 

3.3.1 Ambisonics 

3.3.1.1 Theory 

Ambisonics was a system pioneered mainly by Michael Gerzon and is based 

on the spherical harmonic decomposition of a sound field (Gerzon, 1974).  In 

order to understand this last statement the fundamentals of Ambisonics are 

reviewed.   

 

A definition for what makes a decoder Ambisonic can be found in Gerzon & 

Barton (1992) and their equivalent U.S. patent regarding Ambisonic decoders 
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for irregular arrays (Gerzon & Barton, 1998), and states (slightly adapted to 

remove equations): 

 

A decoder or reproduction system is defined to be Ambisonic if, for a centrally 

seated listening position, it is designed such that: 

• The decoded velocity and energy vector angles agree and are 

substantially unchanged with frequency. 

• At low frequencies (below around 400 Hz) the low frequency 

velocity vector magnitude is equal to 1 for all reproduced azimuths. 

• At mid/high frequencies (between around 700 Hz and 4 kHz) the 

energy vector magnitude is substantially maximised across as large 

a part of the 3600 sound stage as possible. 

 

To understand these statements, the underlying concepts of Ambisonics will 

be explained, leading into a description of the velocity and energy vectors and 

their relevance to multi-speaker surround sound systems. 

 

Ambisonics is a logical extension of Blumlein’s binaural reproduction system 

(at least, after it’s conception).  Probably one of the most forward looking 

features of the Blumlein technique is that when using the two figure of eight 

capsules positioned perpendicular to each other, any other figure of eight 

response could be created (it was this fact that was utilised in Blumlein’s 

spatial equalisation technique).  For example, if we take the two figure of eight 

microphones shown in Figure 3.5, then any figure of eight microphone 

response can be constructed using the equations shown in Equation (3.2).  

Some example microphone responses have been plotted in Figure 3.11. 
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(3.2) 

where: θ is the desired response angle. 

  L is the left facing figure of eight microphone. 

  R is the right facing figure of eight microphone. 
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  Figure8 is the reconstructed figure of eight microphone. 

 

 
Figure 3.11 Plot of microphone responses derived from two figure of eight 

microphones. 
 

This approach is very similar to Gerzon’s in that the encoding (recording) side 

is independent from the decoding (reproduction) process.  That is, Blumlein 

stereo could be replayed over 1, 2 or more speakers.  Where Gerzon’s 

Ambisonics improves upon this idea is as follows: 

• Ambisonics can be used to recreate a full three dimensional sound field 

(i.e. height information can also be extracted from the Ambisonics 

system). 

• The decoded polar pattern can be changed, that is, you are not fixed to 

using a figure of eight response. 

As an example, 1st order Ambisonics can represent a sound field using four 

signals (collectively known as B-Format).  The W signal is an omni-directional 

pressure signal that represents the zeroth order component of the sound field 

and X, Y and Z are figure of eight microphones used to record the particle 

velocity in any one of the three dimensions.  Graphical representations of 

these four B-Format microphone signal responses are given in Figure 3.12. 
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W

X Y 
Z

 
Figure 3.12 The four microphone pickup patterns needed to record first order 

Ambisonics (note, red represents in-phase, and blue represents out-of-
phase pickup). 

 

Ambisonics is a hierarchical format so that although four channels are needed 

for full three-dimensional reproduction, only three channels are needed if the 

final replay system is a horizontal only system.  The mathematical equations 

representing the four microphone responses shown in Figure 3.12 are shown 

in equation (3.3).  These equations can also be used to encode a sound 

source and represent the gains applied to the sound for each channel of the 

B-format signal. 
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where: α = elevation angle of the source. 

  θ = azimuth angle of the source. 

 

In order to replay a B-Format signal, virtual microphone responses are 

calculated and fed to each speaker.   That is, using the B-format signals, any 

1st order microphone response can be obtained pointing in any direction.  As 

mentioned before, this is very much like the theory behind Blumlein Stereo, 

except that you can choose the virtual microphone response from any first 
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order pattern (and not just a figure of eight), from omni to figure of eight.  This 

is possible using the simple equation shown in equation (3.4) (Farina et al., 

2001) 
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where: W,X,Y & Z are the B-format signals given in equation (3.3) 

S = speaker output 

  θ = speaker azimuth 

  α = speaker elevation  

  d = directivity factor (0 to 2) 

 

This gives us the flexibility to alter the polar pattern for each speaker in a 

decoder.  Example patterns are shown in Figure 3.13.  

 

To clarify the Ambisonic encode/decode process, let us encode a mono 

source at an azimuth of 350 and an elevation of 00 and replay this over a six 

speaker, hexagonal rig. 
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Figure 3.13 Graphical representation of the variable polar patterns available using 

first order Ambisonics (in 2 dimensions, in this case). 
 

From equation (3.3) the B-format (W, X, Y and Z) signals will consist of the 

amplitude weighted signals shown in equation (3.5). 

 

W = 0.7071 x mono 

X = cos(35)cos(0) x mono  = 0.8192 x mono 

Y = sin(35)cos(0) x mono   = 0.5736 x mono 

Z = sin(0) x mono   = 0 x mono 

(3.5) 

Where: mono is the sound source to be panned 

W, X, Y & Z are the resulting B-Format signals after mono has had the 

directionally dependant amplitude weightings applied. 

 

Equation (3.4) can now be used to decode this B-format signal.  In this case a 

cardioid response will be used for each speaker’s decoded feed, which 

equates to a directivity factor of 1 (see Figure 3.13).  Equation (3.6) shows an 

example speaker feed for a speaker located at 1500 azimuth and 00 elevation. 
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S = 0.5 x [(1.414 x W) + (-0.866 x X) + (0.5 x Y) + (0 x Z)]   

(3.6) 

where: W, X & Y are the encoded B-Format signals.  

S = resulting speaker feed 

 

The polar pattern used for the decoder can be decided either by personal 

preference, that is, by some form of empirically derived setting, or by a 

theoretical calculation which obtains the optimum decoding scheme.   

 

This leads us back to the original statement of what makes a system 

Ambisonic.  Although the B-format input signal is the simplest to use for the 

Ambisonic system, the term Ambisonics is actually more associated with how 

a multi-channel decode can be obtained that maximises the accuracy of the 

reproduced sound field.  The three statements given at the beginning of this 

section mention the energy and velocity vectors associated with a multi-

speaker presentation, and it is using these that an Ambisonic decoder can be 

designed. 

3.3.1.2 Psychoacoustic Decoder Design Using the Energy and Velocity 
Vectors. 

Although Gerzon defined what makes a system Ambisonic, a number of 

different decoding types have been suggested both by Gerzon himself and by 

others (see Malham, 1998 and Farino & Uglotti, 1998).  However, the theory 

behind Ambisonics is, as already mentioned, similar to Blumlein’s original idea 

that in order to design a psychoacoustically correct reproduction system the 

two lateralisation parameters must be optimised with respect to a centrally 

seated listener (Gerzon, 1974). 

 

Originally, Gerzon’s work concentrated on regularly spaced arrays in two and 

three dimensions (such as square and cuboid arrays) where the virtual 

microphone responses chosen for the decoders were based on the system 

being quantified using the principles of energy and velocity vectors calculated 

at the centre of the array to be designed.  These two vectors have been 

shown to estimate the perceived localisation and quality of a virtual source 
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when reproduced using multiple speakers (Gerzon, 1992c). The equations 

used to calculate the energy and velocity vectors are shown in Equation (3.7) 

with the vector lengths representing a measure of the ‘quality’ of localisation, 

and the vector angle representing the direction that the sound is perceived to 

originate from, with a vector length of one indicating a good localisation effect.   
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(3.7) 

Where:  

gi represents the gain of the ith speaker (assumed real for simplicity). 

n is the number of speakers. 

θi is the angular position of the ith  speaker. 

 

These equations use the gain of the speakers in the array, when decoding a 

virtual source from many directions around the unit circle (each speaker’s gain 

can be calculated using the B-Format encoding equations given in Equation 

(3.3) combined with the decoding equation given in Equation (3.4)). 

 

For regular arrays, as long as the virtual microphone responses used to feed 

the speakers were the same for all, the following points can be observed: 

• The reproduced angle would always be the same as the source’s 

encoded angle. 

•  The energy (E) and pressure (P) values (which indicate the 

perceived volume of a reproduced source) would always be the 

same for any reproduced angle. 

This meant that when optimising a decoder designed to feed a regular array 

of speakers: 

• Only the length of the velocity and energy vectors had to be 

optimised (made as close to 1 as possible). 
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• This could be achieved by simply changing the pattern control (d) in 

equation (3.4) differently for low (<700Hz) and high (>700Hz) 

frequencies. 

As an example Figure 3.14 shows the velocity and energy vector plots of an 

eight speaker horizontal Ambisonic array using virtual cardioid responses for 

each speaker feed. 

 
Figure 3.14 Velocity and Energy Vector plot of an eight-speaker array using virtual 

ca
 

rdioids (low and high frequency directivity of d=1). 

In order to maximise the performance of this decoder according to Gerzon’s 

methods, the low frequency (velocity) vector length should be 1, and the high 

frequency (energy) vector length should be as close to 1 as possible (it is 

impossible to realise a virtual source with a energy vector of one, as more 

than one source is reproducing it).  This can be achieved by using a low 

frequency directivity pattern of d=1.33 and a high frequency directivity pattern 

of d=1.15.  This produces the virtual microphone patterns as shown in Figure 

3.15 (showing the low frequency pattern for a speaker at 00 and a high 

frequency pattern for a speaker at 1800 in order to make each pattern easier 

to observe) and has a corresponding velocity and energy vector plot as shown 

in Figure 3.16. 
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Figure 3.15 Virtual microphone responses that maximise the energy and velocity 

vector responses for an eight speaker rig (shown at 00 and 1800 for 
clarity). 
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Figure 3.16 Velocity and Energy Vector plot of an eight speaker Ambisonic decod
using the low and high frequency polar patterns shown in Figure 3.16. 

 

As can be seen in Equation (3.4), a change of polar pattern in the decoding 

equation will result in two gain offsets; one applied to the W signal, and 

another applied to the X, Y and Z signals.  This could be realised, 

algorithmically, by the use of shelving filters boosting and cutting the W, X, 
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and Z signals by the desired amount prior to decoding, which simplified t

design of, what was at the time, an analogue decoder. 

 

It soon became apparent that, due to both the cinema and proposals for high

definition television, the standard speaker layout for use in the home was not 

going to be a regular array.  Gerzon had always had difficulty in solving the 

velocity and energy vector equations for irregular arrays because irregular 

arrays would generally need optimising, not only for the vector lengths, but 

also for the decoded source angles and the perceived volume of the decoder 

he 

 

(for example, more speakers in the front hemisphere, when compared to the 

rear, would cause sources to be louder when in that hemisphere).  This meant 

that a set of non-linear simultaneous equations needed to be solved.  Also, 

the shelving filter technique used for regular decoders could not be used for 

irregular decoders as it was not just the polar pattern of the virtual 

microphones that needed to be altered.  To this end a paper was published in 

1992 (Gerzon & Barton, 1992) describing how a cross-over filter technique 

could be used along with two decoder designs, one for the low frequency and 

one for the high frequencies, in order to solve the irregular speaker problem. 

 

In the Gerzon & Barton (1992) paper, a number of irregular Ambisonic 

decoders were designed, however, although many five speaker decoder 

examples were given, none were as irregular as the ITU finally specified.  For 

example, the yout are +/- 30  from straight 
0 from directly behind the listener, respectively, but the 

r 

.  

 front and rear spacing of the ITU la 0

ahead and +/- 70

decoders Gerzon designed always had a front and rear spacing that were 

similar to each other (e.g. +/-350 front and +/- 450 rear) and although much 

work has been carried out on Ambisonics, a psychoacoustically correct 

‘Vienna style’ decoder (named after the AES conference in Vienna where the 

Gerzon & Barton paper was presented) has not yet been calculated.  It must 

also be noted that Gerzon’s method for solving these equations was, by his 

own admission, are “very tedious and messy” (Gerzon & Barton, 1992) and it 

can be observed, by visualising the velocity and vector responses, in a simila

manner to Figure 3.16, that this paper does not solve the equations optimally
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This is due to the splitting of the encoding and the decoding by Gerzon.  An 

e 3.17 example of a decoder optimised by Gerzon & Barton is shown in Figur

Speakers 
Velocity 
Vector 

Energy 
Vector 

Sound 
Pressure 
Level 

0,12.25,22.5, 
45,90 & 135 
degrees 
reproduced 
angles 

 
Figure 3.17 Energy and velocity vector analysis of an irregular speaker decode 

optimised by Gerzon & Barton (1992). 
 

It can be clearly seen, in Figure 3.17, that the high frequency decode (green 

line representing the energy vector) has reproduced angles that do not match 

up with the low frequency velocity vector response.  This is due to the fact that 

the Gerzon & Barton paper suggests that although the vector length and 

reproduced angle parameters should be optimised simultaneously for the high 

ormation of 

the B-format input signal) should then be carried out to ensure that perceived 

e (such as the SoundField Microphone, SoundField Ltd., n.d.) 

which h hannel response  in Figure 3.12. 

recording c cidentally in three dime ns proves to be extre ifficult.  

Coincident microphone techniques in two dimensions (see 3.2. lein’s , 

page 36) are possible where the microphones can be made coincident in the 

frequency energy vector, a forward dominance adjustment (transf

volume of the high frequency decoder is not biased towards the back of the 

speaker array.  This, inevitably, causes the reproduced angles to be shifted 

forward. 

3.3.1.3 B-Format Encoding 

The encoding equations (3.3) are basically a simulation of a B-format 

microphon

as a four-c  as shown  However, 

oin nsio mely d

2, Blum

 - 60 - 



Chapter 3 

X – Y axis but not in the Z axis (although this still causes some ignment 

problems); ever, in three dimens is is not desirable a ding 

be e his problem was 

olved by Gerzon and Craven (Craven & Gerzon, 1977) by the use of four sub 

 mis-al

how ions th s recor

needs to qually accurate in all three dimensions.  T

s

cardioid microphone capsules mounted in a tetrahedral arrangement.  This 

arrangement is shown in Figure 3.18. 

 

 
Figure 3.18 Four microphone capsules in a tetrahedral arrangement. 

 

The capsules are not exactly coincident, but they are equally non-coincident 

in each axis’ direction, which is important as this will simplify the correction of 

the non-coincident response.  However, to aid in the explanation of the 

principles of operation of this microphone the capsule responses will, for now, 

be assumed to be exactly coincident and of cardioid response.  As shown in 

Figure 3.18, each of the four microphone capsules faces in a different 

direction: 

Capsule Azimuth Elevation 

A 450 35.30

B 1350 -35.30

C -450 -35.30

D -135 35.30 0

Table 3.1 SoundField Microphone Capsule Orientation 
 

As each of the capsules has a cardioid pattern (in this example) all sound that 

the capsules pick up will be in phase.  Simple manipulations can be 

performed on these four capsules (know collectively as A-format) so as to 

construct the four pick-up patterns of B-format as shown in equation (3.8).  A 
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graphical representation of the four cardioid capsule responses and the four 

first order components derived from these are shown in Figure 3.19. 
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( ) ( )CBDAZ
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DCBAW
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+++×= 5.0

    

(3.8) 

 

A-Format W from A

Y from A
X from A Z from A 

 
Figure 3.19 B-Format spherical harmonics derived from the four cardioid capsules

of an A-format microphone (assuming perfect coincidence).  Red 
represents in-phase and blue represents out-of-phase pickup. 

 

As is evident from Figure 3.19, four perfectly coincident cardioid microphone 

capsules arranged as described above can perfectly recreate a first order, B

format, signal.   However, as mentioned earlier, the four capsules providing 

the A-format signals are not perfectly coincident.  This has the effect of 

misaligning the capsules in time/phase (they are so close that they do n

significantly affect the amplitude response of the capsules), which results in

colouration (filtering) of the resulting B-format signals.  As all of the caps

are equally non-coincident then any colouration will be the same for each

 

-

ot 

 

ules 

 

rder, i.e. the 0th order component will be filtered in one way, and the 1st order 

components will be filtered in another way.   However, using cardioid 

microphone pickup patterns causes the frequency response of the B-format 

signals to fluctuate too much, and so for the actual implementation of the 

microphone, sub-cardioid polar patterns were used (as shown in Figure 3.20).    

o
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To illustrate the frequency response characteristics of an Ambisonic 

microphone, it is simpler to assume that the microphone only works 

horizontally.  Each of the four sub-cardioid capsules has no elevation angle, 

only an azimuth as described earlier.  The equations that construct W, X, and 

Y will still be the same (3.8), but the Z component will not be constructed.  

Figure 3.20 shows a number of representations of a sound being recorded 

from four different directions, 00, 150, 300 and 450 and indicates what 

amplitude each capsule will record, what timing mismatches will be present 

(although, note that the sample scaling of this figure is over-sampled many 

times), and finally a frequency response for the W and X signals.  It can be 

also these re

e 

t 

m with having the capsules spaced in this 

ay, and that is the fact that the frequency response of the B-format signals 

seen that the two channels not only have different frequency responses, but 

sponses change as the source moves around the microphone.  It 

must be remembered that the overall amplitude of the X channel will chang

due to the fact that the X channel has a figure of eight response.   Looking a

Figure 3.20 shows a clear proble

w

changes as the source moves around the microphone.  The smaller the 

spacing, the less of a problem it becomes (as the changes move up in 

frequency due to the shortening of the wavelengths when compared to the 

spacing of the capsules), and Figure 3.20 is based on the approximate 

spacing that it part of the SoundField MKV microphone (Farrah, 1979a). 
 

 

 
Figure 3.20 Simulated frequency responses of a two-dimensional, multi-capsule A-

format to B-format processing using a capsule spacing radius of 1.2cm. 
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These responses can be corrected using filtering techniques, but only the 

average response will be correct, with the sound changing timbrally as it is 

moved around the microphone. 

 

Although the frequency response deviations sound like a large problem, they 

are not noticed and are combined with other errors in the signal chain such a

microp

s 

hone capsule imperfections and loudspeaker responses.  Also Farrah 

979b) claims that similar coincident stereo techniques have a far greater 

rror than the SoundField microphone anyway – “Closeness of the array 

llows compensations to be applied to produce B-format signal components 

ffectively coincident up to about 10 kHz.  This contrasts vividly with 

apsule spacing restricts coincident 

signals up to about 1.5 kHz”.  What is being referred to here is the frequency 

at which the filtering becomes non-constant.  If the graphs in the omni-

directional signal response are observed, it can be seen that its frequency 

response remains constant up to around 15 kHz, and it is the spacing of the 

capsules that defines this frequency.  The closer the capsules, the higher the 

frequency until non-uniformity is observed. 

antages over other multi-channel 

advantage being the obvious one in 

can be extracted from the B-format signals, which implies that the B-format 

signal itself can be manipulated, and this is indeed true.  Manipulations 

including rotation, tumble and tilt are possible (Malham, 1998) along with 

being able to zoom (Malham 1998) into a part of the sound field, which alters 

the balance along any axis.  Equations for these manipulations are given in 

(3.9). 

 

 

(1

e

a

e

conventional stereo microphones where c

 

The SoundField microphone has many adv

microphone techniques, with the main 

that it is just one microphone, and therefore needs no lining up with other 

microphones.  Also, any combination of coincident first order microphones 
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(3.9

where  d is the domin

) 

ance parameter (from –1 to 1). 

n. 

l 

  θ is the angle of rotatio

 

A graphical representation of the effect that the zoom, or dominance, contro

has on the horizontal B-format polar patterns is shown in Figure 3.21. 

 

d=-0.5 d=0 d=0.5 
 

 Effect of B-format zoom parameter on W, X, and Y signals. 

As is evident from Figure 3.21 and E

works by contaminating the W si

means that any speaker feeds taking in X a

exaggerated if both are in phase, or 

with each other.  This coupled wit

means that any derived speaker f

achieved in the same way. 

High

l main drawback being that 

only a first order microphone system is commercially available (however, it 

Figure 3.21
 

quation (3.9), the dominance parameter 

gnal with the X signal and visa versa, which 

nd W will have these signals 

cancelled out, if both are out of phase 

h the attenuation of the Y and Z channels 

eeds/virtual microphone patterns will be 

biased towards the X axis.  Dominance in the Y and Z directions can also be 

3.3.1.4 er Order Ambisonics 

Ambisonics is a very flexible system with its on y 
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must be noted that all commercially available microphones have a first or

her 

eded 

ony (as opposed to the four channels of 1st order) and five channels for 

horizontal only recording and reproduction (as opposed to three channels for 

1st order).  The equations for the nine 2nd order channels are given in (3.10) 

(Furse, n.d.). 

 

der 

polar pattern at present).  However, as the name first order suggests, hig

order signals can be used in the Ambisonics system, and the theory ne

to record higher order circular harmonics has been discussed in a paper by 

Mark Poletti (Poletti, 2000).  A 2nd order system has nine channels for full 

periph
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where: α = elevation angle of the source. 

) 

For horizonta zero which makes the Z, R, S, & T 

, 3  

 

V

R

T S 

U

  θ = azimuth angle of the source.  

(3.10

l only work α is fixed at 

channels hold at zero, meaning that only W, X, Y, U & V are used.  To 

demonstrate the difference in polar patterns (horizontally) between 1st, 2nd rd

and 4th order polar patterns (using equal weightings of each order), see Figure 

3.22. 
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Figure 3.22 Four different decodes of a point source polar patterns of 1st, 2nd, 3rd & 

4th order systems (using virtual cardioid pattern as a 1st order reference 
and equal weightings of each order).  Calculated using formula based 
on equation (3.4), using an azimuth of 1800 and an elevation of 00 and a 
directivity factor (d) of 1. 

 

ers 

are working at the same time; they are just working in a different way to 

reconstruct the original sound field.  Figure 3.23 shows the decoded levels for 

rce is 

.  

r each 

f 

Higher order polar patterns, when decoded, do not imply that fewer speak

an infinite number of speakers placed on the unit circle.  The virtual sou

placed at 1800 and the virtual decoder polar pattern is set to that shown in 

Figure 3.22.  The multiple lobes can clearly be seen at 1800 for the second 

order decode and at approximately 1300 and 2500 for the third order decode

Note that the peak at the source position is not necessarily the same fo

Ambisonic order (the responses were scaled in Figure 3.22, but this is a 

decoder issue), but the sum of all the decoder feeds (divided by the number o

speakers) is equal to 1 for each order.  This means that the measured 

pressure value at the middle of the speaker array will be consistent. 
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Figure 3.23 An infinite speaker decoding of a 1st, 2nd, 3rd & 4th order Ambisonic 

source at 1800.  The decoder’s virtual microphone pattern for each or
is shown in Figure

der 
 3.22. 

 

 

 Figure 3.23.  For 

xample, if we take a 1st and a 2nd order signal and reproduce this over four 

rs to be 

rs is 

 

 

One point not mentioned so far is that there are a minimum number of 

speakers needed to successfully reproduce each Ambisonic order, which is

always greater than the number of transmission channels available for the

decoder (Gerzon, 1985).  This problem can be compared with the aliasing 

problem in digital audio, that is, enough ‘samples’ must be used in the 

reproduction array in order to reproduce the curves shown in

e

speakers (knowing that a 2nd order signal will need at least six speake

reproduced correctly) then the amplitude of the signals at the four speake

shown in Figure 3.24.  It can clearly be seen that speakers two and four (at

900 and 2700 respectively) have no output, whereas speaker 3 (positioned at 

1800) has an amplitude of 1, coupled with the opposite speaker (at 00) having 

an output amplitude of 1/3. 
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 st ndFigure 3.24 Graph of the speaker outputs for a 1  and 2  order signal, using four 
speakers (last point is a repeat of the first, i.e. 00/3600) and a source 
position of 1800.  

 
This will result in the image pulling towards one speaker when the source 

position is ne  

985) and w e the decoding to favour the directions at the speaker 

locations.  This is detrimental to the reproduced sound field as one of the 

resounding features of Ambisonics is that all directions are given a constant 

error, making the speakers ‘disappear’, which is one reason as to why 

Ambisonics can give such a natural sounding reproduction. 

 

Recent work by Craven (2003) has now described a panning law (as 

described in the paper, which is analogous to an Ambisonic decoder) for 

irregular speaker arrays using 4th order circular harmonics.  This uses the 

velocity and energy vector theories mentioned above to optimise the decoder 

for the ITU irregular 5-speaker array.  What is interesting about this decoder is 

that although 4th order circular harmonics are used, the polar patterns used for 

the virtual microphone signals are not strictly 4th order (as shown in Figure 

3.22) but are , 3  and 4  order components in order to 

teer the virtual microphone polar patterns so that the performance of the 

ar that direction.  This is also shown in the research by Gerzon

ill caus(1

 ‘contaminated’ with 2nd rd th

s
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decoder is maximised (which means having a high order front and low order 

rear decode, dependant on speaker density).  The velocity and energy vec

analysis of the 4

tor 

 

th order decoder used by Craven (2003) can be found in 

Figure 3.25 and the corresponding virtual microphone patterns can be seen in

Figure 3.26. 

 

 
Figure 3.25 Energy and Velocity Vector Analysis of a 4th Order Ambisonic decoder 

 

for use with the ITU irregular speaker array, as proposed by Craven 
(2003). 

 
Figure 3.26 Virtual microphone patterns used for the irregular Ambisonic decoder 

as shown in Figure 3.25. 
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It must also be noted that a number of researchers have now started to work 

on much higher orders of Ambisonics (for example, 18th order) and it is at 

Ambisonics does, indeed, tend towards a system similar to 

003) 

 

, 

w and high frequencies.  This makes it an ideal 

choice for a system that can be converted to binaural and transaural 

re apparent: 

•  

the e of 

and . 

• ers are 

added (Gerzon & Barton, 1992 and Gerzon & Barton, 1998). 

e actual 

 and 

these orders that 

wavefield synthesis (see Sontacchi & Holdrich, 2003 and Daniel et al., 2

and although these, much higher order systems, will not be utilised in this

report, the underlying principles remain the same. 

3.3.1.5 Summary 

Ambisonics is an ideal system to work with for a number of reasons: 

• It has both a well defined storage format and simple synthesis equations

making it useful for both recording/mixing and real-time synthesis. 

• The encoding is separated from the decoding resulting in a system where 

decoders can be designed for different speaker arrays. 

• The design of a decoder is based on approximations to what a centrally 

seated listener will receive, in terms of phase and level differences 

between the ears at lo

reproduction. 

However, a number of issues a

The optimisation of a frequency dependant 1st order decoder for use with

 ITU 5 speaker array has not been achieved with the techniqu

solving the non-linear simultaneous equations representing the velocity 

 energy vectors being both laborious and leading to non-ideal results

This process will only become more complicated when more speak

• The energy and velocity vectors are low order approximations to th

head related signals arriving at the ear of the listener.  The analysis

design of Ambisonic decoders could, potentially, be improved through the 

use of head related data directly. 
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3.3.2 Wavefield Synthesis 

3.3.2.1 Theory 

Although this research concentrates on the Ambisonic form of speaker 

surround sound, it is not necessarily because it is the most realistic in its 

listening experience.  One of the most accurate forms of surround sound 

(from a multiple listener point-of-view) is termed Wavefield Synthesis.  In its

simplest form Wavefield Synthesis is the system first tried by Bell Labs 

mentioned at the beginning of this chapter (Rumsey and McCormick, 1994); 

however, the theory and underlying principles of Wavefield Synthesis have 

been studied, the mathematical transfer functions calculated and a theoreti

understanding of the necessary signal processing involved in such a system 

have been developed.  The result is that individual sources can be 

synthesised, simulating both angular placement and distance (with distance 

being the cue that is, perhaps, hardest to recreate using other multi-speaker 

reproduction systems).    

 

Wavefield synthesis is different from most other multi-speaker surround

systems in a num

 

cal 

 sound 

ber of ways: 

• It is a volume solution, that is, there is no ‘sweet spot’, with an equal 

avefield Synthesis (and the Bell Labs version before it) is based on 

Huygen’s princi 1 ny wave front can be 

recreated by using any number of point sources that lie on the original wave.  

This implies that to recreate a plane wave (i.e. a source at an infinite dista

 but to create a 

reproduction quality experienced over a wide listening area. 

• Distance simulation is very well suited to Wavefield Synthesis.  This is 

a difficult cue to simulate using other forms of multi-channel sound. 

• The resulting acoustic waves, rather than the source itself, are 

synthesised. 

W

ple .  Put simply this states that a

nce 

from the listener) a line-array of speakers must be used,

                                            
1 The principle that any point on a wave front of light may be regarded as the source of 

econdary waves and th he s ves can be used to 

determine the future position of the wave front. 

s at t urface that is tangent to the secondary wa
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spherical wave (more like the waves heard in real life) an arc of speakers 

 

 

ly 

t 

apsules), or necessarily needed, and so it is more accurate to 

think of Ambisonics as more of an amplitude panning scheme (albeit, one 

based on more solid foundations than simple pair-wise schemes).  This also 

suggests that the results from Bamford (1995) that state that first order 

Ambisonics is only ‘correct’ up to 216Hz (in a sweet spot 25cm wide) may be 

a simplification (and under-estimation) of the system’s performance.  In other 

words, this is a measure of an Ambisonics wavefield synthesis performance.  

Clearly, if Ambisonics only had a useable (spatially speaking) frequency of up 

to 216Hz, and a sweet spot 25cm wide, it would not be very useful for 

surround sound. 

 

So what is the limiting factor for Wavefield Synthesis?  Due to the finite 

 

‘Spatial Aliasing Frequency’ (Berkhout , 1992).   The equation for this 

must be used.  However, where Wavefield Synthesis’ innovation lies is that 

the necessary transfer functions have been calculated, and a line array of 

speakers can synthesise both of these situations using a mixture of time 

delays and amplitude scaling (a transfer function).   It is often thought that 

Ambisonics is spherical Wavefield Synthesis on a lesser scale, and Bamford

(1995) has analysed it in this way (that is, as a volume solution, looking at 

how the well the sound waves are reconstructed); however, this is not strict

the case as no time differences are recorded (assuming perfectly coinciden

microphone c

number of points used to recreate a sound wave, this system is limited by its

t al.e

(although note that this is for a plane wave) is given in Equation (3.11) 

(Verheijen et al., 1995). 

 

( )θsin2 x
cf Nyq ∆

=      

(3.11) 

where: fNyq = Limiting Nyquist Frequency. 

  ∆x = Speaker spacing. 

  θ = Angle of radiation. 

  c = Speed of sound in air (≈342ms-1) 
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It must be noted that although Wavefield Synthesis has a limiting frequency, 

this is its Spatial Aliasing limit.  That is, the system can reproduce sounds of 

full bandwidth, however, accurate reproduction can only be correctly achieved 

(the e

Labs e ray did 

not wo n also 

be see he angle of 

rad io

Figure

 
has on the synthesis of a plane 

wave using Wavefield Synthesis. 
 

to an off-centre value (i.e. non-zero) 

 

to recreate the wave front 

r using more directional loudspeakers (Verheijen et al., 1995)) counteracts 

this.   

or tically) below this frequency (which is, incidentally, the reason Bell 

arly simplification of their original multi-mike, multi-speaker ar

rk as hoped when the number of speakers was reduced).  It ca

n that the limiting frequency is inversely proportional to t

iat n.  To understand the reasons behind this, an example is shown in 

 3.27. 

Figure 3.27 The effect that the angle of radiation 

Once the angle of radiation is changed 

then the amount of time delay that is needed to correctly simulate the plane 

wave is increased, proportional to the distance between the speakers 

multiplied by the sine of the angle, θ.  Once this time delay becomes more 

than half the wavelength of the source the superposition of the wave fronts 

creates artefacts that manifest themselves as interference patterns (Verheijen

et al., 1995).  Filtering the transfer functions used 

(o

a b∆x  

∆t=∆x.sin( θ )   

θ   

Source   

w=1/f

c
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3.3.2.2 Summary 

Wavefield Synthesis is reported as being one of the most accurate forms of 

multi-channel sound available, but it does have some problems that make it 

an undesirable solution for this project: 

• Huge amount of transducers needed to recreate horizontal surround 

sound (for example, the University of Erlangen-Nuremberg’s 

experimental setup uses 24 speakers (University of Erlangen-

Nuremberg, N.D) arranged as three sides of a square). 

• The reproduction of three-dimensional sound is not yet possible using 

Wavefield Synthesis. 

ield Synthesis is 

difficult due to the high rejection needed for each direction.  

 for 

e 

g techniques.  An example of the two dimensional 

algorithm is shown in Figure 3.28 (Pulkki, 1997). 

 

• Recording a sound field for reproduction using Wavef

Synthesised material works much better (Verheijen et al., 1995). 

• Large amount of storage channels and processing power needed to 

provide loudspeakers with appropriate signals. 

Also, there is not, as yet, a standard protocol for the storage and distribution 

of such material; although this is being worked on as part of the MPEG 

Carusso Project (Ircam, 2002).  This lack of storage standard is not an issue, 

of course, for applications that calculate their acoustical source information on 

the fly, such as virtual reality systems. 

3.3.3 Vector Based Amplitude Panning 

3.3.3.1 Theory 

Vector based amplitude panning (or V.B.A.P.) is an amplitude panning law

two or three dimensional speaker rigs, and was developed by Ville Pulkki.   

Once the speaker positions are known, the V.B.A.P. algorithm can then be 

used to decode the speaker rig using pair-wise (two dimensions) or triple-wis

(three dimensions) pannin
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g2l2g 1 l 1

Source

 
Figure 3.28 Graphical representation of the V.B.A.P. algorithm. 

to its 

two compone , which are then 

r the amount of the source that it supplied to each of the 

ting 

g2.  

the 

r 

he same direction as 

 speaker as only that speaker will be replaying sound.  This will create a 

l source (as it is now a real 

sou

the speakers it too great. 

 

As can be seen in Figure 3.28, horizontal V.B.A.P. divides the source in

nt gains, in the direction of the loudspeakers

used as the gains fo

speakers.  It must be noted, however, that the sources are limited to exis

on the path between speakers by normalising the gain coefficients g1 and 

To extend the system to three dimensions, triple-wise panning is used.   An 

example decode of a source travelling from an angle of 00 to an angle of 1200 

is shown in Figure 3.29, along with the four un-normalised speaker gains.  

This system can work very well, mainly because the largest possible 

localisation error cannot be any more than one speaker away from where 

source should be.  However, as can be observed from Figure 3.29, a speake

detent effect will be noticed when a source position is in t

a

more stable, and psychoacoustically correct virtua

source) which will mean that the individual speakers will be heard with the 

rces potentially jumping from speaker to speaker if the spacing between 
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Speaker Amplitude  Source at 00   Source at 300

   
Sou e
Figure 

 

s 

 are 

ill 

ion is calculated when 

the material is replayed, as information regarding the speaker layout must 

be known.   

• The decoded material is not optimis

making the system sub-opt

systems is required. 

rc  at 600  Source at 900  Source at 1200

3.29 Simulation of a V.B.A.P. decode.  Red squares – speakers, Blue 
pentagram – Source, Red lines – speaker gains. 

3.3.3.2 Summary 

VBAP is based around the simple pair-wise panning of standard stereo, 

although using the VBAP technique it can be easily used as a triple-wise, 

with-height system.  To this end, a VBAP system comprising of a low number

of speakers will suffer the same problems as other pair-wise panned system

(see Quadraphonics, section 3.2.7).  However, as the number of speakers

increased, the accuracy of the system will improve, although side images w

always suffer when compared to frontal images due to pair-wise panning 

techniques failing for speakers placed to the side of a listener (although the 

error will, again, lessen with increased speaker density). 

 

For this project, however, VBAP is unsuitable as: 

• VBAP has no storage format – all panning informat

• Any pre-decoded material can not have additional speaker feeds 

calculated according to the rules of VBAP. 

ed for a centrally seated listener, 

imal if conversion to headphone or transaural 
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3.3.4 Two Channel, Binaural, Surround Sound 

Although all of the surround sound systems discussed so far have used more 

than two channels (many more, in some cases), it is possible to use only two 

channels.  Such a system is termed binaural reproduction.  As we only have 

two ears, then it seems reasonable that only two channels of audio are 

necessary to successfully fool the ear/brain system into thinking that it is 

experiencing a realistic, immersive, three dimensional sound experience.  All 

of the speaker reproduction systems discussed so far have a number of 

marked limita

• System performance is normally proportional to the number of 

ore 

r. 

• 

Binaur  of headphones.  As 

the i

provide und 

sound.  

ars are supplied with the same acoustical pressure that would have been 

uses 

e a sound source, a number of which can be simulated using a head 

lated transfer function (HRTF).   An example pair of HRTFs are shown in 

 

tions: 

speakers used.  The more speakers, the better the result. 

• The sound from each speaker will reach both ears, making it a m

involved task to control exactly what is being perceived by the listene

The final system is usually a compromise due to the above limitations. 

al sound circumvents these limitations with the use

re s a one to one mapping of the ears to the transducers it is very easy to 

 the ears with the signals necessary to provide convincing surro

  Binaural sound reproduction works on the simple principle that if the

e

present in real-life due to a real source, then the ear/brain system will be 

fooled into perceiving that a real source is actually there.  As discussed in 

chapter 2, there are a number of auditory cues that the ear/brain system 

to localis

re

Figure 3.30, and are taken from a KEMAR dummy head in an anechoic 

chamber by Gardner & Martin (1994).   The source was at an angle of 450

from the centre of the head, and at a distance of 1 m. 

 - 78 - 



Chapter 3 

 
Figure 3.30 Pair of HRTFs taken from a KEMAR dummy head from an angle of 450 to

the left and a distance of 1 metre from the centre of the head.  Green – 
Left Ear, Blue – Right Ear. 

 

The three lateralisation cues can be clearly seen in this figure.  These are: 

• Amplitude differences – amplitude is highest at the nearer ear. 

• Time differences – farther ear signal being delayed compared to the 

closer ear (seen in both the time domain plot, and the phase response 

plot, by observing the larger [negative] gradient). 

• Pinna and head filtering – as the s

 

ound has two different physical paths 

to travel to the ears, due to the pinna and the head, resulting in 

ophones into the ear of the recordist (or 

dummy head).   The parts of the outer ear that filter the incoming sound wave 

are the pinna and the ear canal.  If the recorded material is taken from a 

subject with an open ear canal (i.e. microphones placed in the ear of the 

subject) then the recording will possess the ear canal resonance, which lies at 

about 3 kHz (a 3 cm closed pipe has a fundamental resonant frequency of 

frequency dependent filtering (seen in the frequency response plot). 

 

It is the head related transfer function that forms the basis on which binaural 

sound reproduction is founded, although through the use of anechoic HRTF 

data alone, only simple lateralisation is possible.  This will be discussed 

shortly. 

 

There are two ways in which to create a binaural reproduction, it can be 

recorded using in-ear microphones, or it can be synthesised using HRTF 

data.  As far as the recording side of binaural sound is concerned, the theory 

is as simple as placing a pair of micr
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2850 Hz).  Then, when the listener replays the recording over headphones, 

the recording will be subjected to another ear canal resonance, meaning that 

the musical content will be perceived as having a large resonance at around 3 

kHz.   This, therefore, must be corrected with the use of equalisation; although 

the blocking of the ear canal of the recordist prior to recording is another 

solution (Kleiner, 1978).  The actual positioning of the microphones within the 

outer ear of the subject has an effect on the system where the most robust 

positioning of the microphone is usually found to be inside the ear canal 

(Ryan & Furlong, 1995), (although the blocking of the ear canal is not really a 

desirable solution to the last problem).   There are two other difficulties in 

using recorded binaural material and they are pinna individualism and head 

movements.  As discussed in Chapter 2, everyone’s pinnae are different, 

n ns that the pinnae apply to 

.  As 

n it will 

 

ble to 

which in tur means that the complex filtering patter

the incoming sound waves are also different.  The binaural recording process 

means that the listener will be experiencing the sound field by listening 

through somebody else’s ears.  The results of this will be discussed later in 

this section. 

 

When it comes to synthesising a binaural sound field, HRTF data is used

the HRTF is a measure of the response of the ear due to a source, the

suffer the same difficulties mentioned for the recorded material.  However, 

some differences are apparent.  The HRTF data used to synthesise sources

is normally recorded in an anechoic chamber (Gardner and Martin, 1994) as 

this gives the greatest flexibility in source position synthesis as it is possi

add reverberation, but very difficult to take it away again.  Also, HRTFs are 

usually recorded in pairs at a set distance from the centre of the head (say, 

one metre), but this is not necessarily the most versatile solution.  As a 

demonstration of this, consider the situation shown in Figure 3.31. 
 

 - 80 - 



Chapter 3 

 
Source 

Listeners 
Ears 

1 Metre 

HRTF  
Directions from

 1 metre 

 
3.31 Example of a binaural synthesis problem. Figure 

 

If distance is to be simulated correctly, then recording and storing the HRTFs 

in p rs

becaus  difference, 

e 

s 

 the 

irable 

 

 

ural 

just resulting in source lateralisation) is not usually possible using anechoic 

ai  centred on the head actually complicates the situation.  This is 

e the pair of HRTFs will have an amplitude difference, time

and pinna filtering that is not only due to the angle of incidence of the source, 

but also its distance, as discussed in Chapter 2.  This means that if a sourc

is to be synthesised at a distance that is different than the one that wa

measured then the point at which the source intersects the measured 

distance needs to be obtained.   Extra delay also needs to be added to

HRTF filters, with a different value added to the left and right HRTFs.  This 

adds extra, avoidable, calculations to the synthesis model, and is undes

in real-time applications.  To combat this problem it is far better that the 

HRTFs be recorded taking each ear as the centre point for the measurements

as this means that the angle from source to each of the listener’s ears needs

to be calculated, which is simpler than the scheme detailed above (although 

extra delay does still need to be added for each response separately). 

 

Once the problem of angle of incidence has been resolved (with one of the 

two methods suggested above) then one of the main advantages of bina

theory can come into play, and that is the simulation of distance cues.  

However, obtaining sources that are localisable outside of the head (i.e. not 
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simulation of the source (McKeag & McGrath, 1997).  This, in some respects

is to be expected, as one of the psycholog

, 

ical effects of being in an anechoic 

hamber is that sources tend to be perceived much closer than they actually 

f source 

ation 

r/brain system uses small head 

rotations to resolve the position of a source within the cone of 

e 

aural sound, while 

er, it can be seen that 

eag 

rding 

, and 

erience 

c

are.  One of the mechanisms that the brain utilises in the perception o

distance is in the direct to reverberant ratio of sounds (see Chapter 2).  

Sounds that are very close to the head have a very low (if any) reverber

perceived with them, so if a sound is heard in an anechoic chamber then the 

brain may assume that this source is close to us because of this.  However, 

when listening to synthesised binaural sources it is unlikely that true, or even 

any, distance information will be perceived.  This is due, mainly, to the 

reasons given below: 

• In nearly all listening situations the ea

confusion. 

• The shape and, therefore, filtering of the sound due to the pinna of th

recording subject will be different than that of the listener. 

A number of people (including Moller et al., 1996) suggest that individualised 

HRTFs are needed for the accurate reproduction of bin

others suggest that head tracking is the most important aspect of the 

localisation process (Inanaga et al., 1995).  Howev

neither or these are necessarily needed, and depth perception can be 

achieved by creating multiple, coherent auditory cues for the listener (McK

& McGrath, 1997).  Again, depending on the application, there are two 

methods of achieving this.  Firstly, for the simulation of sources that are in a 

fixed position, the HRTFs can be measured in a real room, thereby reco

the room’s actual response to a source, in this position, at the two ears of a 

subject.  This, when convolved with the source material, will create the illusion 

of a source outside the head of the listener (McKeag & McGrath, 1997).  

Secondly, if dynamic source movement is needed, such as in 3D gaming

virtual reality applications, then a model of the room in which the source is 

placed must be realised separately from the source, and then all of the 

images synthesised using anechoic HRTF data.   The binaural synthesis of 

material in this way can lead to a very convincing surround sound exp
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using a limited number of channels, which is probably why all 3D computer

gaming cards use this form of modelling. 

 

 

As mentioned in Chapter 1, it is now widely recognised that binaural 

headphone reproduction techniques can be used as a method of auralising 

multi-speaker arrays.  This technique was pioneered by Lake DSP (for 

example, see McKeag & McGrath (1997) and McKeag & McGrath (1996) as 

an example of their later work), and more recently has been used by others 

(for example, see Leitner et al., 2000 and Noisternig et al, 2003) as a method 

of simulating both discrete speaker feeds and, in the case of Ambisonics, 

realising an Ambisonic decoder efficiently as three or four HRTF filters (see 

y 

d 

 fact 

is 

hat 

 

r at 

one ear of the listener?  This situation is shown in Figure 3.32, but is 

simplified by taking each ear as a microphone in a free field (i.e. no filtering of 

Chapters 4 and 5 for more details on this). 

 

Interestingly, although three of the four papers mentioned above discuss 

Ambisonics to binaural conversion, none use psychoacoustically optimised 

decoders as discussed in section 3.3.1.2.  This will result in sub-optimal 

lateralisation parameters being reproduced at the listeners ears, as shown in 

the non-optimised decoders discussed in section 5.2. 

3.3.5 Transaural Surround Sound 

Transaural surround sound techniques were first proposed in the 1960’s b

Atal, Hill and Schroeder (Atal, 1966) and, although based on a relatively 

simple and understandable principle, were difficult to realise at this time.  

Transaural sound is a process by which Binaural reproduction can be realise

over loudspeakers.  Loudspeaker reproduction differs from headphone 

reproduction in that the sound from one loudspeaker reaches both ears (a

that is the basis of Blumlein’s stereo reproduction technique, see earlier in th

chapter), and binaural reproduction over headphones relies on the fact t

the signal from one transducer only reaches one ear, that is, there is no 

crosstalk between the ears of the listener.  The Transaural system is easier to

explain if the following problem is considered.  If a pulse is emitted from one 

of a pair of loudspeakers, what must happen for that pulse to only appea
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the sound will be present due to the head of the listener).  Each of the two 

speakers are equidistant from the centre of the two microphones, and subtend 

an angle of 60 degrees (+/- 300). 

   

M ic 2  M ic 1    
Figure 3.32 Graphical representation of the crosstalk cancellation problem. 
 

It can be noted that Mic1 receives the pulse first, closely followed by Mic2 

which receives the same pulse, except that the amplitude has attenuated and 

it arrives later in time due to the extra distance travelled.  In order to cancel 

o that the same amplitude as the signal arriving at Mic2 is achieved, but 

inverted (1800 out of phase) as shown in Figure 3.33.  This signal now 

cancels out the first sound pi

to each speaker’s output in Figure 3.

another signal, again amp

reduced and phase inverted,

counteract the Mic1 crosstalk signal, 

pulses is always diminishing, a realisable 

Figure 3.34.  Also shown in Figure 3.34 is the block diagram for a typical 

tio ill 

rosstalk can

 

 

the sound arriving at Mic2, the left loudspeaker can be made to emit a sound 

s

cked up by Mic2 (see the microhpones response 

33), but then the crosstalk produces 

litude reduced, at Mic1.  So another, amplitude 

 signal is produced from the right loudspeaker to 

and so on.  As the amplitude of these 

and stable filter results, as shown in 

implementa n of a crosstalk cancellation system, note that this system w

cel for both speakers, that is, the Left input signal will only c

appear at Mic2 and the Right input signal will only appear at Mic1.  These two

filters can be realised using a pair of I.I.R. filters1.  However, this structure is

not used, in practice, as the response of the listener’s head is not taken into 

account and so this form of crosstalk cancellation will be sub-optimal.   

                                            
1 Infinite Impulse Response filters using a feedforward/back loop and attenuating gain factors 

(typically). 
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Figure 3.33 Simulation of Figure 3.32 using the left loudspeaker to cancel the first 

sound arriving at Mic2. 
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Figure 3.34 Example of free-field crosstalk cancellation filters and an example 

implementation block diagram. 
 

Although this particular filtering model would never be used in practice, it will 

be used here to demonstrate the type of frequency response changes that 

occur due to the crosstalk cancellation filtering process.  In theory, of course, 

 sweet spot in a 

on-anechoic room) will have a response similar to that shown in Figure 3.35.  

Left 

Right

H2 

H1
Left 

Speaker 

Right 
Speaker 

the sounds heard at the two microphone positions will be as desired, but for 

off centre listening (and also, to some extent, listening in the

n
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Although this seems slightly irrelevant for crosstalk cancellation filters 

designed with HRTF data, it does show so ng that can 

occur due to the system inversion process.   

me of the extreme filteri

  
Figure 3.35 Frequency response of free field crosstalk cancellation filters 
 

The process above, described as filter inversion is, in fact, slightly more 

complicated than this.  Although the example above (crosstalk cancellation in 

the free field) is a good starting point for gaining an understanding of the 

processes involved in crosstalk cancellation algorithms, the equation has not 

yet been defined.  If we again look at the problem shown in Figure 3.36,  it 

can be seen that, for a symmetrical setup, only two transfer functions are 

nd c2 – 

the response

present, c1 – the response of the microphone to the near speaker, a

 of the microphone to the far speaker. 

 

   

M ic2 M ic1 

c1 c1c2c2

v2 v1

 
Figure 3.36 The Crosstalk cancellation problem, with responses shown. 

 

The relationship between the signals emanating from the speakers, and what 

arrives at the two microphones is given in Equation (3.12). 
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needs to be applied to the two signals, prior to transmission (Nelson et al

ll be 

Therefore, if we wish to present to the system the signals that we wish to 

receive at Mic1 and Mic2, then the inverse of the transfer function matrix 

., 

1997) (which is what is happening in the system described in Figure 3.34) and 

is shown in Equation (3.13).  The simplification to two filters, h1 and h2 can be 

made due to the crosstalk cancellation meaning that the signal at Mic2 wi

forced to zero and the signal at Mic1 will be the desired signal at unity gain. 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
−

−
×−×

=⎥
⎦

⎤
⎢
⎣

⎡
2
11

12

21

22112

1

Mic
Mic

cc
cc

ccccv
v

 

12

21

2
2

2
1

2
2

2
2

1

1
2

2
2

2
1

2
2

2
2

1

1
1

c
cc

cv −
−

=

⇒  

2
2

2
1

2
2

2
2

2
1

1
1

cc
ch

cc
c

Mic
cc

cMic
cc

c

Mic
cc

Mic

⋅
−
−

+⋅
−

=

⋅
−

+⋅

v

h

−
−

=

−
=

 

(3.13) 

where: v1 & v2 are the speaker signals shown in Figure 3.36 

c1 & c2 are the transfer functions from Figure 3.36. 

  h1 & h2 are the transfer functions used in Figure 3.34. 

 

The final filters are shown in Equation (3.14) (the multiplying of c1
2

 + c2
2 to 

compatibility edure) and is carried 

both the numerator and denominator of the equation is also shown for 

with the frequency dependent inversion proc

out in the frequency domain, adapted from Farina, et al. (2001), as inverting 

this system in the time domain can take a long time, even on fast computers.  

As an example, the calculation of the these filters in the frequency domain, 

using Matlab® and a filter size of 1024 points takes less than a second, 

however, using time domain signals coupled with the simple multiplications 

and divisions turning into convolutions and de-convolutions means that the 

same algorithm can take around half an hour to complete.   
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where: c1 & c2 are the transfer functions from Figure 3.36. 

  h1 & h2 are the transfer functions used in Figure 3.34. 

(3.14) 

It must also be noted that Equation (3.14) shows the inversion procedure for 

 

identical), an

mathematical equation has been defined, any transfer function can be used 

⎟
⎞

⎜
⎛ +

×−=
2
2

2
1 ccch  

the symmetrical case (that is, the diagonals of the transfer function matrix are

d is not the general solution for this problem.   Now that the 

for c1 and c2 and a non-free field situation simulated.  For example, if two 

speakers were spaced at +/- 300, as in a normal stereo triangle, then the 

corresponding crosstalk cancellation filters will be the same as shown in 

Figure 3.37. 

 

 
Figure 3.37 Transfe

their corr
r functions c1 and c2 for a speaker pair placed at +/- 300, and 

esponding crosstalk cancelling filters. 
 

As can be seen in the right hand graph of Figure 3.37, the crosstalk 

cancellation filters actually have samples that are valued greater than one 

(which denotes potential clipping in many audio applications); however, in this 

amplification w

cancellation f . 

case, they will not clip themselves (so long as storing these filters is not a 

problem).  Nevertheless, when they are applied to a signal, much 

ill arise.  The frequency responses of the two crosstalk 

ilters are given in Figure 3.38
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Figure 3.38 Frequency response of the two speaker to ear transfer functions (c1 & 

c2) and the two crosstalk cancellation filters (h1 & h2) given in figure 
3.31. 

 

It can clearly be seen that any dip in the response of the original transfer 

functions, c1 and c2, creates an almost corresponding boost in the inverse 

response (this sounds obvious, but h1 and h2 are not the inverse of c1 and c2 

ow

n the 

 

e 

points.  The 

crosstalk cancellation equations using frequency dependent regularisation are 

given in Equation (3.15) (all transfer functions have been converted into the 

frequency domain). 

directly).  In this case, the response is particularly troublesome at around 8 

 and very high frequencies.  This is due partly to the ears’ kHz, very l

response (pinna etc.), the speaker response and the anti-aliasing filters i

recording of the HRTF responses respectively.  To alleviate this problem a 

technique known as ‘frequency dependent regularisation’ has been developed

(Kirkby et al., 1999).  As the peaks in the crosstalk cancellation filters are du

to the filter inversion at a particular frequency, making the inversion ‘sub-

optimal’ at these frequencies will flatten out the response at these 
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(3.15) 

where: c1 & c2 are the transfer functions from figure 3.30. 

  h1 & h2 are the transfer functions used in figure 3.28. 

ε is the frequency dependant regularisation parameter (0 – full  

inversion, 1 – no inversion) 
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Figure 3.39 shows the effect onse of the two crosstalk 

cancellation filters using a regularisation parameter of 1 above 18 kHz.  If the 

responses of c1 and c2 are observed (from Figure 3.38) it can be seen that 

having a regularisation parameter of 1 actually causes the resulting crosstalk 

cancellation filters to be the convolution of c1 and c2, which is why the high 

frequency roll-off is actually steeper in h1 and h2 than in c1 and c2. 

on the frequency resp

 
Figure 3.39 The regularisation parameter (left figure) and its effect on the frequency 

response of the crosstalk cancellation filters h1 & h2 (right figure). 
 
Using this regularisation parameter, the response of the system can be 

tailored so that clipping is avoided, at the expense of sub-optimal cancellation 

at these frequencies.  Figure 3.40 shows the crosstalk cancellation of a pulse 

emitted from the left speaker both with and without regularisation applied.  

The corresponding speaker feeds after the crosstalk cancellation filters have 

been applied so as to simulate the signals received by a listener. 
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With Regularisation 

 
Without Regularisation 

 
Figure 3.40 Simulation of crosstalk cancellation using a unit pulse from the left

channel both with and without frequency dependent regularisation 
applied (as in Figure 3.39). 

 

Assuming that any value greater than one will cause clipping of the signal 

then it can be clearly seen that when regularisation is applied to the crosst

cancellation

 

alk 

 filters the system outputs much lower signals while still 

aintaining almost the same signal level at the ears of the listener (it must be 

noted that in this simulation the same HRTF data was used for both the 

m
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simulation and the calculation of the crosstalk cancellation filters, and this will 

not be true in a real-life situation). 

 

Apart from the frequency dependent regularisation parameter introduced 

above, much of the theory behind Transaural sound reproduction has not 

changed since its invention in 1962 (Atal, 1966).  However, spacing the 

speakers as a standard stereo pair meant that the sweet spot (the area where 

crosstalk cancellation occurs) is small and very susceptible to errors due to 

head movement.  To combat this, researchers at Southampton University 

discovered that this problem, and to a certain extent, that of excessive signal 

colouration, could be alleviated by moving the speakers closer together to 

span around 100.  If a small speaker span is used then the area of successful 

crosstalk cancellation becomes larger as a line of crosstalk cancellation is 

created.  This means that the position of the listener with respect to the 

distance from the loudspeakers is not so important, making the system more 

robust.  Also, to demonstrate the signal colouration changes we will again 

consider the system shown in Figure 3.36.  As the angular separation of the 

speakers becomes smaller, the more identical the transfer functions between 

each ear and the speakers (particularly at low frequencies) and hence, the 

greater the amplitude of the cancellation filters at these frequencies.  This 

means that the angular separation of the speakers is limited by the amount of 

boost that must be applied to the low frequencies of the system (assuming 

regularisation is not used).  An example of filters taking into account the HRTF 

wings and r hen dealing with the 

system.  Moving the speakers closer 

together makes for a more robust system, and moves much of the sound 

colouration into a higher frequency range, but creates a wider range of bass 

boost, which speakers generally find more difficult to recreate.  Optimisation 

of this technique to alleviate some of these problems will be discussed in 

Chapter 5. 

 

of the listener is shown in Figure 3.42.  This, to some extent, shows the 

oundabouts’ situation that can occur w‘s

speaker placement of a Transaural 
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Figure 3.41 Example of the effect of changing the angular separation of a pair of 

speakers used for crosstalk cancellation. 
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chniques that combine the virtues of more than one of these techniques in 

rder to improve upon the usefulness of any one of these theories.  Such a 

system is Ambiophonics (Glasgal, 2001).  Ambiophonics differs from most of 

the systems described above as it does not attempt to be a general solution; 

that is, it is only designed for the listening of recorded material in a concert 

hall.  It tries to recreate the ‘I am there’ situation.  Ambiophonics is really a 

hybrid of binaural/transaural reproduction coupled with a more 

psychoacoustically correct reverb algorithm, so as to fool the ear/brain system 

into thinking that it is immersed within a real hall.  However, this is also, to a 

certain extent, the remit for the Ambisonics system, so what are the main 

differences?  The main difference is that Ambisonics uses a generic panning 

law so as to give equal priority (or localisation quality) to every direction, 

whereas Ambiophonics always assumes that the stage is in front of the 

 the listener.  Therefore 

 

ed using 

d 

Figure 3.42 Example of the effect of changing the angular separation of the 
speakers using HRTF data. 

 

3.3.6 Ambiophonics 

The methods for recreating surround sound described above cover the 

current state of the art; however, there are now a number of emerging 

te

o

listener and the ambience will be all around

Ambisonics is a much more general surround sound solution, whereas 

Ambiophonics is limited in this way.  However, due to this limiting factor a

number of issues can be addressed.  The front stage signal is record

(ideally) a pinna-less dummy head microphone (however, any stereo 

recording method will work, to some extent (Glasgal, 2001)).  Also, it is a goo

idea to limit the amount of rear/side reflections that reach these microphones 

(which is normally done for stereo recordings, anyway, in order to avoid a 
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recording that is too reverberant (Glasgal, 2003c)).  Limiting the rear and side

reflections picked up by this stereo recording is necessary due to the fact tha

these signals will be generated using convolution during the decoding stage.  

This stereo signal can then be replayed using a crosstalk cancellation system 

 

t 

uch as the system described in section 3.3.5.  The surrounding ambience is 

 the 

orrect, including the pinna cues, which are 

almost impossible to replicate using any other system (except Wavefield 

l layout for such a system is shown in Figure 3.43. 

As 

means

reprod ers are 

needed in front of the listener.  The surround speakers are then fed with the 

ste

no dire  

s

then created and distributed using a number of speakers surrounding

listener.  The main innovation here is that each speaker represents an early 

reflection direction.  This means that, as these early reflections are being 

emitted from an actual source (rather than a panned position), all of the 

psychoacoustic cues associated with the angular directional aspect of these 

reflections will be absolutely c

Synthesis).  A typica

 
 

 

Figure 3.43 Example Ambiophonics layout. 

 

the crosstalk cancelled pair of speakers (typically set at +/- 50, which 

 multiple listeners sat in a line can experience the system) is 

ucing the frontal hemisphere of the concert hall, fewer speak

reo signal convolved with a stereo pair of impulse responses which contain 

ct sound, a number of discrete reflections (one or more) and a diffuse,
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uncorr t 

be in a

accoun desirable response 

l.    

 

 and 

been investigated and discussed.  It must be noted that 

the o out is 

concer

This m f 

the list

not wo finding it very difficult to decode 

suc a ot 

too de igned 

for (as

ambie

system  

panne

based  

of reas

• 

g 

is 

• cedence effect can only be simulated using spaced microphone 

techniques.  This is not to say that coincident microphone techniques 

elated (compared to the other speakers) tail.   The speakers need no

n exact position as no exact inter-speaker imagery is to be taken into 

t; in fact, repositioning the speakers until the most 

is found is a good technique for the creation of the best sounding concert hal

 

Using the Ambiophonics technique many of the cues needed for the 

localisation of sound and perception of a real space are met, with particular 

attention paid to the accuracy of the reverberation.  That is not to say that the

system must sound exactly like a real hall, but that the auditory cues present 

in the reverberation of the material are psychoacoustically very accurate

will sound like a realistic hall. 

3.4 Summary 

In this chapter, a number of techniques for the recording and reproduction of 

spatial sound have 

 m st popular panning algorithm, as far as the ITU 5 speaker lay

ned, is a version of the V.B.A.P. algorithm, or pair-wise panned system.  

ethod can work very well for frontal sources.  However, at the sides o

ener, it has been shown (Gerzon, 1985) that pair-wise panning does 

rk correctly, with the ear/brain system 

h  system.  This causes ‘holes’ in the recreated sound field, which is n

trimental for film material, which is the medium this layout was des

 most material will come from the front, with occasional effects or 

nce using the rear speakers).   Also, it is not a particularly well defined 

 in that there is no agreed technique in the recording of pair-wise

d material, and recording for the ITU 5 speaker layout is quite often 

 upon extended Decca Tree arrangements (Theile, 2001) for a number

ons: 

The decorrelation of low frequency components is thought to be very 

important in the perception of spaciousness in a sound field.  Spacin

the microphones that feed the array almost guarantees th

decorrelation.   

The pre
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do not encode phase information (see Chapter 3), they just cannot 

represent time of arrival differences correctly as the microphone picks 

up sound from one point in space (theoretically).   

However, these techniques do not lend themselves well to different speaker 

arrangements (that is, they are not hierarchical based formats), and now, as 

the media and technology for multi-channel sound reproduction is becoming 

more readily available, the industry is starting to realise that they do not want 

to rerecord/remix an album every time a new speaker layout is presented to 

them.  For this reason this research focuses on the Ambisonics system, which 

is the only hierarchical system defined at this moment in time (although 

MPEG-4 is now being specified to address this, to some extent (MIT Media 

Lab, 2000)).  If Ambisonics hierarchical system is used as a carrier format (in 

its 1st, 2nd or higher order variants) then the system can be decoded for any 

multi-speaker system.  However, currently, a number of limitations are present 

using this system: 

• Although Gerzon and Barton (1992) suggested a number of 

optimisation equations for use with irregular speaker arrangements, the 

equations are difficult to solve, and so no further research seems to 

have been published in this area giving optimal coefficients for use with 

the standard ITU five speaker layout. 

• Although a method of converting Ambisonics and five speaker ITU 

surround sound to binaural reproduction has been suggested by 

McKeag & McGrath (1996 & 1997 respectively), no work has been 

carried out on the optimisation of these multi speaker systems in order 

to reproduce the correct psychoacoustic cues at the ears of the 

listener.  This has been shown to be a trivial optimisation for a regular 

speaker array, but will rely on the work mentioned in the point above 

for the optimal auralisation of material if distributed on a medium 

carrying the standard 5.1 channels as specified by the ITU standard. 

• Only a handful of software utilities for the encoding and decoding of 

Ambisonic material is available (McGriffy, 2002), and no 

psychoacoustically correct decoding software for irregular arrays 

exists. 
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These current limitations will be addressed in the following chapters of this 

 

thesis. 
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Chapter 4 - Development of a Hierarchical Surround 
Sound Format 

4.1 Introduction 

Although many surround sound decoding techniques are available, a number 

resentations, the 

aterial is composed specifically for a particular speaker layout, and 

his 

ker 

es obsolete, or a Binaural or Transaural production needs to be 

rep e

piece he 

descrip

amalg ms, in order to maximise the number 

of r l

this sy

ferent speaker layouts can be used. 

• The

change

pie

• The  

flexible as headphones, or just a few speakers can be used.  This will 

cordings, or small studios, where space may be limited. 

 4.1. 

of problems are evident.  For the majority of multi-speaker p

m

Binaural/Transaural systems suffer from this same, inherent, problem.  T

does not, of course, create a problem initially, but as soon as the spea

layout becom

lay d on a multi-speaker platform, a complete reworking of the sound 

is needed.  For these reasons, this chapter will concentrate on t

tion of a hierarchical surround sound format, based on an 

amation of currently available syste

ep ay situations that the system is capable of satisfying.  The benefits of 

stem are: 

• The created piece will be much more portable in that, as long as a 

decoder is available, many dif

 recordings will become more future-proof as, if a speaker layout 

s, just a re-decode is needed, rather than a whole remix of the 

ce. 

composition/recording/monitoring of the piece will become more

result in less space being needed.  This is particularly useful for on-

location re

4.2 Description of System 

Such a system can be described diagrammatically as shown in Figure
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Figure 4.1 Ideal surround sound encoding/decoding scheme. 
 

As can be seen in Figure 4.1, this ideal surround sound system should 

o the

m 

, 

• The encoded signal should be able to be easily replayed over multiple 

one 

nels, each 

 be 

n Figure 4.2. 

 

Sound-field 
Manipulations. 
Rotations etc.

n-channel 
carrier 

n-speaker output 
decoder 

2-speaker trans-
aural decoder 

2-channel 
binaural decoder 

Encoding 
Block 

Recorded/ 
Panned 
Signals 

conform t  following criteria in order to maximise its flexibility and 

usefulness: 

• A hierarchical carrier signal should be used.  That is, a carrier syste

should be able to be understated (channels ignored, reducing 

localisation accuracy) or overstated (extra channels added later

increasing localisation accuracy). 

• This encoded signal should be able to be manipulated after encoding, 

i.e. rotations about the x, y and z axis etc.. 

listening situations including: 

o A number of different speaker arrangements, as almost no-

can place their speakers in the ITU or future speaker positions. 

o Over headphones. 

o Over a standard stereo pair (and other placement widths) of 

speakers. 

• Efficient means of transferring from the carrier to one of the above 

systems. 

 

If we take the current ‘state of the art’ surround standard as an example, and 

try to apply the above criteria to it, a number of shortcomings can be 

observed.  In Dolby Digital 5.1, the carrier signal is six discrete chan

one representing a speaker signal directly.   Each speaker is assumed to

at the speaker locations specified in the ITU standard as shown i
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60 

140 

80 80 
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SL SR

 
Figure 4.2 Standard speaker layout as specified in the ITU standard. 
 

To listen to this system over headphones is not a difficult task and has been 

achieved by a number of companies (Mackerson et al., 1999; McKeag & 

cGrath, 1997).  It is achieved by binaurally simulating speakers using HRTF 

ial 

if a 

ween 128 and 1024 samples in length.  This approach 

ill rely on the 5.1 decode to supply the ear/brain system with the appropriate 

r, 

d by Lake (McKeag & McGrath, 1997) and 

tüder (Mackerson, et al., 1999)) is where the speakers are simulated in a 

r 

 a 

M

data, and replaying the resulting two channels over headphones.  As 

discussed in Chapter 3, the binaural reproduction of surround sound mater

needs to contain some form of psychoacoustically tangible reverb involved 

realistic, out-of-head experience is to be delivered.   

 

When auralising 5.1 surround two approaches can be taken.  The first 

approach assumes that the 5.1 surround system is trying to simulate an 

acoustic space where each speaker can be rendered using a pair of anechoic 

HRTFs, normally bet

w

reverberation, and is the most computationally efficient solution.  Howeve

the qualities and amount of the reverberation used on each recording may be 

psychoacoustically confusing and, therefore, not convincing enough to 

promote the out-of-head imaging possible with the binaural approach.  The 

better approach (and the one use

S

‘good’ listening room, that is, each speaker will have its own reverb 

associated with it, on top of anything that is already recorded within the 

surround sound material.  This can be done in one of two ways: 

• Simulate the individual speakers using a pair of head related transfe

functions per speaker, and then simulate the listening room using
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binaural reverb algorithm (perhaps using discrete first order room 

 

The decision of which of the two approaches to use is really a question of 

processing power available.  The difference in efficiency between the two 

 

the second method would be used, as this would provide a closer match to a 

real environment, and therefore maximising the performance of the binaural 

This method has been shown to work very well, especially when carried out 

with head-tracking (Makerson, et al., 1999), although a good interpolation 

algorithm is then needed to stop the creation of clicks and pops due to the 

changing filter structures (in fact, the development and implementation of 

interpolation algorithms can be the most time consuming part of such a piece 

of professional audio hardware).  Once the binaural version has been created 

it is then a relatively easy task to convert this recording for a 2 speaker, 

transaural reproduction by using a 2 x 2 matrix of correctly designed crosstalk 

cancellation filters.   

d in the correct, ITU 

 

A better technique would be to use Ambisonic B-format, or similar, to drive the 

system, or at least use a standard B-format decoding algorithm to derive the 6 

discrete channels on a DVD and then, if desired, work out the B-format 

signals from these speaker feeds.  Using a hierarchical carrier, such as B-

 section. 

reflections, again a pair of HRTFs per reflection, followed by a short, 

diffuse tail). 

• Simulate the individual speakers and room together using a much 

longer pair of head related transfer functions per speaker. 

methods can be quite high depending on the implementation used.  Ideally

decode. 

 

 

However, what if the (real) speakers were not place

specified, positions in the listening room?  Calculating new speaker feeds for 

a system that is defined by discrete channels is not necessarily an easy task 

(Gerzon, 1992a) when the encoding system cannot necessarily be assumed 

to be simple pair-wise panning.   

format would result in the advantages given at the start of this
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For example, if we were to take horizontal only B-format as the carrier sig

then decoding this B-format carrier for the various different presentation 

methods can be carried out as shown in Equation (4.1) (it should be noted 

that this is a sub optimal decoder but this will be discussed in Chapter 5). 

nal 

( ) ( ) ( ) ( )ZYXWnSn ×+××+××+×= )sin()cos()sin()cos()cos(2)( φφθφθ  

(4.1) 

where Sn is the signal sent to the nth speaker positioned at azimuth θ and 

elevation φ. 

 

This simple decoding would produce the virtual microphone configuration 

shown in Figure 4.3. 

 
Figure 4.3 Virtual Microphone Configuration for Simple Ambisonic Decoding 

4.3 B-Format to Binaural Reproduction 

All multi-speaker formats can be converted to a Binaural signal, but B-Format

to binaural conversion can be achieved very efficiently due to its hierarchical 

nature.  The system can be summarized as shown in Figure 4.4. 

 

W 
X 
Y 

 
 

Ambisonic 
Decoder 

 
 
THR F 

Simulation 

Left Ear 

Right Ear 

 
igure 4.4 Horizontal B-Format to binaural conversion process. F
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As the system takes in 3 channels of audio and outputs two channels of 

audio, the actual Ambisonic decoding process can be contained within a pair 

of HRTFs representing each of W,X and Y.  This means that any number of 

speakers can be simulated using just six HRTFs (three pairs).  The equations 

describing this process for an eight speaker array are given in Equation (4.2). 
 

( ) ( )
( ) ( )( )
( ) ( )( )
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∑
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=
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(4.2) 

Where 
θ = source azimuth 
φ = source elevation (0 for horizontal only) 
Sk

hrtf = Pair of HRTFs measured at speaker position, k. 

he signals then required to be fed to each ear are given in Equation (4.3). 

 

T
 

( ) ( ) ( )
( ) ( ) ( )hrtf

R
hrtf
R

hrtf
R

hrtfhrtf
L

hrtf
L

YYXXWWRight

YYXXWWLeft
L

⊗+⊗+⊗=

⊗+⊗+⊗=
   

Another optimisation that can be applied is that of ass

(4.3) 

uming a left/right 

ymmetrical room.  For example, if the B-Format HRTFs shown in Figure 4.5 

 same, 

Fs are 

inverted.  So, in this symmetrical case only three HRTFs 

re needed to simulate a multi-speaker Ambisonic system with the new Left 

 

s

are studied it can be seen that both the left and right W HRTFs are the

the left and right X HRTFs are the same, and the left and right Y HRT

the same, but phase 

a

and Right ear feeds given in Equation (4.4). 

( ) ( ) ( )
( ) ( ) (hrtfhrtf

hrtfhrtfhrtf

XXWW
YYXXWW

−⊗+⊗

⊗+⊗+⊗
   )YYRight

Left
⊗=

=

(4.4) 

 

hrtf
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Figure 4.5 Example W, X and Y HRTFs Assuming a Symmetrical Room. 

 
 

X 

Y 

As can be seen from Equation (4.4), a symmetrical room will result in a total of 

three convolutions to be computed, as opposed to six for an unsymmetrical 

room, resulting in a 50% processing time saving (and, incidentally, this 

compares very favourably to the ten convolutions needed to auralise a 

standard five speaker when not driven by B-format). 

 

Once the material has been ‘binauralised’, a two speaker Transaural 

presentation can then be created with the use of standard crosstalk 

cancellation filters.   

 

For a four speaker configuration two options are available. 

 a 

Figure 4.6, then the B-format signal can be decoded Ambisonically to 

feed these four speakers. 

W 

• If the speakers are arranged in near square formation as shown in 
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• If the speakers are arranged so that the speakers are placed close 

together (e.g. either side of a computer monitor) as shown in Figure 

4.7, then a double crosstalk cancellation system would be best suited. 

 

Both options can be utilised for most four speaker configurations, these two 

figures (Figure 4.6 and Figure 4.7) just show the ideal setup for each system.  

The system chosen would be dependant upon the listening situation and 

advantage over a two speaker crosstalk cancellation system in that both front 

cularly 

m, 

ice 

processing power available.  A four speaker crosstalk cancellation has the 

and rear hemispheres can be reproduced creating a more accurate, 

enveloping sound with much less noticeable front/back ambiguity, parti

if the speakers are arranged in a manner similar to Figure 4.7.  This syste

however, although delivering much better results than frontal crosstalk 

cancellation alone, is, potentially, the most processor intensive of all of the 

reproduction methods described in this report (although it will be shown, in 

Chapter 6, that this is not always the case).  It can be seen from the block 

diagram shown in Figure 4.8 that this method of reproduction will require tw

as many FIR filters than frontal crosstalk cancellation alone. 
 
 

 
Figure 4.6 Ideal, 4-Speaker, Ambisonic 

Layout  
Figure 4.7 Ideal Double Crosstalk 

Cancellation Speaker Layout 
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TFs were utilised in order to help sound externalisation.  When 

replaying binaural material over a crosstalk cancellation system, this is not 

necessary, as the sound will normally be perceived at a distance equal to the 

distance of the speakers.  This can be observed by playing unprocessed, 

stereo material over a crosstalk cancelled system.  In such a situation the 

sounds are perceived as coming from a hemisphere around the front of the 

listener as shown in Figure 4.9.  Therefore, longer HRTFs that include some 

form of room response are not needed during the B-format to binaural 

conversion stage (as out of head localisation is already present), reducing the 

size of the HRTFs from over 8192 points to less than 1024 as shown in Figure 

4.10, making B-format to Transaural conversion in real-time a viable option for 

most modern processors. 

Figure 4.8 Double Crosstalk Cancellation System 
 

The dual crosstalk cancelling system described by Figure 4.8, or the two 

speaker crosstalk cancellation system, can be made more efficient by 

changing the length of a number of the FIR filters when converting the B-

format carrier to the Binaural signal since, as was mentioned above, non-

anechoic HR

 

Panned  Panned  

r. 

Full Left Full Right 

 
Figure 4.9 Perceived localisation hemisphere when replaying stereophonic 

material over a crosstalk cancelled speaker pai
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The four-speaker transaural system is particularly well suited to this type of 

speaker simulation system as standard binaural material (that is, recorded as 

two channels) cannot successfully be replayed on a four speaker Transaural 

system.  It is obvious that once a binaural recording has been made, it can be 

played back over both the front and rear pairs of a four speaker, crosstalk 

cancellation system, but it is then up to the listener’s ear/brain system to 

decide which sounds are coming from the front or the back as the same signal 

must be replayed from both crosstalk cancelling pairs, unless a ‘four ear’ 

dummy head recording is used.  This gives many conflicting cues due to the 

imperfect manner in which Transaural systems crosstalk cancellation occurs.  

However, using the system mentioned above, total separation of the front and 

rear hemisphere’s audio is possible resulting in a much less ambiguous 

ach pair of speakers can 

be realised. 

listening situation, where the best possible use of e
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Figure 4.10 Example of Anechoic and non-Anechoic HRTFs at a position of 300 from 

the listener. 
 

All of the above equations assume that the carrier signal for this hierarchical 

system is first order B-format.  However, as DVD players already expect to 

see six channels, this is not the best use of the already available outputs.  

Ideally, a 2nd Order Ambisonic carrier would be used.   
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 the 

 

 

to a maximum of six channels would be 

preferable.   

 
Figure 4.11 Spherical Harmonics up to the 2nd Order. 

W 

X Y 

Z 

U S R T V

 

Second order Ambisonics, as mentioned in Chapter 3, would consist of nine 

channels to fully represent the three dimensional sound field: the four 

channels of 1st Order B-format, plus another five channels representing

sound field’s 2nd Order components (as shown in Figure 4.11).  The use of 

these extra harmonics increases the directionality of the virtual pickup 

patterns that can be constructed by combining the signals in various 

proportions.  Figure 4.12 shows the difference between a 1st and 2nd order 

virtual polar pattern.  At the present time, the ITU standard specifies 6 full

bandwidth audio channels (note that even the .1 channel is actually stored as 

full bandwidth on the DVD Audio and Super Audio CD disks), and so a

standard to be adopted that uses 
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The

2nd d  

cha e

peaker, or less, system would utilise channels W, X and Y.  Systems with 

x 

ith the use of three existing systems, a system has been proposed that 

n 

ure 4.12 2D polar graph showing an example of a 1st and 2nd order virtual pickup 
pattern (00 point source decoded to a 360 speaker array).  

 most logical way of achieving this is by specifying the horizontal plane to 

 or er resolution and the vertical plane to 1st order, resulting in a total of 6

nn ls (W, X, Y, Z, U & V) where most people with a horizontal five 

s

height capability would use the Z channel and users with a higher number of 

speakers on the horizontal plane would also use the U and V signals.  This si

channel system has the advantage that the best possible resolution can be 

achieved on the horizontal plane (i.e. 2nd order).  While the equations for 

tumbling and tilting the sound field will now only be fully utilisable when using 

the first order signals, rotating will still function, as only the horizontal 

Ambisonic channels are altered. 

4.4 Conclusions 

W

overcomes the weaknesses of the individual systems in isolation.  This 

system has the benefit of future-proofing in terms of speaker layout and can 

be decoded to headphones or two or more speakers whilst still retaining 

spatial information.  Basic algorithms for the conversion processes have bee

described and will be analysed, discussed and optimised in Chapter 5. 
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Chapter 5 - Surround Sound Optimisation Techniques

5.1 Introduction 

In this chapter a number of optimisation methods w

 

ill be discussed and 

emonstrated so as to maximise the performance of the hierarchical system 

e use 

er 

 

 

. 

 

h 

 

l performance of the designed filters, this work is not included. 

h 

h it 

nt 

consumer and professional audio equipment (i.e. 5, 6 or 7 channel 

d

discussed in Chapter 4.  A large part of this research was based upon th

of HRTF data collected by Gardner & Martin (1994) which was used in order 

to help quantify and optimise the various decoding stages that are present in 

the proposed hierarchical system.  The research was carried out in a numb

of stages which also corresponds to the layout of this chapter, as detailed 

below: 

• Investigation into the use of HRTF data in the analysis of multi-channel

sound reproduction algorithms. 

• Optimisation of the Ambisonics decoding signal processing techniques. 

• Optimisation of the binaural decoding signal processing techniques.

• Optimisation of the Transaural decoding signal processing techniques

 

To this end, the first part of this investigation, documented in section 5.2, was 

to carry out a listening test, using the Multi-Channel Research Lab designed

and installed as part of this research (Schillebeeckx et al., 2001), to try and 

measure the potential strengths and weaknesses of the proposed HRTF 

analysis technique.  As the listening tests were executed before the researc

into the Ambisonic optimisation methods were carried out, sub-optimal 

Ambisonic decodes were used in these tests.  Also, as work had only just 

begun on the Transaural processing techniques, and due to the extremely

sub-optima

 

Section 5.3 represents the bulk of this chapter, and concentrates on the 

optimisation of the Ambisonics system, as this is the base system from whic

the binaural and transaural representations will be derived from.  Althoug

would be preferable to always derive the binaural/transaural feeds from the 

original B-format (or higher order) carrier, due to the standards used in curre

 - 111 - 



Chapter 5 

presentation for a 5, 6 or 7 speaker, irregular array) it is necessary to realise 

optimised Ambisonic decoders for irregular arrays not only to maximise the 

performance of the speaker decode, but to also make sure that the correct 

 irregular decode is 

 is an 

 

  

 a 

e ITU 

ay 

e, 

jekt 

on-linear simultaneous equations, 

were difficult to solve, and only got more difficult when more speakers were 

is reason one of the main aims of this 

peaker 

.  After 

on 

tly 

ork carried out on both Binaural and Transaural 

production techniques.  The work on binaural reproduction is used as an 

e 

psychoacoustic cues are presented to a listener after this

converted to a binaural or transaural reproduction. 

 

The original optimisation, as proposed by Gerzon & Barton (1992)

extension of the original Ambisonic energy and velocity vector theory used to

optimise regular decoders (Gerzon, 1977a) but with the added suggestion of 

using one decoder for low frequencies and another for high frequencies.

However, although Gerzon and Barton (1992) did solve these equations for

number of irregular speaker arrays, none of the arrays were similar to th

standard array that was finally proposed.  No decoders optimised in this w

have ever been produced for the ITU standard speaker array since that tim

as was evident in the recent Project Verdi Listening Tests (Multi Media Pro

Verdi, 2002).  The equations, a set of n

added (Gerzon & Barton, 1992).  For th

work was to devise a system so that Ambisonic decoders for irregular s

arrays could be easily designed via some form of automated system

this was successfully implemented, the analysis method suggested in earlier 

work (see Wiggins et al, 2001) was used as the basis of new optimisation 

criterion for irregular Ambisonic decoders.  As no method of differentiati

between decoders optimised using the energy/velocity vector model curren

exists (there are multiple solutions), this new method could then be used as a 

method to differentiate between already designed velocity/energy vector 

decoders. 

 

Section 5.4 documents the w

re

introduction to inverse filtering techniques, which are then applied to the 

Transaural reproduction system in order to improve its performance using th

freely available HRTF data from MIT Media Lab (Gardner & Martin, 1994). 
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5.2 The Analysis of Multi-channel Sound Reproduction 
Algorithms Using HRTF Data 

5.2.1 The Analysis of Surround Sound Systems 

Much research has been carried out into the performance of multi-channel 

ound reproduction algorithms, both subjectively and objectively.  Much of the 

 

scribed using Head Related Transfer 

unctions as a reference for the localisation cues needed to successfully 

 will then be compared to results 

Ch  Laboratory. 

5.2

sis is that of simple 

comparison.  If a real source travels through 3600 around the head 

d pressure level at both ears is recorded, then the 

89; 

nt path lengths, the 

vel difference between the sounds arriving at each ear due to different path 

f complex level 

y.  The most 

 the use of Head 

or the purpose of this analysis technique, the binaural synthesis of virtual 

ed 

does not necessarily need to be optimal for all listeners (which can be an 

s

quantitative data available on the subject has been calculated by 

mathematically simulating acoustical waves emitting from a number of fixed 

sources (speakers) (Bamford, 1995) or using mathematical functions that give

an indication of the signals reaching the listener (Gerzon, 1992b).  The 

resulting sound field can then be observed.  In this section of Chapter 5, a 

new method of analysis will be de

F

localise a sound in space.  This method

obtained from a listening test carried out at the University of Derby’s Multi-

annel Sound Research

.2 Analysis Using HRTF Data 

The underlying theory behind this method of analy

(horizontally) and the soun

three widely accepted psychoacoustic localisation cues (Gulick et al., 19

Rossing, 1990) can be observed.  These consist of the time difference 

between the sounds arriving at each ear due to differe

le

lengths and body shadowing/pinna filtering, a combination o

and time differences due to the listeners own pinna and bod

accurate way to analyse and/or reproduce these cues is with

Related Transfer Functions. 

 

F

sound sources is taken as the reference system, as the impulse responses 

used for this system are of real sources in real locations.  The HRTF set us
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issue for binaural listening) so long as all of the various localisation cues can 

be easily identified.  This is the case because this form of analysis compares 

the difference between real and virtual sources and as all systems will be 

synthesised using the same set of HRTFs, their performance when compared 

to another set of HRTFs should not be of great importance. 

 

Once the system has been synthesised using HRTFs, impulse responses can 

be calculated for virtual sources from any angle so long as the panning laws 

for the system to be tested are known.  Once these impulse responses have 

been created the three parameters used for localisation can be viewed and 

s able to 

produce accurate virtual images. 

y 

 can be made between very different multi-channel 

systems as long as the HRTFs used to analyse the systems are the same. 

rm of 

nalysis, a listening test was carried out.  The listening test comprised of a set 

The tests were carried out in the University of Derby’s Multi Channel Sound 

Research Laboratory with the speakers arranged as shown in Figure 5.1. 

compared, with estimations made as to how well a particular system i

 

Advantages of this technique include: 

• All forms of multi-channel sound can potentially be analysed meaningfull

using this technique. 

• Direct comparisons

• Systems can be auditioned over headphones. 

5.2.3 Listening Tests 

In order to have a set of results to use as a comparison for this fo

a

of ten tests for five different forms of surround sound: 

 

• 1st Order Ambisonics over 8 speakers (horizontal only) 

• 2nd Order Ambisonics over 8 speakers (horizontal only) 

• 1st Order Ambisonics over a standard 5 speaker layout. 

• Amplitude panned over a standard 5 speaker layout. 

• Transaural reproduction using two speakers at +/- 50. 
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Figure 5.1 Speaker Arrangement of Multi-channel Sound Research Lab. 

 

The listing room has been acoustically treated and a measurement of the 

ambient noise in the room gave around 43 dBA in most 1/3-octave bands, 

with a peak at 100 Hz of 52.1 dBA and a small peak at 8 kHz of 44.4 dBA.  

The RT60 of the room is 0.42 seconds on average, but is shown in 1/3-octave 

bands in Figure 5.17. 

 

Using a PC and a multi-channel soundcard (Soundscape Mixtreme) all of the 

speakers could be accessed simultaneously (Schillebeeckx et al., 2001), if 

needed, and so tests on all of the systems could be carried out in a single 

session without any pauses or equipment changes/repatching.  

rks, 

.  

 

A flexible framework was devised using Matlab and Simulink (The Mathwo

2003) so that listening test variables could be changed with minimal effort, 

with the added bonus that the framework would be reusable for future tests

A Simulink ‘template’ file was created for each of the five systems that could 

take variables from the Matlab workspace, such as input signal, overall gain 

and panning angle, as shown in Figure 5.2.  Then a GUI was created where 

all of the variables could be entered and the individual tests run.  A screen 

shot of the final GUI is shown in Figure 5.3. 
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Figure 5.2 Screen shot of two Simulink models used in the listening tests. 
 

 
Figure 5.3 Screen shot of listening test GUI. 

 

The overall gain parameter was included so each of the different systems 

onf

ter 

h 

could be c igured to have a similar subjective gain, with the angle of the 

virtual source specified in degrees.  The only exception to this was the 5.0 

Amplitude panned system where the speaker feeds were calculated off line 

using the Mixtreme soundcards internal mixing feature.  The extra parame

(tick box) in the Stereo Dipole (transaural) section was used to indicate whic

side of the listener the virtual source would be placed as the HRTF set used 

(Gardner & Martin, 1994) only had impulse responses for the right 

hemisphere and must be reversed in order to simulate sounds originating 

from the left (indicated by a tick). 
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After consulting papers documenting listening tests of various multi-channel 

sound systems, it was found that noise (band-limited and wide-band) was 

often used as a testing source (see Moller et al., 1999, Kahana et al., 1997

Nielsen, 1991 Orduna et al., 1995 and Zacharov et al, 1999, as typical 

examples).  The noise signals used in this test were band limited and pulsed, 

three pulses per signal, with each pulse lasting two seconds with one sec

of silence between each pulse.  The pulsed noise was chosen as it was more 

easily localised

, 

ond 

 in the listening room when compared to steady state noise.  

Each signal was band limited according to one of the three localisation 

frequency ranges taken from two texts (Gulick et al., 1989; Rossing, 1990).  

These frequencies are not to be taken as absolutes, just a starting point for 

this line of research.  A plot of the frequency ranges for each of the three 

signals is shown in Figure 5.4. 

 

 
Figure 5.4 Filters used for listening test signals. 

re used, most of whom had never taken part in a 

 all enrolled on the 3rd year of the 

niversity’s Music Technology and Audio System Design course, and so 

xperience of the systems at this point.  Each listener was asked to 

y to move their head as little as possible while listening (i.e. don’t face the 

 in 

listeners were not fixed and so small head movements would have been 

 

Twenty eight test subjects we

listening test before.  The test subjects were

U

knew the theory behind some surround sound systems, but had little or no 

listening e

tr

source), and to indicate the direction of the source by writing the angle,

degrees, on an answer paper provided.  It must be noted that the head of the 
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available to the listeners as a potential localisation cue (as it would be when

listening anyway).  Listeners could ask to hear a signal again if they 

 

needed 

, and the operator only started the next signal after an answer had been 

 

re 

.5 (although the sheet presented to the test subjects was labelled in 50 

intervals with a tick size of 10, not 150 intervals with a tick size of 30 as shown 

in Figure 5.5). 

to

recorded.  The listeners were given a sheet of paper to help them with angle

locations with all of the speaker positions marked in a similar fashion to Figu

5
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 Order Ambisonics 

• 2nd Order Ambisonics 

• 1st Order Ambisonics over 5 speakers. 

 

The listening test results for the amplitude panned 5 speaker system are also 

included. 

 

The set of HRTFs used for this anal

HRTFs, specifically the compact set (Gardner & Martin, 1994).  As m

 
Figure 5.5 Figure indicating the layout of the listening room given to the testees 

a guide to estimating source position. 

5.2.4 HRTF Simulation 

As described in section 5.1 three of the five systems will be analysed using 

the HRTF method described above: 

• 1st

ysis were the MIT media lab set of 

entioned 
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earlier, it is not necessarily important that these are not the best HRTF set 

available, just that all of the localisation cues are easily identifiable. 

 

All systems can be simulated binaurally but Ambisonics is a slightly special 

case as it is a matrixed system comprising the steps shown in Figure 5.6.  

 

W 
X 
Y 

 
 

Ambisonic 

 

HRTF 
Decoder 

 Left Ear 

Simulation Right Ear 

ividual HRTFs are needed 

for any speaker arrangement, Equation (5.1).  If the head is assumed to be 

symmetrical (which it is in the MIT set of compact HRTFs) then even fewer 

HRTFs are needed as Wleft and Wright will be the same (Ambisonics omni-

directional component), Xleft and Xright will be the same (Ambisonics 

front/back component) and Yleft will be phase inverted with respect to Yright.  

This means a complete 1st order Ambisonic system comprising any number of 

speakers can be simulated using just three HRTF filters, as shown in equation 

(5.1). 

 
Figure 5.6 The Ambisonic to binaural conversion process. 

 

Because the system takes in three channels which are decoded to eight 

speaker feeds, which are then decoded again to two channels, the 

intermediate decoding to eight speakers can be incorporated into the HRTFs 

calculated for W, X and Y meaning that only six ind
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θ = source azimuth 
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Once the HRTFs for W, X and Y are known, a virtual source can be simulated 

by using the first order Ambisonics encoding equations shown in Equation 

(5.2), (Malham, 1998). 

 ( ) )(21 nxW ×=

)()sin()sin(
)()sin()cos(

nxY
nxX

××=
××=

φθ
φθ

Where x(n) is the signal to 
be placed in virtual space.      

(5.2) 

 

rce 

 50 

n in Figure 5.7. 

 

Using two sets of the W, X and Y HRTFs (one for eight and one for five 

speaker 1st order Ambisonics) and one set of W, X, Y, U and V (Bamford, 

1995; Furse, n.d.) for the 2nd order Ambisonics, sources were simulated from 

00 to 3600 in 50 intervals.  The 50 interval was dictated by the HRTF set used

since, although the speaker systems could now be simulated for any sou

angle, the real sources (used for comparison) could only be simulated at

intervals (without the need for interpolation).  An example pair of HRTFs for a 

real and a virtual source are show

 

Figure 5.7 Example left and right HRTFs for a real and virtual source (1st Order 
Ambisonics) at 450 clockwise from centre front. 

5.2.5 Impulse Response Analysis 

As mentioned in Section 5.2.2, three localisation cues were analysed, 

interaural level difference, interaural time difference, and pinna filtering 

effects.   The impulse responses contain all three of these cues together 

meaning that although a clear filter delay and level difference can be seen by 

inspection; the pinna filtering will make both the time and level differences 

20 40 60 80 100 12020 40 60 80 100 120 20 40 60 80 100 2020 40 60 80 100 1200       - 1 

-  0.5  

0 

0.5  

1 1st Order Ambisonics, Source at 45 degrees (Left   
Real Source
Ambisonic Source

0       - 1 

-  0.5  

0 

0.5  

1 Ear)  
Real Source
Ambisonic Source

0    1
-1

-0.5

0

0.5

1
1st Order Ambisonics, Source at 45 degrees (Right 

Real Source   
Ambisonic Source 

0    -1

-0.5

0

0.5

1
Ear)

Real Source   
Ambisonic Source 

 - 120 - 



Chapter 5 

frequency dependant.    These three cues were extracted from the HRTF data

using the following methods: 

• Interaural Amplitude Difference – Mean amplitude difference between th

two ears, taken from an FFT of the impulse responses. 

• Interaural Time Difference – Mean time difference between the two e

taken from the group delay of the impulse responses. 

• Pinna filtering – Actual time and amplitude values, taken from the

delay and an FFT of the impulse responses. 

 

Once the various psychoacoustic cues had been separated, compariso

were made between the cues present in a multi-speaker decode com

with the cues of an actual source (i.e. the individual HRTFs) and estimations

of where the sounds may appear to come from can be made using each of 

the localisation parameters in turn.  As the

 

e 

ars, 

 group 

ns 

pared 

 

 analysis is carried out in the 

frequency domain, band limiting the results (to coincide with the source 

material used in the listening tests) is simply the case of ignoring any data that 

is outside the range to be tested. 

 

As an example, Figure 5.8 shows the low, mid and high frequency results for 

real sources and the three Ambisonic systems for averaged time and 

amplitude differences between the ears. 

 

These graphs show a number of interesting points about the various 

Ambisonic systems.  Firstly, the 2nd order system actually has a greater 

amplitude difference between the ears at low frequencies when compared to 

a real source, and this is also the frequency range where all of the systems 

seem to correlate best with real sources.  However, the ear tends to use 

amplitude cues more in the mid frequency range, and another unexpected 

result was also discovered here.  It seems that the 1st order, five speaker 

system actually outperforms the 1st order, eight speaker system at mid 

frequencies, and seems to be equally as good as the eight speaker, second 

order system.  This is not evident in the listening tests, but if the average time 

difference graphs are observed it can be seen that the five speaker system 

has a number of major errors around the 900 and 2700 source positions and 
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shows the 2nd order system to hold the best correlation.  The time difference 

plots all show that the five speaker system still outperforms the 1st order, eight 

speaker system, apart from the major disparities, mentioned above, at low 

frequencies. It can be seen from the listening test results (Figure 5.12) that 

the five speaker system does seem to be at least as good as the eight 

speaker system over all three of the frequency ranges, which was not 

expected.  The mid and high frequency range graphs are a little too 

complicated to analyse by inspection and so will be considered later in this 

chapter using a different technique.  It must also be noted that, due to the 

equency ranges originally chosen, interaural level differences at low 

frequencies are comparable to the interaural level differences at mid 

frequencies.  Had a lower cut off frequency been chosen (as shown later in 

this Chapter) this would not have been the case and this suggests that the 

original frequency ranges were not ideal. 

fr
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Figure 5.9 The difference in pinna amplitude filtering of a real source and 1  and 

2
st

 

e 

 

 

ent, 

 an 

ple, 

 the non-averaged amplitude or group delay parameters are looked at over 

the full 3600 (the non-averaged amplitude responses are shown in Figure 5.9) 

nd order Ambisonics (eight speaker) when compared to a real source.
 

One attribute that has not really been touched on yet, when discussing multi-

speaker systems, which is one of the major consequences of the phantom 

imaging scenario, is pinna cue errors.  When an image is created with mor

than one speaker, although it is possible to create a correct level and phase 

difference at the ears of a listener, for a panned source, it will be far more

difficult to create correct pinna cues due to the direction dependant filtering 

that the pinnae apply to real sound sources.  Instead, the pinna cues from the

speakers creating the phantom image will be summed and weighted 

dependant on the speakers’ contributions.  As everyone’s pinnae are differ

it is impossible to correct for this in a generic way (and even from

individual’s response point of view, only one listener orientation could be 

corrected for, i.e., facing straight ahead).  The pinna filtering can be clearly 

seen in the simulation, but is a more complex attribute to analyse directly, 

although it has been useful to look at for a number of reasons.  For exam

if
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it can be seen that they both change radically due to virtual source position 

(as does a source in reality).  However, the virtual sources change differently 

when compared to real sources.  This change will also occur if the head i

rotated (in the same way as a source moving for a regular rig, or a slightly 

more complex way for an irregular five speaker set-up) and this could be p

of the ‘phasiness’ parameter that Gerzon often mentioned in his papers 

regarding the problems of Ambisonics (Gerzon, 1992b).  This problem, 

however, is not strictly apparent as a timbral change (at least, not straight 

away) when a source or the listener’s head moves, but instead probably just 

aids in confusing the brain as to the sound source’s real location, increasing 

source location ambiguity and source mo

s 

art 

vement when the listener’s head is 

rned.  This parameter is more easily observed using an animated graph, but 

t a 

r 

further work will be carried out to make use of this 

formation.  However, using the average time and amplitude differences to 

ders 

as 

t, 

 shown, using the average 

mplitude and the average time differences at low and mid frequencies. 

tu

it is shown as a number of stills in Figure 5.9.  These graphs show the 

differences between the three systems, which is why the ‘real source’ is jus

0dB line, as it has no amplitude difference with itself. 

 

Due to the complexity of the results obtained using the HRTF simulation fo

the pinna filtering, it is difficult to utilise these results in any estimation of 

localisation error, although 

in

estimate the perceived direction of the virtual sound source is a relatively 

trivial task using simple correlation between the actual and virtual sources.  In 

order to plot these results, a Matlab routine was constructed that gave a 

localisation estimation using the HRTFs derived from the various deco

and compared these to the figures obtained from the real HRTFs.  This w

carried out for both amplitude and time differences in the various frequency 

bands tested.  Because no pinna filtering effects were taken into accoun

each value of amplitude and time/phase difference will have two 

corresponding possible localisation angles (see the cone of confusion in 

chapter 2.2.1).  Figure 5.10, Figure 5.11 and Figure 5.12 show the listening 

test results with the estimated localisations also

a
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The listening tests themselves gave reasonably expected results as far as to

the system that performed best (the 2

 

ver 

d.  

r 

y 

 

t 

d 

 of 

 

s long as the speakers 

used in each system are matched (as opposed to the speakers across all 

ame). 

 more 

 of 

 is a 

rce at 00 just radiates from the centre 

peaker, i.e. it is a real source at 00.  However, around 30% of the subjects 

recorded that the source came from behind them.  Front/back reversals were 

actually less common in all of the other systems (at 00), apart from 2nd order 

Ambisonics (the system that performed best). 

 

The source position estimation gave reasonably good results when compared 

with the results taken from the listening tests, with any trends above or below 

nd Order Ambisonics system).  Howe

the other three systems (1st order eight and five speaker, and amplitude 

panned 5.0) all seemed to perform equally as well, which was not expecte

Although it must be noted, that all of these listening tests were carried out 

using ‘unoptimised’ decoders, with only the five speaker irregular decode

having been empirically adjusted regarding the amplitude levels of the three 

speaker sets (centre, front pair and rear pair).  Nevertheless, the empiricall

derived gain settings reasonably matched the optimised sets described later 

(quiet centre speaker with additional gain applied to the rear pair) but with all

speakers using a cardioid pattern feed.   

 

The speakers used for the eight and five speaker systems were different, bu

as all listeners had the speakers pointed directly at them, and were teste

using band-limited noise, the frequency response and dispersion patterns

the speakers should not have been critical in this experiment.  Also, the HRTF

simulation and comparison should be a valid one a

systems being the s

 

The frequency content of the sounds did not seem to make any significant 

difference to the perceived localisation of the sound sources, although a

extensive test would have to be undertaken to confirm this, as the purpose

this test was to test between any large differences between the three 

localisation frequency ranges.   Another interesting result was the virtual 

source at 00 on the amplitude panned system (see Figure 5.13).  As there

centre front speaker, a virtual sou

s
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the diagonal, representing a perfect score, being estimated successfully.  If 

the graphs represented truly what is expected from the different types of 

psychoacoustic sound localisation, then the low frequency time graph and the 

mid frequency amplitude graph should be the best indicator of where the 

source is coming from.  However it is well known (Gulick et al., 1989)  that if 

one localisation cue points to one direction, and the other cue points to 

another, then it may be some direction between these two localisation angles 

that the sound is actually perceived to originate from.  The HRTF analysis 

does not take this into account at the moment and so some error is expected.  

Also, the compact set of HRTFs used is the minimum phase versions of the 

actual HRTFs recorded which may contribute to the time difference estimation 

results (although the cues seem reasonable when looked at for the actual 

sources).   As mentioned, there was no major difference between the three 

different signals in terms of localisation error.  Because of this the plots 

showing the estimated localisation using the whole frequency range are 

shown in Figure 5.14 - Figure 5.16 which also show the interaural amplitude 

difference as a better localisation approximation.   

5.2.6 Summary 

The HRTF analysis of the three surround systems described in this section 

seems to work well giving a reasonably good indication as to the possible 

localisation that a listener will attach to a sound object.  This method is 

definitely worth pursuing as a technique that can be used to evaluate and 

compare all forms of surround sound systems equally.  Although the errors 

seen in the estimation when compared to the listening test results can be 

quite large, the general trends were shown accurately, even with such a 

simple correlation model used.   
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Figure 5.10 Listening Test results and estimated source localisation for 1st Order 
Ambisonics 
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Source Localisation Estimates using Interaural Amplitude 

differences Low Frequency Mid Frequency 
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Figure 5.11 ated source localisation for 2  Order 

Ambisonics 
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Figure 5.12 Listening Test results and estimated source localisation for five 

speaker 1st Order Ambisonics 
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Figure 5.14 Average Time and Frequency Localisation Estimate for 1st Order 

 
Figure 5.13 Listening test results for Amplitude Panned five speaker system. 
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Figure 5.15 Average Time and Frequency Localisation Estimate for 2nd Order 

Ambisonics. 
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RT60 For Multi-channel SoundResearch Laboratory.
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Figure 5.17 RT60 Measurement of the University of Derby’s multi-channel sound 

research laboratory, shown in 1/3 octave bands. 
 

5.3 Optimisation of the Ambisonics system 

.3.1 Introduction 

that the virtual microphone response for the decoder (he concentrated on 

regular setups initially) should be chosen according to a number of 

5

In this part of the chapter the decoding techniques that have been utilised in 

the system described in Chapter 4 (Ambisonics, binaural and transaural) will 

be discussed and optimised so as to both maximise their spatial performance 

and sound quality.  Some of these optimisations are more logically formulated 

than others, with the optimisation of the Ambisonics system being the most 

involved, both mathematically and perceptually, so this system will be 

considered first. 

 

As discussed in Chapter 4, the Ambisonics system will be the basis for the 

proposed hierarchical multi-channel system, but while the encoding process is 

a fixed standard (using the spherical harmonics described in Chapter 3) the 

decoding process is not necessarily as straightforward.  As the Ambisonics 

system is very flexible, any 1st order microphone response can be chosen, 

along with the virtual microphone’s direction.   Gerzon’s original theory stated 
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mathematical approximations to the signals that would reach the ear of a 

 

he 

ave 

listener (Gerzon, 1974) and, for regular speaker arrays, this was a relatively 

straightforward optimisation to perform (see section 3.3.1.2).  However, since

the introduction of the DVD, the standard speaker layout as specified by t

ITU is a five speaker layout as shown in Figure 5.18.  This is likely to be 

expanded upon in the near future, and other, larger, venues are likely to h

more speakers to cover a larger listening area.  

600

1400

800 800

600

1400

800 800

 
Figure 5.18 Recommended loudspeaker layout, as specified by the ITU. 
 

e likelihood of ever changing reproduction layouts a more portable 

, and such a 

e the 1960s (Borwick, 1981).   

mbisonic systems are based on a spherical decomposition of the sound field 

he 

hat is, 

rched, mainly by Gerzon, and in 1992 

apers were published suggesting a method of optimising Ambisonic 

decoders for irregular speaker arrays (Gerzon & Barton, 1992) as the original 

decoding equations were difficult to solve for irregular speaker arrays in the 

conventional way (use of shelving filters (Gerzon, 1974)).   

Due to th

approach should be used in the creation of multi-channel material

system has been around sinc

 

A

to a set order (typically 1st or 2nd order (Malham, 2002; Leese, n.d.)).  T

main benefit of the Ambisonic system is that it is a hierarchical system, t

once the sound field is encoded in this way (into four channels for 1st order, 

and 9 channels for 2nd order) it is the decoder that decides how this sound 

field is reconstructed using the Ambisonic decoding equations (Gerzon, 

1977b).  This system has been resea

p
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5.3.2 Irregular Ambisonic Decoding 

In order to quantify decoder designs Gerzon decided on two main criteria for 

designing and evaluating multi-speaker surround sound systems in terms of 

their localisation performance.  These represent the energy and velocity 

vector components of the sound field (Gerzon, 1992c).  The vector lengths 

represent a measure of the ‘quality’ of localisation, with the vector angle 

representing the direction that the sound is perceived to originate from, with a 

vector length of one indicating a good localisation effect.  These are evaluated 

as shown in Equation (5.3) 
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(5.3) 

Where:  

gi represents the gain of a speaker (assumed real for simplicity). 

n is the number of speakers. 

θi is the angular position of the ith  speaker. 

 

For regular speaker arrays, this was simply a case of using one virtual 

microphone response for low frequencies and a slightly different virtual 

microphone response for the mid and high frequencies by the use of shelving 

filters (Farino & Uglotti, 1998) as shown in Figure 5.19 and Figure 5.20.  This 

equalisation d

 

∑
=

=

n

n

i
ii EgEx

0

2 cos θ             

is extremely similar to the theory and techniques used by Blumlein’s spatial 

escribed in Chapter 2. 
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Figure 5.19 Virtual microphone polar plots that bring the vector lengths in Equation

(5.3) as close to unity as possible (as shown in Figure 5.21), for a 1st 
order, eight speaker rig. 
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Figure 5.20 Velocity and energy localisation vectors.  Magnitude plotted over 3600 

and angle plotted at five discrete values.  Inner circle represents energy 
vector, outer circle represents velocity vector.  Using virtual cardioids. 

 

As long as the virtual microphone patterns were the same for each speaker, 

the localisation angle was always the same as the encoded source angle, just 

the localisation quality (length of the vector) was affected by changing the 

polar patterns.   

 

 :
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Figure 5.21 Velocity and energy localisation vectors.  Magnitude plotted over 3600 

and angle plotted at five discrete values.  Inner circle represents energy 
vector, outer circle represents velocity vector.  Using virtual patterns 

 

stener would be louder over an ITU five speaker system than a sound 

from Figure 5.19. 
 

However, when non-regular speaker arrays are used, not only do the vector 

magnitudes need to be compensated for, but the replay angle and overall 

volume of the decoded sound need to be taken into account.  This results

from the non-uniformity of the speaker layout.  For example, if all of the 

speakers had the same polar pattern then a sound encoded to the front of a 

li

emanating from the rear, due to the higher density of speakers at the front of 

the speaker array.  Also, the perceived direction of the reproduced sound 

would also be distorted, as shown in Figure 5.22. 
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Speakers
Velocity 
Vector 

Energy 
Vector 

0,12.25,22.5, 
45,90 & 135 
degrees 
reproduced 
angles  

Energy and veFigure 5.22 locity vector response of an ITU 5-speaker system, using 
virtual cardioids. 

xed 

 

any speaker layouts as possible, these artefacts must be 

orrected after the encoding has occured, that is, during the decoding stage. 

 

Due to the added complexity of the speaker array’s response to an Ambisonic 

system, G on and Barton (1992) proposed that two separate decoders be 

used, one for low frequency (<~700Hz) and another for high frequencies 

(>~700 Hz).  This can be achieved using a simple cross-over network feed

 

ecoders.  It is also important that the cross-over filters are perfectly phase 

igure 

.23, and comprises of an omni-directional pressure signal (W), a front-back 

 

These artefacts are not a problem when you are producing audio for a fi

setup (i.e. amplitude panned 5.1) as material is mixed so it sounds correct on

the chosen speaker layout.  However, as the point of using a hierarchical 

surround sound format is that an audio piece should sound as similar as 

possible on as m

c

erz

ing 

low and high passed versions of the Ambisonic B-format signals to the two

d

matched so that the reinforcement and cancellation principles used by 

Ambisonics still function correctly. 

5.3.3 Decoder system 

1st order Ambisonics is comprised of four different signals, as shown in F

5
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figure of eight (X), a left-right figure of eight (Y), and an up-down figure of 

eight (Z). 

 
W

X Y 
Z

 
Figure 5.23 Polar patterns of the four B-format signals used in 1st order 

Ambisonics. 
 

As the 5-speaker system shown in Figure 5.18 is a horizontal only system, 

only three of the four available B-format signals are needed to feed the 

decoder (W, X and Y).  Also, as the speaker array in Figure 5.18 is left/right 

symmetric, we can also assume that the decoder coefficients work in pairs 

(i.e. sums and differences).  The Ambisonic encoding equations are given in 

Equation (5.4). 

 

)cos(
2

1

θ=

=

X

W

  
)θY sin(=

5.4) 

where θ  is ht ahead. 

s another tool in the decoding of the sound field, it will be seen that the use 

ter), but it is used to keep compatibility 

ith Gerzon’s previous paper on this subject (Gerzon & Barton, 1992).   

(

 the encoded angle, taken anti-clockwise from straig

 

A

of a ‘frontal dominance’ parameter is useful, as shown in Equation (5.5).  This 

is not the best form of the frontal dominance equation (it has a non-linear 

response to the dominance parame

w
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( ) ( )
( ) ( )
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where λ is the forward dominance parameter (>1 for front, and <1 for rear 

dominance). 

 

These encoding equations are then substituted into the decoding equations to 

give a numerical value for each speaker’s output to a particular signal as 

given in Equation (5.6).  In this equation it can be seen that what were 

previously sine and cosine (i.e. directionally dependant) weightings are now 

arbitrary values (nominally to be chosen between 0 and 1), denoted by kW, 

kX and kY. 
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here fficient (e.g. kWc represents the weighting 

iven to the W channel for centre front speaker). 
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w k denotes a decoding coe

g

 F, B and C denote front, back and centre speakers respectively. 

W’,X’ and Y’ represent the incoming B-format signals after potential 

transformation by the forward dominance equation. 

 C, L and R denote centre, left and right speakers 

 

The values for λ and the ‘k’ values are to be chosen to optimise the decod

output, with λ having possible values between 0 and 2, and ‘k’ values hav

a nominal range between 0 and 1. 

 

Equation (5.7) shows the conditions which are used to assess the 

performance of a given solution.  The conditions that must be met are: 
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Radius of the localisation vector lengths (RV and RE) should be as close to 1 

as possible for all values of θ. 

θ = θV=θE for all values of θ. 

PV=PE and must be constant for all values of θ. 
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A system that can automatically calculate decoder coefficients is needed, and 

possibly one that can distinguish between sets of coefficients that meet the 

=
n

i
iE gP

1

2     

 (5.7)

where: 

 gi = Gain of the ith speaker 

 SPosi = Angular position of the ith speaker. 

 V denotes velocity vector 

 E denotes energy vector 

 

The reason that these equations are difficult to solve is that the best result 

must be found over the whole listening area, spanning 3600.  Even Gerzon 

admitted that these equations were laborious to solve for five speakers, and 

the more speakers present, i.e. the more values that must be optimised, the 

more laborious and time consuming finding the solution becomes.  Also, there 

is more than one valid solution for each decoder (low frequency and high 

frequency) meaning that a group of solutions need to be found, and then 

auditioned, to determine the best set of coefficients. 
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criteria set out by the energy and velocity vector theories.  This system does 

not need to be particularly fast, as once a group of solutions are found the 

program should not need to be used again, unless the speaker layout 

changes. 

5.3.4 The Heuristic Search Methods 

As a result of the fact that each parameter in the Ambisonic decoding 

equations will have a value within a well defined range, 0 to 1 or 0 to 2, a 

search method offers an effective solution to the array optimisation problem.  

owever, if we wish to determine the settings to two decimal places there are 

 

ost 

 

od the measure of the success of its choice.  Care must be taken when 

cho i ible for different error 

con ti gical solution to this 

pro t

number.  The fitness equations developed for this project are described later 

ed on 

hen 

rmed 

 

H

2 x 1018 possible solutions (given that there are 9 search parameters) and an 

exhaustive search is not feasible (Wiggins et al, 2003).   When deciding on

the type of heuristic method, an empirical approach was used.  The m

important part of any heuristic search method is the development of the

fitness equations.  These are the functions that give the heuristic search 

meth

os ng these functions to make sure that it is not poss

di ons to cancel each other out with the most lo

blem being to ensure that any error in the decode resul s in a positive 

in this chapter.  The first avenue of research taken was that of a Genetic 

Algorithm approach, as this is one of the better known heuristic methods.  

This was first implemented as a Matlab script and did not seem to converge to 

a good result, so the next system to try was one using an algorithm bas

the Tabu search as this has been shown to converge more accurately w

used in a small search space (Berry, S. & Lowndes V., 2001).  It was while 

developing this algorithm that it was discovered that the initial velocity and 

energy vector calculations contained errors, and once corrected, the Tabu 

search algorithm performed as expected.  As this tabu algorithm perfo

well, the genetic algorithm was not tried again at this point due to its known 

convergence problems as described above (Genetic Algorithms are better

suited to a very large search space, which this problem did not have). 
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This adapted form of Tabu search works by having the decoder coef

initialised at random values (or values of a

ficients 

 previous decoder, if these values 

re to be optimised further).  Then the Tabu search program tries changing 

each of the ‘tweakable’ values, plus or minus the step size.  The best result is 

then kept and the parameter changed is then restricted to only move in the 

successful direction for a set number of iterations (which, of course, will only 

happen if this parameter, again, is the best one to move).  It must be noted 

that the random start position is of great importance, as it is this that helps in 

the search for a wide range of solutions.  

 

The most important part of the Tabu search algorithm is the equations used to 

measure the fitness of the decoder coefficients, as it is this one numerical 

at will determine the course that the Tabu search takes.  As 

mentio equation that 

repres ented.  These 

are: 

• Localisation measure (vector lengths, R

• 

• ded 

. 

As each of the parameters must be as good a fit as possible for the whole 
0

14 

 

g a root mean square 

pproach.  If we take the example of the fitness of the vector lengths 

(localisation quality parameter), then if a mean average is taken, a less than 

one vector length in one part of the circle could be compensated for by a 

greater than one vector length elsewhere.  However, if we take a good fit 

always give a positive error value, meaning that it is a true 

a

value th

ned above, three parameters must be used in an 

ents the overall fitness of the decoder coefficients pres

V & RE). 

Localisation Angle (vector angles, θV & θE). 

Volume (Sound pressure gain, PV & energy gain, PE) of each enco

direction

360  sound stage, the three parameters must be evaluated for a number of 

different encoded source positions.  Gerzon evaluated these parameters at 

points around the unit circle (7 around a semi-circle assuming left/right 

symmetry), but as computers can calculate these results so quickly, an 

encoded source resolution of 40 intervals would be used (90 points around the

unit circle).  Due to the large number of results for each of the fitness values 

an average was taken for each fitness parameter usin

a

to 

be zero, and use a root mean square approach then a non-perfect fit around 

the circle will 
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measure of the fitness.   The equations used for each of the fitness 

parameters are shown in Equation (5.8). 
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where: 

P

(5.8) 

the high and low frequency versions of the decoder are actually calculated 

slightly differently.  The low frequency decoder can achieve a near perfect fit, 

but the best fit that the high frequency decoder can expect to achieve is 

shown in Figure 5.32.  The best results were obtained from the Tabu search 

algorithm if the overall fitness was weighted more towards the angle fitness, 

Afit from Equation (5.8), as shown in Equation (5.9). 
 

0 is the pressure at an encoded direction of 00. 

R represents the length of the vector at a direction, i. 

n is the number of points taken around the unit circle. 
Enc
θ  is the encoded source angle and θ is the localisation angle. 

V, M and AFit are the numerical fitness parameters used to measure 

the performance of a particular decoder (Volume, Magnitude and 

Angle). 

 

Given the three measures of fitness in Equation (5.8), the overall fitness for 

( ) 2VFitMFitAFitHFFitness
VFitMFitAFitLFFitness
++=
++=

  

 (5.9) 

A block diagram of the tabu search algorithm used in this research is shown in 

Figure 5.24. 
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The main benefit of the Tabu search method is that all three of the conditions 

to be met can be optimised simultaneously, which had not been accomplished 

in Gerzon’s Vienna paper (Gerzon & Barton, 1992).  For example if we take 

the speaker layout used in the Vienna paper, which is not the ITU standard 

but is reasonably similar (it is a more regular layout than the one the ITU 

specified after Gerzon’s paper was published), then the coefficients derived 

by Gerzon and Barton would give an energy and velocity vector response as 

shown in Figure 5.25.  Several points are apparent from this figure.  There is a 

high/low localisation angle mismatch due to the forward dominance being 

applied to the high frequency decoder’s input after the localisation parameters 

were used to calculate the values of the coefficients (as first reported in 

Wiggins et al., 2003).  If the frontal dominance is applied to both the high and 

low frequency decoders, a perceived volume mismatch occurs with the low 

frequency decoder replaying sounds that are louder in the frontal hemisphere 

than in the rear.  Also, even if these mismatches were not present (that is, the 

frontal dominance is not applied) every set of results presented in the Vienna 

produced angles.  Figure 5.25 

shows a set of coefficients calculated using the Tabu search algorithm 

described in Figure 5.24 and demonstrates that if all three criteria are 

optimised simultaneously a decoder can be designed that has no angle or 

volume mismatches, and should reproduce a recording more faithfully than 

has been achieved in previous Ambisonic decoders for irregular arrays.   

paper showed a distortion of the decoder’s re
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Figure 5.24 A simple Tabu Search application. 
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Figure 5.25 Graphical plot of the Gerzon/Barton coefficients published in the Vienna 
paper and the Wiggins coefficients derived using a Tabu search
algorithm.  Encoded/decoded direction angles shown are 00, 12.25 , 
22.50, 450, 900, 1350 and 1800. 
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Figure 5.26 The transition of the eight coefficients in a typical low frequency Tabu 

search run (2000 iterations).  The square markers indicate the three 
most accurate sets of decoder coefficients (low fitness). 

  

    
Figure 5.27 The virtual microphone patterns obtained from the three optimum 

hile writing up this research thesis, Craven (2003) released a paper 

nics 

 

solutions indicated by the squares in figure 5.25. 
 

W

detailing how 4th order circular harmonics (i.e. Ambisonic, spherical harmo

without the height information) could be used to create an improved panning

law for irregular speaker arrays.  The example decoder Craven includes in his 
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paper has the velocity/energy vector representation and virtual microphone 

patterns as shown in Figure 5.28 and Figure 5.29 respectively. 

 
Figure 5.28 Energy and Velocity Vector Analysis of a 4th Order Ambisonic decoder 

for use with the ITU irregular speaker array, as proposed by Craven 
(2003). 

 

 
Figure 5.29 Virtual microphone patterns used for the irregular Ambisonic decoder 

as shown in Figure 5.28. 
 

The method Craven used to derive this new decoder is not detailed in his 

re 

paper, and he has opted for a frequency independent decoder, no doubt, in 

order to make the panning law easily realisable on current software/hardwa

platforms.  It can be seen that the performance of the high frequency energy 
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vector analysis is very good, with respect to the vector length, however, the 

matching of the high and low frequency vector angles is not ideal, and also 

the vector length of the low frequency velocity vector should be designed as 

close to 1 as possible (Gerzon & Barton, 1992).  These problems are mostly 

due to the fact that a frequency independent decoder has been presented, so 

any decoder will always be a compromise between optimising for the energy 

vector and optimising for the velocity vector’s three fitness parameters of 

length, perceived direction, and perceived amplitude.  However, using the 

Tabu method just described, it is a simple matter of changing the weightings 

of the fitness equations, as shown in equations (5.8) and (5.9), in order to 

design a decoder with more coherent lateralisation cues.   

 

In order to experiment with higher order decoder optimisation, a new Tabu 

search application was developed, using the same fitness criterion as before, 

but with user editable weighting functions.  A Screenshot of this can be seen 

in Figure 5.30.   

 
Figure 5.30 Screenshot of the 4th Order Ambisonic Decoder Optimisation using a 

Tabu Search Algorithm application.  
The sets of up/down arrows in the ‘Fitness Calculation’ box are where the 

user can set the weightings of each of the individual fitness values, in order to 
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influence the performance of the Tabu search algorithm.  It can be seen, in 

n 

t 

r 

r 

Figure 5.30, that the perceived volume fitness is governed by the Energy (‘E

Vol’, high frequency) rather than the pressure (‘Vel Vol’, low frequency).  Due 

to the frequency independent nature of these decoders, one or the other mus

be chosen, and as the energy vector covers a much wider frequency band fo

a centre listener (>700 Hz) and an even larger frequency band for off-centre 

listeners, it is always advisable to use the average energy as an indicator fo

the perceived amplitude of a decoded source (Gerzon, 1977a). 

 
Figure 5.31 Graph showing polar pattern and velocity/energy vector analysis of a 4th 

order decoder optimised for the 5 speaker ITU array using a tabu search 
algorithm. 

 

Figure 5.31 shows a 4th order decoder optimised by the Tabu search 

application shown in Figure 5.30.  It can clearly be seen that although the 

length (and therefore, shape) of the energy vector plot 

erformance, this 

abu search optimised decoder shows improvements in other aspects: 

1 for 

ws 

ust and extensible nature of the tabu search algorithm described in this 

o 

9) 

is very similar to that of 

Craven’s decoder shown in Figure 5.28, showing a similar p

T

• The low frequency velocity vector has a length much closer to 

a source panned in any direction. 

• The low and high frequency perceived directions are in better 

agreement. 

The optimisation of a 4th order decoder as proposed by Craven (2003) sho

the rob

report, as over double the number of alterable parameters (23 as opposed t

were used in this program.   
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5.3.5 Validation of the Energy and Velocity Vector 

It can be seen in Figure 5.26 and Figure 5.27 that, according to the velocity 

ector, it is possible to design a low frequency decoder that satisfies all of the 

2.   If 

lated transfer functions (Wiggins et al., 2001).  The HRTF 

ata is used from (Gardner & Martin, 1994). Assuming the head will remain 

ion 

v

fitness parameters discussed in the previous section.  This is even possible 

when the ITU standard speaker layout is used (although the high frequency 

decode suffers, theoretically, in this configuration) as shown in Figure 5.3

we take the velocity vector as a measure of the low frequency localisation, 

which is dominated by time/phase differences between the ears, and the 

energy vector as a measure of the mid frequency localisation, which is 

dominated by level differences between the ears, then this theory can be 

tested using head re

d

pointing straight ahead, the speakers will remain in a fixed position in relat

to the head and time and level difference plots can be obtained. 

 

 
Figure 5.32 A decoder optimised for the ITU speaker standard. 
 

Using the average group delay between 0 and 700Hz to obtain the time 

differences between the ears and the average magnitude between 700Hz and 

3 kHz, reference plots can be calculated, which the decoder’s output must 

follow in order to fool the ear/brain system successfully.  The head related 

transfer functions for the Ambisonic array can be calculated in one of two 

ways: 

• A pair of HRTFs can be applied to each speaker’s output, and then left 

and right ear responses are summed resulting in a single response pair 

(for each encoded direction) 
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• The decoder can be encoded into a pair of HRTFs for each input signal 

(W,X and Y in this case) using the method described in section 5.2.4  

 

Both of the above methods ultimately arrive at the same results and if only off-

line analysis is needed, then either of these methods can be chosen (the 2nd 

is computationally more efficient if auralisation of the decoder is desired 

(Wiggins, et al., 2001) and becomes more efficient the greater the number of 

speakers used, when compared to the 1st method).  Two resulting pairs of 

HRTF responses have been produced for encoded sources all around a 

listener, one pair for the low frequency decoder, and one pair for the high 

frequency decoder. 

 

ecoded sign , an Ambisonic decode to a five 

 a 

onstructed from a combination of these anechoic HRTFs weighted to various 

f an 

e 

e 

 

 nominal value.  The x-axis scale in these graphs 

presents either a real or synthesised Ambisonic source position in degrees.  

early, 

A graph showing the level and time differences of real and Ambisonically 

als is shown in Figure 5.33 (noted

speaker rig is often referred to as G format).   

 

The HRTF analysis graphs have been constructed using the anechoic HRTFs 

measured by MIT (Gardner B., Martin K., 1994).  A real source is taken as

single pair of these HRTFs, and the Ambisonic (G-Format) output has been 

c

degrees depending on the simulated source direction (i.e. a simulation o

Ambisonic decode).  When using the HRTF analysis, the low frequency rang

was 0 Hz – 700 Hz, and the mid frequency range was from 700 Hz – 3 kHz.  

The 700 Hz value was used so the results could be directly compared to th

velocity and energy vector analysis used by Gerzon & Barton (1992) with the

3 kHz value used as a

re

The y-axis scaling represents either the average time difference (in samples, 

sampled at 44.1 kHz) or the average amplitude difference, measured lin

with an amplitude of one representing 0 dB gain. 
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Figure 5.33 A graph showing real sources and high and low frequency de

e 
D

iff

 

coded 
sources time and level differences. 

This graph shows two interesting points.  The low frequency, time difference, 

graph indicates that the decoded material is not perfect, showing a significant 

error around the rear of the system’s decoded sound field.  This is, of course, 

understandable as there is a speaker ‘hole’ of 1400 between the two rear 

speakers; however, this fact is not apparent from the velocity vector analysis. 

 

The high frequency amplitude differences are a very good fit to the real 

source’s curve, even when a source is to be reproduced around the rear of 

the listener.  The fact that the two vector analysis techniques perform slightly 

differently is not wholly unexpected, as these two ideas were taken from a 

number of sources and converted into part of a psychoacoustic meta-theory 

 

rotation 

ich 

designed decoder will have localisation cues that follow the changing real 

 

by Gerzon (1992c).   

In order to analyse the robustness of the calculated coefficients, head 

must be simulated.  As the set of HRTFs used for the auralisation and 

analysis of the Ambisonic decoders are taken using a fixed head, head 

rotation is achieved by moving the speaker sources around the listener (wh

is, essentially, the same thing).  This more complex relationship between the 

real and virtual source’s localisation cues can then be observed.   A well 

 - 153 - 



Chapter 5 

cues as closely as possible, where as a decoder that does not perform as well

will exhibit various artefacts, such as the virtual source moving with the 

listeners

 

 as they rotate their head in any one direction (in the horizontal plane 

in this example). 

 

Figure 5.34 shows a graphical representation of two sets of decoder 

coefficients that solve the energy and velocity vector equations (as good a 

fitness value as possible).  It can be clearly seen that the low frequency 

decoder (that we shall concentrate on here) has different virtual microphone 

responses for each of the decoders even though the decoders’ performance 

analysis using the velocity vector gives an identical response for each 

on between these two sets 

f coefficients we can use the HRTF simulation described above. 

coefficient set.   To make a more detailed comparis

o

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Coefficient Set 1 Coefficient Set 2 

 HF Virtual Mic 
Polar Pattern 

LF Virtual Mic
Polar Pattern 

Velocity and 
Energy Vecto

 

rs 

HF Virtual Mic 
Polar Pattern 

LF Virtual Mic 
Polar Pattern 

Velocity and 
Energy Vectors 

 

 

quations, and a number 

of solutions can be found that satisfy the velocity vector equation.  Once a 

Figure 5.34 Graphical representation of two low/high frequency Ambisonic 
decoders. 

 

Figure 5.35 shows that coefficient set 2 has a better match of the low 

frequency time difference parameter, when analysed using the HRTF data, 

than coefficient set 1.  However, this does show up a shortcoming of the 

energy and velocity vector technique.  As mentioned already, a number of

solutions can be found that satisfy the energy vector e
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good set of coefficients have been produced it has previously been a case of 

listening to the resulting decoders and subjectively deciding which one is 

‘best’.   
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Source Position (degrees) Source Position (degrees)  
Figure 5.35 HRTF simulation of two sets of decoder. 
 

However, if we continue the HRTF simulation, the effect that head rotation 

has on the reproduced sound field can be observed (see Figure 5.36).  In 

anechoic circumstances, simulating a change of head orientation and a 

rotation of all the speaker positions are actually the same thing.  So in order to 

accurately simulate head movement, all the speakers are rotated.  This 

should have the effect of the time and amplitude difference graphs cyclically 

shifting when compared to Figure 5.35.  Any difference in the graphs apart 

from the cyclic shift is in error with what should be happening (and what can 

always be seen in the graphs with regards to an actual source).  Observing 

Figure 5.36, it can be seen that head movement introduces errors to the mean 

time and level differences presented to a listener in anechoic circumstances. 

The low frequency time difference results are similar in error, but a difference 

can be clearly seen.  Coefficient set 1’s low frequency plots stay faithful to a 

real source’s time difference.  However, the second set of coefficients does 

not behave as well as this.  If we look at the real and virtual source shown at 

00 on the graphs (representing where the listener is facing, which will now be 

an off-centre source due to the rotation of the speakers) the virtual response 

should follow that of a real source.  That is, a source at 00 should now have 

an off-centre response as the speakers have rotated (again, which is the 

same as head rotation in anechoic circumstances).    
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 Coefficient Set 1

 Coefficient Set 2

 
Figure 5.36 HRTF Simulation of head movement using two sets of decoder 

oefficients. c
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This is not the case for the 2nd set of coefficients and it can be seen that as 

 

al 

 

The evidence gathered from the HRTF analysis of the decoders’ performance 

under head movement suggests that, as far as the low frequency velocity 

vector is concerned, more information is needed to design a decoder that is 

both stable under head rotation and has accurate image localisation.   

However, as the velocity vector is used as an approximation to the interaural 

time difference, it is now possible to alter the Tabu search algorithm described 

in section 5.3.4 to ignore the velocity vector and deal directly with the 

interaural time difference present for encoded sources around the unit circle.  

This, on its own, may lead to potential performance increases as the 

interaural time difference for a listener looking straight ahead can be mapped 

more accurately using HRTF data, when compared to the velocity vector 

theory.  Also, head rotations can be simulated as shown above, and these 

results taken into account when evaluating the fitness of a particular decoder.     

 

ain 

the same (decoder still has same number of coefficients etc.) but the 

algorithm that supplies the Tabu search with its fitness coefficient must be 

altered to take advantage of this new research.    

 

the head is rotated, the virtual source’s time difference stays at approximately

0 samples difference.  This means that when the head is rotated, the virtu

sound source will track with the listener, potentially making the resulting 

sound field confusing and unstable.   

5.3.6 HRTF Decoding Technique – Low Frequency

So, as is immediately apparent, the actual Tabu search algorithm will rem
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(5.10) 

φ=Average Phase Response (0-700Hz

k = Source angle  

) 

ω=Frequency 

m=Head Rotation number.   
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The fitness is now calculated using Equation (5.10) and then combined with 

e pressure level (volume) fitness given in Equation (5.8) using the root 

 

head 

 

th

mean square value.  Again, the closer this fitness value is to 0, the better the

performance of the decoder coefficients.  In order to take into account 

movement, this equation is evaluated using speaker rotations from 00 to 600 in

50 increments, and then the average fitness is taken.   
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Figure 5.37 Comparison between best velocity vector (top) and a HRTF set of 

coefficients (bottom). 

 
Figure 5.38 Polar and velocity vector analysis of decoder derived from HRTF data. 

 

In terms of the low frequency decoders that this technique produces, there is 

a very high correlation between this HRTF method and the previous velocity 
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vector analysis.  That is, a decoder calculated using HRTF data produces a 

e to 

 

een 

 

So, 

 

equency response is much more difficult to match to that of a real source, 

and most decoders derived using the energy vector theory have a response to 

head rotations very similar to those shown in Figure 5.36.  However, as is 

shown in the listening test later in this chapter, although decoders can be 

designed using HRTF data directly, taking head rotations into account, this 

 

er 

ed using velocity and energy vectors can, clearly, still have a good 

is just that it is not due to the Tabu search 

algorithm striving for this behaviour.  However, when utilising velocity/energy 

vector optimisations, the head rotation parameter can still be used in order to 

differentiate between decoders’ performance as many resulting decoders are 

possible. 

good velocity vector plot as shown in Figure 5.38. 

 

However, it can be seen that, in order to maintain the image stability du

head rotations, a compromise is needed between the accuracy of the 

decoder’s localisation (according to the velocity vector) and its image stability 

under head rotations.  To see if this is actually the case Figure 5.37 shows the

HRTF analysis of the best velocity vector decoder (as used in Figure 5.36) 

and a set of decoder coefficients derived using HRTF data.  It can be s

that the resulting plots are almost identical for each reproduced angle and 

degree of head rotation (00,300 and 600 in this case). The HRTF derived set 

seems to actually have a better fit than the velocity vector analysis suggests, 

and a slightly better fit than the original velocity vector decoder (which was

found to be the best of several found using the velocity vector technique).  

as the decoder is now calculated taking head rotation into account, every 

decoder now produced using this technique (as there are, again, multiple 

solutions) will have an analytical performance similar to that shown in Figure 

5.37. 

5.3.7 HRTF Decoding Technique – High Frequency 

As already stated (and as can be seen in Figure 5.36), the decoder’s high

fr

will not necessarily result in decoders that perform better under head rotations

than when designing a decoder using the energy vector analysis.  It decod

design

response to head rotations, it 
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The algorithm used to calculate the fitness parameter for the higher frequency 

 to be of a slightly different nature than that of the low 

that 

 

f 

 the 

 the 

nder head rotation with the same priority as looking straight ahead, 

ossibly resulting in a decoder that performs best when looking 300 to the left, 

straight ahead, and so a weighting term 

mu localisation fitness parameter is 

giv  that performed best 

s 

oor, 

t the 

hen compared to a centrally facing listener). 

 

decoder actually needs

frequency system.  This is due to the fact that after analysing the high 

frequency lateralisation cues of many optimum decoders (optimum, in 

they were optimised using the energy/velocity vector methods, or using purely

front facing HRTF optimisation) it was found that, due to the non-uniformity o

the speaker layout, high frequency head turning is more catastrophic for

amplitude cue when compared to the low frequency phase cue.  If the 

average fitness were used then the Tabu search would treat optimising

response u

p

for example.  It makes more sense to have priority given to the decoder’s 

output when the listener is facing 

st be used.  The equation used for the 

en in Equation (5.11).  This resulted in HRTF decoders

when the listener is facing straight ahead, as if the weighting parameter wa

not used, the Tabu search algorithm would converge on decoders with a p

analytical, performance (i.e. the fitness function did not truly represen

fitness of the decoder as a small increase in fitness when facing off-centre 

made more of a difference w

( )∑
=

=Fitness

(5.11) 

f=average magnitude response between 700-3000Hz of a real source (ref) at 

k0 from ce e  at k0 from centre 

−
0

)()(
k

decref kfkf   
360

2

ntr  front, and a decoded source (dec) located

front. 

k=source angle (in degrees). 
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5.3.8 Listening Test 

5.3.8.1 Introduction 

eters 

y the work further now that a 

technique mbisonic decoders has been made 

available. 

 

1. Dry

2. A p - nt space. 

Each one  

testing for one attribute more than another.  As an example, if the recent 

estionnaire: 

a. Subjective room size – very big to small 

d. Ensemble width – wide to narrow 

 bad, 

ning to pre-

uggested by Berg & Rumsey, 2001, 

could be envelopment, presence and naturalness).  This type of material is 

hard to s ng the 

tested system to achieve.  For example, accurate scene-capture and ‘best 

In order to try and quantify any improvement that can be attributed to the 

optimisation techniques described above, listening tests are needed.  

Although the main body of this report concentrates on the numerical analysis 

and optimisation of Ambisonic decoders using the lateralisation param

and velocity and energy vectors, a number of small listening tests were 

developed in the hope that others will carr

 for optimising irregular A

When designing the listening tests, there are two main types of material that 

can be presented to the listener: 

, synthetically panned material 

re recorded real event in a reverbera

 of these extremes will result in a test that will be more suited to 

Project Verdi test is observed (Multi Media Projekt Verdi, 2002), two 

recordings in a reverberant space were used, with the following attributes 

tested in the qu

b. Localisation accuracy – very good, precise to bad 

c. Ensemble depth – deep to flat 

e. Realism of the spatial reproduction – very good, natural to

unnatural 

f. Personal preference – very good to bad. 

These are typical of the types of spatial attributes tested when liste

recorded material (although others, s

 te t, in some ways, as it does depend on what you are expecti
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sounding’ are not necessarily synonymous; ultimately, the personal

preference parameter may be of greater importance. 

 

Conversely, the most common form of test carried out on 

 

a dry, synthetically 

panne o

source (ag sen, 1991 and 

Ordun t

attributes can often lead to a fuller picture of what a particular system is 

achiev

i. Source stability (with respect to head movement). 

d system, the ideals of the system 

ch: 

orientation. 

ce of any multi-speaker 

system  the 

above poi

 

As far  t

direct c lly panned, dry 

perceived source position. 

• Increased image stability with respect to head turning. 

Other effects of the optimisation may be (again, with regard to an 

Ambisonically panned, dry source): 

• Change in perceived image width/focus. 

• Timbral alteration due to differences between low and high 

frequency decoders 

d s urce is that of simple recognition of the angular placement of that 

ain, see Moller et al., 1999, Kahana et al., 1997, Niel

a e  al., 1995 as typical examples).  However, evaluating other 

ing.  Such attributes could include: 

g. Source width/focus 

h. Source distance 

When it comes to testing a surround soun

are easier to decide upon.  The best case scenario would be a system whi

• Has small image width/good image focus 

• Reproduces distance accurately 

• Reproduces sources in a fixed position, regardless of listener 

Also, not mentioned at this point is that the performan

 in an off-centre position can also be assessed using any/all of 

nts. 

as he optimisations of the Ambisonic decoder are concerned, the 

onsequences should be (with regard to an Ambisonica

source): 

• Increased accuracy/matching of encoded source position to 
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All of the above would also be true when listening to pre-recorded, 

reverberant material, with potential increase in accuracy and coherency of the 

lower order, lateralisation cues, resulting in improvements to the higher order 

spatial properties of the reproduced audio environments: 

• Envelopment should be increased, that is, the sense of being in a 

real place, and not listening to an array of speakers. 

• Spaciousness should more closely resemble that of the actual 

event. 

 

. 

ssor (SoundField Ltd., 

n.d. a). 

• Two decoders optimised using the energy and velocity vector. 

• Two decoders optimised using HRTF data directly 

An analysis of these decoders will now follow, using both the energy and 

velocity vector and the HRTF decomposition methods described above. 

• Depth perception should be more accurate. 

To this end, in order to subjectively test these decoders, questions based 

around these attributes should be designed. 

5.3.8.2 Decoders Chosen for Testing 

A small sample listening test was carried out to give an insight into which

specific decoders worked best, and also to observe any common features 

with Ambisonic decoders designed for use with an ITU 5 speaker array in 

order to influence further listening tests to be carried out after this research

 

Five decoders were chosen for this test comprising: 

• One decoder using the default settings of the commercially 

available SoundField SP451 Surround Proce
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Figure 5.39 Decoder 1 – SP451 Default Settings 
 

Figure 5.39 shows the default settings of the commercially available SP451 

Surround Processor unit.  This decoder is frequency independent (i.e. both 

high and low frequency decoders are the same), with all the virtual 

microphone polar patterns being of type cardioid.  This leads to various 

problems when the decoder is viewed using energy and velocity vectors, with 

the resultant lengths of the vectors being suboptimal, and all of the source 

positions being shifted forwards (i.e. a source that should be at 450 will be 

reproduced closer to around 200 when decoded).  However, when the 

resulting HRTF analysis is observed, the high frequency amplitude differences 

are a surprisingly good match to that of an actual source, with the low 

frequency time difference showing the greatest error. 
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Figure 5.40 Decoder 2 – HRTF Optimised Decoder 

 
Figure 5.41 Decoder 3 – HRTF Optimised Decoder 
 

Figure 5.40 and Figure 5.41 show two examples of decoders optimised using 

HRTF data directly.  It can be seen that these two decoders have produced 

similar results when looked at using the HRTF data directly and when using 

the velocity and energy vector analysis, although the virtual polar patterns for 

both high and low frequency decoders are quite different.  Also, the two types 

of analysis show good agreement as to the angular distortion introduced by 

Decoder 3, with frontal sources not producing enough level difference 

between the ears, and so pushing sources towards the front of the speaker 
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array.  Decoder 2 has a much better encoded/decoded source position 

agreement which is, again, shown in both the HRTF and velocity/energy 

vector analysis at high frequencies, with very similar performance, again using 

both forms of analysis, at low frequencies. 

 

Figure 5.42 and Figure 5.43 show the two decoders that were designed using 

the velocity and energy vector theories.  One thing to note, firstly, is that these 

decoders were optimised using rear speaker positions of +/- 1150 instead of

listening 

test was carried out, but this is why the low frequency velocity vector match is 

not as good as those shown in Section 5.3.4.  Again, both of these decoders 

have quite different low frequency virtual microphone polar responses, but 

have near identical velocity vector responses.  However, if the HRTF data is 

looked at, it can be seen that Decoder 4’s low frequency phase differences 

can be seen to have significant errors around the rear of decoder’s response, 

showing a ‘flipping’ of the image cues at source positions of 1600 and 2000.  

The high frequency decodes were designed using slightly different criterion, 

with the angular accuracy of Decoder 4’s energy vector reproduced angle 

being given a slightly smaller weighting, resulting in a higher error in the 

reproduction angle for the rear of the decoder, but with the localisation quality 

(vector length) benefiting from this approach. 

 

 

 

the usual +/- 1100.  Unfortunately this was not noticed until after the 
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Figure 5.42 Decoder 4 – Velocity and Energy Vector Optimised Decoder 

 

 
Figure 5.43 Decoder 5 - Velocity and Energy Vector Optimised Decoder 
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Figure 5.44 Comparison of low frequency phase and high frequency amplitude 

differences between the ears of a centrally seated listener using the 5 
Ambisonic decoders detailed above. 

 

Although the HRTF analysis of the various decoders has been shown, no 

mention has yet been made of the performance of each decoder, numerically, 

with respect to head turning.  Figure 5.44 shows each decoder’s performance, 

from 00 (facin een that all optimised 

when compared to a real source, with respect to a listener turning their head 

g straight ahead) to 500.  It can clearly be s
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decoders perform in a very similar manner at low frequencies, with even the 

unoptimised decoder performing in a coherently incorrect fashion (i.e. it does 

not seem to exhibit the image tracking of a frontal source, for example, as 

described in section 5.3.6).  However, as it is to be expected, the high 

frequency decoders do not perform as well.  Figure 5.45 shows the 

lateralisation cue errors as absolute error values, with Figure 5.46 showing 

the average error value for each decoder with respect to head turning. 

  

  

  
Figure 5.45 Graphs showing absolute error of a decoder’s output (phase and level 

differences between the ears of a centrally seated listener) compared 
a real source, with respect to head movement. 

to 
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Figure 5.46 Graph Showing the Average Time and Amplitude Difference Error with 

Respect to A Centrally Seated Listener’s Head Orientation. 
 

Figure 5.46 shows, in a very simplified manner, how each decoder will 

perform.  Using this graph as an indicator for overall performance, it can be 

seen that, as already mentioned, all of the decoders perform almost equally 

as well with respect to low frequency phase cues, with Decoder 1 having, by 

far the worst error, but, as already mentioned, an error that stays reasonably 

consistent with head turning.  However, it is the high frequency plots that give 

more insight into the performance of any decoder, as it is the high frequency 

decoder that is most difficult to optimise, using either energy vector of HRTF 

techniques.  Performing best, here, is Decoder 2, which was designed with 

 (although, only up to 30 degrees).  However, the head turning as a parameter

decoder with the next best high frequency error weighting is Decoder 5 which 

is a decoder designed using the energy and velocity vector principles.  It must 

also be noted that, although the decoders all seem to perform similarly (under 

numerical analysis), looking at the low frequency errors it can be seen that, 

again, decoder 5 performs very well (best, in fact), but decoder 2 at low 

frequencies is one of the worst performing decoders (ignoring Decoder 1).  

Although there are four optimised decoders tested, each low frequency and 

high frequency decoder was designed separately.  No criteria has yet been 
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set for deciding which low frequency decoders will complement particul

frequency decoders and so the decoders have been paired randomly 

(although always grouped with a decoder that was optimised in the same wa

that is, using either HRTF or velocity/energy vector methods). 

5.3.8.3 

ar high 

y, 

Listening Test Methodology 

For the actual listening test, two separate testing methods were chosen: 

• A listening test similar to that described in section 5.2, measuring 

the accuracy of panned, mono sources in the decoded sound field. 

• A test where users give a preference as to which decoder performs 

best when auditioning reverberant, recorded material. 

These two styles of testing are not designed to be all-encompassing, but have 

produced interesting points for use in further testing methodologies. 

 

Two sources were chosen for the listening tests to be carried out.  The source 

that was to be synthetically panned was dry, female speech which is often 

used in such tests (for example, see Martin et al., 2001, Kahana et al., 1997, 

Moller et al., 1999 and Neilsen, 1992) due to its wide frequency range, and 

reasonably un-fatiguing sound (especially when compared to band-limited 

noise and other such sources).  For the test of a real recording where decoder 

preference was to be given by a 60 second excerpt from a recording made by 

the company, Serendipity (2000), of Rick Wakeman playing the piano in 

Lincoln Cathedral.  It is a very reverberant recording made by a company that 

has had significant experience with the SoundField Microphone, particularly in 

the effective placing of the microphone (something that can often be 

overlooked when choosing recorded material). 

 

For this small test, three listeners were used.  All three were experienced 

listeners that had taken part in multi-channel sound system listening tests 

before.  The first test had sources presented to them, six source positions per 

decoder.  The source positions were identical for each decoder, but played in 

 pseudo-random order.  The listeners were asked to indicate in which 

 

a

direction they thought the source was coming from and to give an indication of

source width.  This was to be recorded on the sheet shown in Figure 5.47 
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which showed the layout of speakers in the University’s Multi-Channel 

Research Lab.  In addition, to aid in the recording of source position, each 

speaker in the lab had a label fixed on it with its angular position relative to 

straight ahead.  They were asked to draw the size of the source, as this 

method has proved to be more intuitive in these situations (Mason et al., 

2000). 

 
Figure 5.47 Sheet given to listening test candidates to indicate direction and size of 

sound source. 
 

The user interface for controlling the listening test was constructed in Matlab, 

which called Simulink models that encoded and decoded the mono sources in 
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real-time, taking in a direction parameter that had been pre-entered.  A screen 

shot of this user interface is shown in Figure 5.48. 

 

Figure 5.48 Screenshot of Matlab Listening Test GUI. 

The listening test results showed reas

ifferent decoders when tested using the synthetically panned source, and 

 

ts 

ow 

here 

   

5.3.8.4 Listening Test Results 

onably subtle differences between the 

d

much more obvious differences when listening to a more complex, recorded,

sound field. 

 

Figure 5.49 shows the results for the three listeners.  The square data poin

represent the recorded source position with the error bars, above and bel

these positions showing the recorded source size for each decoder.  It is 

difficult to analyse these graphs directly, but it can be seen that all of the 

decoders seem to perform reasonably well in this test with no image flipping 

becoming apparent, although two sources were recorded as coming from 

more than one location, subject 1 – decoder 4 and subject 3 – decoder 1.  

Interestingly these were both at source position 2250, which is the area w

the decoders will all perform at their worst (i.e. at the rear of the sound field).
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Figure 5.49 Graphs showing the results of the panned source part of the listening 

test for each subject.  ‘Actual’ shows the correct position, D1 – D5 
represent decoders 1 – 5. 

In order to compare these results 

error and i

expected, the image source’s graphical depi

subject (Mason 

image size tual 

source positions in order to record some

each listener, but this was 

result is that decoder one seems to perfo

each subject (i.e. high mean error value)

other results, however, are slightly more 

proposed in section 5.3.8.2 that de ted to 

turning and the average localisation 

results of subjects 2 and 3 are observed. 

 

more equally, the average absolute angle 

mage size can be seen for each subject in Figure 5.50.  As is to be 

ction of size is different for each 

et al., 2000), with subject one generally recording smaller 

s than subjects 2 & 3.  It would be reasonable to insert ac

 form of ‘calibration’ size source for 

not attempted in this small test.  Another obvious 

rm worst, subjectively, according to 

.  This was an expected result.  The 

varied from listener to listener.  It was 

coders 5 and 2 would be expec

perform best, taking into account head 

error this would produce.  However, only subject 1 seemed to agree with this 

statement in its entirety.  Decoder 5 did perform consistently well throughout 

this phase of the test, but decoder 2 performed less favourably when the 
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Figure 5.50 Graph showing mean absolute perceived localisation error with mea

source size, against decoder number. 
 

There are a number of potential reasons for this: 

• Subject 1 was the most experienced listener in thi

n 

s test, and may 

give the most correct, or predictable results. 

be 

nging the way they are grading the results (or learning how to 

cts 2 and 3 

• 

ious 

 

Figure 5 e for each 

decoder.  It must be noted that, as the image size for each subject has not 

been no der) 

• Decoder 5 is located at the end of the test, and the subjects may 

cha

interpret them better) as the test continues.  This may be 

corroborated by the general downwards slope that subje

show in their average error results. 

The low and high frequency decoders interact in some more 

complex, non-linear way than has been simulated in the prev

analysis of the decoders (i.e. the low and high frequency decoders 

should not be designed and analysed in isolation). 

.51 shows the average absolute error and image siz

rmalised, the image size ratios of subject 1 (from decoder to deco
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will have verage 

absolute

 less of an effect than that of subjects 2 and 3.  However, the a

 localisation will not be affected. 

 
Figure 5.51 Graph showing the mean, absolute, localisation error per decoder 

taking all three subjects 
 

into account. 

Figure 5.51 shows that, overall it is decoder 5 that seems to perform best in 

ownwards lope, starting with decoder 1, being clearly 

evident in this figure.  Also evident is the already mentioned, relatively equal 

performance of all of the optimised decoders, with an average error between 

100 and 160 compared to decoder 1’s average error of 210. 

sted below: 

 

n 

rce, 

 

distance as the speakers, whereas rear images were perceived 

this test, with the d  s

 

Other non-recorded observations were also evident from this test, and are 

li

• Head movement helped greatly in the localisation of sources in this 

experiment, and were used extensively by each listener. 

• It was noted that although front and side sources were generally very

stable (an impressive result by itself, when compared to amplitude 

panned material or the observations of Craven’s higher order 

decoder (Craven, 2003)), rear images only performed correctly whe

facing forwards.  That is, when the subject turned to face the sou

the two rear speakers were perceivable as sources.  In these cases 

all subjects recorded the position facing forwards. 

• Front and side images were generally perceived at the same
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m

s

The rear i

rear imag r 

methods all point to rear images performing less well.  However, the fact that 

rear im e

impressive result. 

 

The 2nd pa of 

a piano re

decode s ut 

which versions they wished to hear again.  This was continued until a 

preference was given as to which decoder they thought performed best.  The 

uch closer to the head, almost on a line joining the two rear 

peakers of the ITU speaker array. 

mage problems are not wholly unexpected as it can be seen that 

es due to head turning and analysis using the velocity/energy vecto

ag s can be formed at all, with a speaker hole of 1400, is still an 

rt of the listening test was the auditioning of a 60 second except 

cording made in Lincoln Cathedral.  Each listener heard each 

r’  representation of this piece once and was then invited to call o

results of this test were as follows: 

Preference Subject 1 Subject 2 Subject 3 

Best 1st 3 3 3 

2nd 5 2 5 

3rd 2 5 4 

4th 4 4 2 

Worst 5th 1 1 1 
Table 5.1 Table showing decoder preference when listening to a reverberant, pre

recorded piece of music. 
 

The results showed a clear trend, showing that decoder 1 was by far the wor

of the five decoders, but with decoder 3 clearly being preferred by all three 

listeners.  This decoder, although not performing as well under head-turning 

analysis, is the only optimised decoder to have significant shifting of sources

towards the front, when looking at Figure 5.41, as s

-

st 

 

hown in both the energy 

vector d  as just 

using the 

perceived more 

subjec e

subjects d

an  HRTF analysis at high frequencies.  This is not the same

forward dominance control as decoder 3 maintains the overall 

 volume equally from all directions.  This, therefore, could be a 

tiv , artistic artefact of this decoder, although comments from the 

id indicate some of the reasons for choosing this decoder: 
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• Subjects 1 & 2 commented that decoders 5 & 2 (which they rated 

2nd and 3rd, and 3rd and 2nd respectively) were very similar in 

3 

 this. 

e 

• was very front heavy, with an obvious 

cen -

head’ at the sweet spot, when compared to the other decoders.  

• Sub

decoder 3, had a very ‘tangible’ quality to it. 

This o

Ambison ce 

of decod

expected, although the differences between the decoders, overall, was more 

subtl h  

more sta

performa

part of th

made to try and remove any bias from the results: 

 

may eliminate the general downward sloping of 

 each 

performance, both with a slightly ‘oppressive’ sweet spot.  This, 

interestingly, disappeared when auditioned off-centre.  Decoder 

did not suffer from

• Subject 1 mentioned that decoder 4 had a very wide, more diffus

image. 

All agreed that decoder 1 

tre speaker, and 2 subjects mentioned that it was almost ‘in

ject 1 commented that the Piano, when reproduced using 

5.3.8.5 Listening Test Conclusions 

The listening test, although only being presented to a very small number of 

subjects, was a useful exercise, bringing to light a number of attributes that 

should be researched further.  The most obvious result was that the un-

optimised decoder, based on the standard settings of the commercially 

available B-Format decoder, clearly performed less-well in both of the tests.  

sh ws that both optimisation methods do improve the performance of 

ic decoders for a five speaker irregular array.  Also, the performan

er 5 in the first stage of the listening test (panned source) was also 

e t an expected, and a much larger test base would be needed to gain

tistically significant results.  However, the fact that the extremes of 

nce were shown in this small test is a very encouraging result.  If this 

e test were to be carried out again a number of changes would be 

• The order of presentation of the test decoders would be 

randomised.  This 

the average localisation results observed in subjects 2 and 3. 

• The test would be carried out over more than one day, testing

subject at least twice to try and measure what kind of variations 

each one was likely to produce. 
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• More source locations would be used so as to map more accur

the performance of each decoder. 

ately 

• Actual sources would be played at random, so that a ‘calibration’ 

• A distinction could be made between source stability and image 

nning two separate tests (and allowing separate 

 

ers 

t 

: 

at can 

e four optimised decoders 

esting, especially as these were, analytically, 

suggests that over-optimising for 

f a 

re 

described by the listener and compared against later (i.e. actual source 

source width is available to judge better the width parameter of 

subject’s results. 

location by ru

analyses on the results): 

1. Where the subject is asked to face forwards at all times

(knowing they will move their head a little, still). 

2. Where the subject is asked to face each source before 

recording its position. 

 

Interestingly, the decoder that was unanimously voted as the ‘best’ decoder 

when listening to pre-recorded material was an unexpected result (however, 

the decoder perceived as ‘worst’ was not) with the middle group of decod

needing a larger base of subjects in order to gather a statistically significan

result.  Although this was a very simple test, with only one parameter, it did, 

indirectly, reveal some valuable insight into the performance of the decoders

• Most listeners are often surprised by the amount of variation th

be achieved just by altering the decoder, with spaciousness and 

envelopment being altered massively (especially when compared to 

decoder 1). 

• The sweet-spot problems with two of th

were particularly inter

the best performing decoders.  This 

a single position may, in fact, be detrimental to the performance o

decoder. 

• The best sounding decoder may not be the one that is, necessarily, 

the most accurate. 

Testing the performance of a decoder using pre-recorded material is far mo

difficult to grade when compared to the first test.  A number of different 

recordings should be used and tests where the recording situation can be 
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positions, size of room etc.) could be used to try to neutralise the artistic 

aspect of the decoder’s performance, if necessary. 

5.4 The Optimisation of Binaural and Transaural Surround 
Sound S . 

5.4.1 Introduction 

 Bina duction techniques are based upon 

e optimised using a similar 

esised (and recorded) 

inaural material is that the reproduction is normally perceived as filtered.  

ct is experienced with the 

If a 2 x 2 set of impulse responses are 

inverted so as to create a pair of crosstalk cancellation filters, then the 

frequency response of these filters will be perceived, both on and off-axis, 

even though the theory states that this response is actually compensating for 

a pinna filtering response.  The most logical method of correcting these 

artefacts is to use inverse filtering techniques.   

.4.2 Inverse Filtering 

esponse 

e 

of a 

the 

ystems

Both the ural and Transaural repro

HRTF technology and, for this reason, can b

approach.  One of the main problems with synth

B

That is, the listener will not perceive the pinna filtering (and normally the 

microphone and headphone filtering too) present in the recording as 

transparent.  Possible reasons for this could be that the pinna filtering on the 

recording does not match the listener’s, or because no head tracking is used: 

minute head movements can not be utilised to help lateralise the sound 

source and so the frequency response heard is assumed to be that of the 

source itself by the ear/brain system.  A similar effe

use of crosstalk cancellation filters.  

5

Inverse filtering (which has already been touched upon in Chapter 3) is a 

subject that is very simple in principle, but takes a little more care and 

attention in practice.  Inverse filtering is the creation of a filter whose r

will completely equalise the response of the original signal.  The general cas

is that of a filter that is created to force the response of a signal to that 

target response and is analogous to re-arranging an equation where 

answer is already known, where the value of a variable (in this case, a filter) 
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needs to be found.   The time domain representation of this problem is given 

in Equation (5.12). 

 

( ) ( ) ( )

( ) ( )
( )na
nunh

nunhna

=

=⊗
  

(5.12) 

where: a(n) = original response. 

  u(n) = target response. 

  h(n) = inverse filter (to be found). 

 

In Equation (5.12) ⊗ represents polynomial multiplication (convolution) and 

the division represents polynomial division (deconvolution).  A much more 

efficient approach to this problem is to process all of the data in the frequency 

domain using the Fast Fourier Transform algorithm.  This then transforms the

at is, the 

 

polynomial arithmetic into a much quicker point for point arithmetic (th

first value of ‘u’ is divided by the first value of ‘a’ and so on).  These frequency 

domain equations are shown in Equation (5.13). 

 

( ) ( ) ( )

( ) ( )
( )ω
ωω

ωωω

a
uh

uha

=

=×
 

(5.13

where: ω = angular frequency. 

 

If we were to take a head related transfer function and find the inverse filter in

this way the filter shown in Figure 5.52 will be produced.  There are a n

of artefacts that can be observed, but first it should be noted that the 

magnitude response of the inverse filter already appears to be just that, the 

inverse response (mirror image about the 0 dB mark), as given by the 

equations above (an inverse filter can be thought of as inverting the 

) 

 

umber 

agnitude and negating the phase as described in Gardner & Martin (1994)). 

 

m
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Figure 5.52 Inverse filtering using the equation shown in Equation (5.13) 
 

Unwanted audio artefacts can be clearly seen in the time domain 

representation of the original and inverse signals convolved together 

(theoretically they should produce a perfect unit pulse if the inversion has 

been carried out successfully).  Also, the inverse filter does not look complete 

in that it does not have a definite start and end point as can be observed in 

most filter impulses (this, on its own, however, is not necessarily an issue).  

The problem seen in the time domain response of the two signals convolved 

can be quantified if the frequency domain magnitude response is calculated at 

a higher resolution as shown in Figure 5.53 (the frequency domain plot in 

sing this hig  shows the excessive ripple that has been 

 

format to have a window applied.   

 

Figure 5.52 was calculated with a length equal to that of the filter).  Analysis 

her resolutionu

introduced by this filter.   This can be resolved, as in any other type of filter 

design, using windowing techniques (Paterson-Stephens & Bateman, 2001). 

However, the impulse response shown in Figure 5.52 is not yet in the correct 
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Figure 5.53 Frequency response of the original and inverse filters using an 8192 

point F.F.T.. 
 

An F.I.R. filter3 is basically a cyclic signal that will wrap around onto itself.  

This means that when the inverse filter is calculated, the position of the filter 

(in the impulse space) is not necessarily correct.  For example, the envelope 

of the filter created in Figure 5.52 is shown in Figure 5.54 along with the ideal 

position of this filter. 

 
Figure 5.54 Typical envelope of an inverse filter and the envelope of the filter shown 

 

is this main impulse that dictates 

                                           

in Figure 5.52. 
 

It can be seen in Figure 5.54 that it is desirable for the main impulse to be in 

the centre of the filter so as to maximise the number of samples given to pre

and post delay processing for the sound.  It 

 
3 Finite Impulse Response – a filter with a fixed length that is convolved (polynomial 

multiplication) with a signal to apply the filter’s time and frequency response onto the signal. 
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the overall time delay introduced by the filter.  As the F.I.R. filter can be 

treated as a continuous wrappable signal, the impulse response can be 

repositioned by adding a delay to the response that is to be inverted, as 

shown in Figure 5.54.  To move the main impulse to the centre of the filter, a 

delay of N/2 samples must be added, where N is the length of the target filter, 

in samples.  This technique also has the benefit of improving the frequency 

response of the filter, as shown in Figure 5.55 (note that due to the extra 

samples (zero padded) added to the shifted filter, both filters have been 

calculated using 256 samples). 

 
Figure 5.55 Two F.I.R. filters containing identical samples, but the left filter’s 

envelope has been transformed. 
 

It can now be seen that the frequency response of the filter has been 

proved and much of the rippling has been eliminated.  This results in a 

reduction of the artefacts seen in the time domain version of the original and 

inverse filters convolved (as shown in Figure 5.52, bottom left plot).  This is 

shown in Figure 5.56. 

im
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Figure 5.56 The convolution of the original filter and its inverse (both transformed 

and non-transformed versions from Figure 5.55). 
 

Now that the filter is in the correct format, a window function can be applied to 

smooth the response still further, and help reduce these time and frequency 

a 

mited filter s able response without using the 

regularisation parameter described in Chapter 3.  The only method of 

improving this further is to create a longer response using zero-padding of the 

filters used to calculate the inverse.  However, the resulting size of the HRTF 

filters must be taken into account as convolution of the inverse filter and the 

original HRTF filter will cause its response to increase in size.  If the HRTF 

filter is of length ‘a’ and the inverse filter is of length ‘b’ then the resulting filter 

will be of a length ‘a+b-1’, and the longer the filter, the more processing power 

will be needed for it’s implementation.  The differences between using a 

shown in 

domain artefacts.  The windowed response is shown in Figure 5.57.  Using 

ize, this is the best realisli

windowed 256-point filter and a windowed 1024-point filter are 

Figure 5.58.    
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Figure 5.57 A frequency and time domain response of the filter after a hamming 

window has been applied. 
 

  
Figure 5.58 The response of a 1024-point windowed inverse filter. 
 

rs

hen inverse ecision that has to be made is 

most likely be the filter with the least amount of pinna filtering affecting 

the response. 

5.4.3 Inve e Filtering of H.R.T.F. Data 

 filtering the HRTF data, the only dW

which HRTF will be used to equalise the whole HRTF set.  Two logical 

choices are available: 

• The near ear response to a sound source at an angle of 900 as this will 
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• The ear’s response to sound directly in front of the listener so that 

when the sound is positioned at 00, the H.R.T.F. responses at the ears 

are identical and flat. 

 

The 1024-point inverse filters for both of these methods are shown in Figure 

5.59.  Looking at this figure it can be seen that, in reality, the 00 HRTF is far 

more ill-conditioned to the inversion process when compared to the 900 

response.  Some wrapping of the resulting filter can be seen for the 00 

response indicating that a longer filter length is desirable.  This is to be 

expected because of the reason stated above (the 900 angle has less 

head/pinna filtering associated with it) and so it is best to use the 900, near 

ear, HRTF as the reference response. 

  

  
Figure 5.59 The 1024-point inverse filters using a 900 and a 00, near ear, HRTF 

response as the signal to be inverted. 
 

As an example, a set of H.R.T.F. data has been processed in this way using 

an inverse filter size of 769-points (so that the convolution of the original with 

this inverse filter will be equal to 1024-points).  Figure 5.60 shows a number of 
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the H.R.T.F. impulses in the time and frequency domain so a comparison of 

them can be made both before and after inverse filtering. 

 

Before Inverse Filtering After Inverse Filtering 

   
Figure 5.60 Comparison of a HRTF data set (near ea

and after (left hand side) inverse filtering
r only) before (right hand side) 
 has been applied, using the 

900, near ear, response as the reference. 
 

Figure 5.60 shows that although both sets of HRTFs still have a pinna filtering 

effect, the inverse filtered set have a larger bandwidth, in that extreme low 

and high frequency components of the impulse responses contain more 

energy, and contain peaks and troughs in the frequency response that are no 

larger the originals (for example, the 135 degree frequency response plots 

both have a notch no lower than around -27 dB).  These inverse filtered 

HRTFs are perceived to be of a better fidelity than that of the originals (which 

rse filtering of 

e source’s response that was used to record the HRTF data in the first place 

have this response due, in some part, to the non-optimum inve

th

(Gardner & Martin, 1994)).  It can also be seen that due to the nature of these 

new inverse filtered HRTFs, they could also be windowed and shrunk if 
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smaller responses were needed due to processing constraints thanks to the 

roughly equal amount of pre and post delay filtering (i.e. the highest amplitude 

parts of the filter are at the middle sample position). 

5.4.4 Inverse Filtering of H.R.T.F. Data to Improve Crosstalk 
Cancellation Filters. 

As mentioned at the start section 5.4, one of the problems of the crosstalk 

cancellation system is that very noticeable colouration of the reproduced 

sound can occur, both due to the crosstalk cancellation itself, and due to the 

response of the individual parts of the system (usually speaker to near ear, 

r  

rosstalk cancellation in the free field and crosstalk cancellation using HRTF 

cies.  For this 

reason, it is desirable to minimise any potential ill-conditioning due to the 

response of the individual components of the system prior to the 2 x 2 matrix 

inversion process, thus resulting in the least amount of regularisation needed 

in order to create a useable set of filters.  In this way, the inverse technique 

described in section 5.4.2 will be utilised in much the same way.  For 

example, the system shown in Figure 5.61 will be used as a basis for the 

creation of a pair of crosstalk cancellation filters. 

and speake to far ear responses).  This is why there is a difference between

c

data.  However, as discussed in Chapter 3, system inversion using frequency-

dependent regularisation can be used to compensate for this, at the expense 

of the accuracy of the crosstalk cancellation at these frequen

100 

 
Figure 5.61 System to be matrix inverted. 
 

This is a typical arrangement for a crosstalk cancellation system, and is based 

on a pair of speakers placed at +/- 50 in front of the listener.  Using the HRTF 
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set from M.I.T. (Gardner & Martin, 1994) this will give the responses for the 

near and far ears (assuming symmetry) as shown in Figure 5.61. 

 
Figure 5.62 HRTF responses for the ipsilateral and contralateral ear responses to 

the system shown in Figure 5.61. 
 

If a set of crosstalk cancellation filters are constructed from these two i

responses, using the techniques described in Chapter 3, then the responses 

shown in Figure 5.63 are obtained (using no regularisation). 

mpulse 

 
Figure 5.63 Crosstalk cancellation filters derived using the near and far ear 

responses from Figure 5.62. 
 

It can be seen, from Figure 5.63, that the expected peaks are present.  That 

is, a peak at very low frequencies due, mainly, to the close angular proximity 

of the speakers and the peaks at around 8 kHz and high frequencies, which 

appear to be due to the inversion of the responses of the near and far ear 

HRTFs (as seen in Figure 5.62).   When this crosstalk cancelled system is 

auditioned, not only is a very coloured sound perceived off-axis, but a non-flat 

is.  This is also coupled with a 

the amplifier and speakers have to 

reproduce such a large difference in frequency amplitudes. These are mainly 

frequency response is also perceived on-ax

large loss in useable dynamic range as 
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because of the reasons stated at the start of section 5.4.1, but also because 

of the different pinna/head/ear responses observed for different listeners.  A 

more general, yet correct inverse filtering method is needed to correct these 

problems.    

 

If regularisation is to be avoided as a last resort, then the responses shown in 

Figure 5.62 must be ‘flattened’ using inverse filtering techniques.  As it is the 

difference between the near and far ear responses that is important, the 

s 

e near and far ear response.  Also, the 

least ill-conditioned of the two responses is likely to be the near ear response, 

as it will have been filtered less by the head and pinna, so it is this response 

that will be taken as the reference (although, due to the small angular 

displacement of the speaker, there is little difference between the two filters).  

The inverse filter of the near ear HRTF is shown in Figure 5.64. 

filtering of these two responses will have only fidelity implications so long a

the same filter is applied to both th

 
Fig  
 

Applyin

shown

responses shown in Figure 5.65.  If 

cal a ring 

techniq

obtain

 

 

ure 5.64 Inverse filter response using the near ear H.R.T.F. from Figure 5.62.  

g this inverse filter to the ipsilateral and contralateral ear responses 

 in Figure 5.62, gives the new ipsilateral and contralateral ear 

these filters are now used in the 

cul tion of the crosstalk cancellation filters (using the 2 x 2 inverse filte

ue with no regularisation), then the filters shown in Figure 5.66 are 

ed.   
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5.65 Near and far ear responses after the application of the inverse filter 

shown in Figure 5.64 (frequency domain scaling identical to that of 
Figure 5.62). 

Figure 

 

 
Figure 5.66 Crosstalk cancellation filters derived using the near and far ear 

responses from Figure 5.65 (frequency domain scaling identical to that
of Figure 5.63). 

 

The optimisation of these filters using inverse filtering techniques can be 

verified by observing the responses shown in Figure 5.66: 

• The overall response of both of the filters has been

 

 flattened with the 

largest peak above very low frequencies now at around 6dB at around 

12.5 kHz, and virtually no peak at very high frequencies, which means 

that regularisation is no longer needed at these frequencies. 

• The peak at low frequencies is now solely due to the 2 x 2 matrix 

inversion and not the response of the ipsilateral and contralateral ear 

responses, which has reduced this peak from over 30dB to 20dB.  This 

means that, although regularisation is still needed here, a smaller 

amount can be applied, making the crosstalk cancellation more 

accurate in this frequency range.  
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• The flattening of the filter responses causes the on-axis response to be 

perceived as much flatter (un-filtered) than before. 

• The flattening of the filter responses also has the added effect of 

making off-axis listening seem far less filtered. 

• The crosstalk cancellation filters are actually smaller in length than the 

originals shown in Figure 5.63, even though the contralateral and 

ipsilateral ear responses used to calculate them were much larger than 

the originals shown in Figure 5.62.  This is due to the fact the new near 

and fa ch less ill-conditioned for inversion (the filters 

do not have to ‘work as hard’ to achieve crosstalk cancellation). 

, and 

ng of the system.  If the 

filter representing ‘h1’ is used as a reference, then another inverse filter can 

be created by inverting the response of ‘h1’.  If this inverse filter is convolved 

with both h1 and h2 then the h1 filter will, in theory, become the unit impulse, 

and h2 will then be a filter representing the difference between h1 and h2.  

These filters are shown in Figure 5.67, and Figure 5.68. 

r responses are mu

 

These new crosstalk cancellation filters, although much better than filters 

created using the raw HRTF data, still need to use some regularisation

still sound a little bass heavy.  However, at this point, it is still possible to take 

the inverse filtering technique a step further.  As always, it is the difference 

between the two ears that is important, especially as the pinna used in the 

HRTF data is not likely to be the same as that of the listener.  So, using 

inverse filtering, it is possible to design crosstalk cancellation filters that 

require no regularisation to correct for the conditioni

 
Figure 5.67 Filter representing inverse of h1, in both the time and frequency 

domain.  
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Figure 5.68 Crosstalk cancellation filters after convolution with the inverse filter 

shown in figure 5.51 
 

It can be seen from Figure 5.68 above that h1 has a flat frequency response 

and h2 now has very little energy over the 0dB point meaning that the system 

needs no regularisation.  These new, double inverted, filters are also 

perceived as performing much better than the previous crosstalk cancellation 

filters, with a less muffled sound and clearer imaging.  One other highly useful 

feature of these new filters is that h1 can be approximated by a unit impulse 

(as this is what h1 should be, theoretically, anyway) which cuts the amount of 

FIR filtering in the system by a half, replacing the h1 filters with a simple delay 

line, as shown in the block diagram in Figure 5.69. 

re 

esponse when compared to the single inverted case (which is perceived 

as having a raised bass response anyway).  For example, if we inject an 

impulse into the block diagram shown in Figure 5.69 (but replacing the delay 

  

 
Figure 5.69 The optimised crosstalk cancellation system 

 

However, these double inverted filters do mean that when the speakers a

positioned close to each other, the response can be perceived as lacking in 

bass r

Left Ear 
Signal  

Right Ear 
Signal  

H2 
Filter 
 

 

H2 
Filter 
 

+ 
+ 

+ 
+ 

Left 
Speaker   

Right 
Speaker   

Z-m

Z-m

where m is the delay line 
length 
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line with the filters again) and compare the results that will arrive at the ear of 

a listener (although it should be noted that the analysis is using the non-

optimum frequency response of the MIT HRTF data), the results shown in 

Figure 5.70 can be seen (note that the speakers in the University of Derby’s 

Multi-channel research laboratory are actually placed at +/- 30, and so filters 

for this speaker arrangement is shown in Figure 5.70). 

 
Fig  

 

, 

is, again, is not suggested in this plot.  It is also, 
0

ure 5.70 Left Ear (blue) and Right Ear (red) responses to a single impulse 
injected into the left channel of double and single inverted cross talk
cancellation systems.  

 

Both responses show a good degree of crosstalk cancellation, in the right ear 

response, with the single inverted system seeming to perform slightly better.  

The low frequency roll-off can also be noted in the left ear response of the 

double inverted system.  However, these quantitative results cannot 

necessarily be taken at face value.  For example, the single inverted system 

(lower plot) is perceived as being bass heavy, although this is not shown in 

these graphs as it is the non-optimum HRTF data used in this analysis.  Also

the double inverted system is perceived as performing better at the higher 

frequencies, although th

interesting to look at the same graphs for the +/- 30  case, as shown in Figure 

5.71. 
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Figure 5.71 Left Ear (blue) and Right Ear (red) responses to a single impulse 

injected into the left channel of a crosstalk cancellation system. 
 

This pl s

• The bass loss is no longer an issue.  However this is to be expected as 

wid

filte  

• The cance t B 

worse than th

This second poin

created in exactly th e.  This means that the same 

differences betw

filtering process is th

discrepancy that mu

that the further apar e 

listener and the filters becomes important.  This would explain why widening 

the spe k

5.5 Conclusions 

Optimisati s 

chapter, w n concentrating on the optimisation of 

e Ambisonics decoders.  

ot hows two significant results: 

ening the speaker span alleviates the bass boost in the original 

rs which, in turn, means they do not need to be inverse filtered.

lla ion of the right ear signal is shown to be around 20d

at shown for the +/- 30 case. 

t is interesting as the crosstalk cancellation filters have been 

e same way as the +/-30 cas

een the filters will be retained.  The only absolute in the 

e response due to the pinna alone, and it is this 

st be causing the problem.  These two graphs suggest 

t the speakers, the more the pinna matching between th

a ers degrades the localisation quality using this system. 

on techniques have been described, analysed and discussed in thi

ith the main part of this sectio

th
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5.5.1 Ambisonic Optimisations Using Heuristic Search Methods 

The main problem to be tackled in this section was the derivation of 

Ambisonic decoders for irregular arrays, as, although Gerzon & Barton

had suggested some parameters to be used in the design of these decoders, 

the solving of these

 (1992) 

 equations was previously a lengthy and difficult process.  

 the analysis of the original work by Gerzon and Barton (1992 & 1998) it was 

, 

re 

cy decoders’ perceived source position. 

Variou e

solve thes

• istic search method, based on a Tabu search algorithm, has 

 

r 

s the three following benefits: 

a 

ts. 

o This method solves all the parameters of the equations 

rally 

In

found that: 

• Multiple values could be chosen that would satisfy these equations

analytically performing equally well. 

• The original coefficients suggested by Gerzon & Barton (1992) we

actually non-ideal, with an oversight in the way in which the 

equations were initially solved leading to a mismatch between the 

low and high frequen

s n w methods have been devised and implemented in software to 

e problems: 

A heur

been developed, along with the fitness functions that need to be

satisfied in order to automatically generate decoders for irregula

speaker arrays.  This method ha

o It automatically solves the non-linear simultaneous 

equations in an optimal way. 

o Changing the start position for the search will generate 

different set of coefficien

simultaneously which corrects for the low and high 

frequency decoder mismatch found in Gerzon & Barton’s 

method (Gerzon & Barton 1992 and Gerzon & Barton 

1998). 

• An analysis technique based on the use of generic HRTF data has 

been devised to help differentiate between Ambisonic decoders 

designed using the above method, using head turning as an 

additional parameter as phase and level differences will gene

be similar for each decoder. 
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The tabu search method has also been shown to work well on the new 

order decoder types, such as the one proposed by Craven (2003), which has 

far more coefficients to optimise, demonstrating that the Tabu search 

methodology is easily extendible to more unknowns (either a higher order, or 

more speakers).   

 

The HRTF analysis technique described above was als

higher 

o used to validate the 

riginal work by Gerzon & Barton (1992) which then led to the creation of a 

sign 

this 

etween decoders designed 

using the velocity/energy vector methods and HRTF methods are 

 

ed at 

n un-

ilable 

 

 be needed to gain statistically significant results, 

all the optimised decoders performed well, with the expected decoder 

performing best in the synthetically panned listening test.   As expected, there 

were no great differences between decoders designed using either 

o

heuristic search program, with corresponding fitness functions, used to de

Ambisonic decoders for irregular arrays using the HRTF analysis technique 

first proposed in Wiggins et al. (2001) taking into account head turning 

directly, so reducing the number of decoders produced.  The properties of 

new technique are as follows: 

• For a two-band decoder the correlation b

good. 

• Using the HRTF technique a decoder could be designed using

more frequency bands, which is impossible using the previous 

velocity/energy vector method. 

• However, the HRTF decoder method is far more computationally 

expensive and it does take the tabu search algorithm longer to 

converge on an optimum result, but as this is an off-line process 

anyway, this is not a major issue. 

 

A small listening test was carried out using both synthetically panned material 

and pre-recorded material in order to help steer future listening tests aim

optimised Ambisonic decoders.  Although only three subjects were used, the 

decoder that performed worst in both tests was unanimously seen as a

optimised decoder based on the default settings of a commercially ava

B-format decoder for the ITU irregular speaker array.  However, although

many more subjects would
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optimisation method, as the two systems correlate well with respect to 

coefficients and, in fact, slightly less optimal decoders seemed to perform well 

cts.  

 seemed to 

st 

ng for the 

ions (Gerzon & Barton, 1992 & 1998) to be solved correctly for 

regular speaker arrangements (although the software concentrates on a 

tep 

irs (or 1 set 

 which could, potentially, lead to a control 

ove h  

performance around this spot.  This may well be beneficial, not only to create 

a ‘v u

listenin lly 

speaking, giving a slightly uncomfort

directly in the sweet spot. 

when recorded, reverberant material was auditioned by the test subje

Also, one reported observation was that the most optimal decoders

deliver a more pleasant listening experience slightly off-centre (when 

compared to the same decoder in the sweet spot), which is an extremely 

interesting result that needs to be investigated further. 

 

In summary, the use of the Tabu search algorithm has resulted in a va

simplification of the process of designing Ambisonic decoders, allowi

Vienna equat

ir

typical five speaker horizontal arrangement).  This has then been taken a s

further through the use of the HRTF data directly.  

5.5.2 Further Work for Ambisonic Decoder Optimisation. 

Now that the decoder design algorithm can directly use HRTF data the 

obvious next step is to increase the number of frequency bands.  When taking 

this method to its extreme, this will mean that instead of using cross-over 

filters, a W, X and Y filter will be created for each of the speaker pa

for the centre speaker).  In this way it should be possible to maximise the 

correctness of both the level and time differences simultaneously for many 

frequency bands improving the performance of the decoder still further for a 

centrally seated listener.  The software could also be extended to take into 

account off-centre listening positions

r t e sweet spot size, trading the performance at the centre, for the

ol me solution’, but to also circumvent the problems noticed in the 

g test with respect to the more optimum decoders, analytica

able, obtrusive listening experience 
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5.5  

The us  data has proved an 

inv a

reprod quency response of the crosstalk 

 upper 

frequencie HRTF data is present) it is still 

advisable to use regularisation to stop the excessive boost of these 

n the 

he differences between the creation and analysis 

RTF filters were kept constant, with only the monaural pinna filtering having 

d 

s. 

 

 filter, in 

de the magnitude responses of the two filters using the desired 

• Mix

and

.3 Binaural and Transaural Optimisations Using Inverse 
Filtering. 

e of inverse filtering techniques on HRTF

alu ble tool in the optimisation of both Binaural and Transaural 

uction.  An improvement in the fre

cancellation filters has been demonstrated which is apparent both on and off 

axis from the cancellation position.  This reduces the need to use the 

frequency dependant regularisation function; although at the extreme

s (where little energy in the 

frequencies. 

 

It has also been shown how moving the speakers closer together has the 

effect of improving the analytical crosstalk cancellation figure betwee

ears of a listener in the sweet spot.  This has to be a feature of the pinna 

filtering mismatches as t

H

changed (all the work was based around the same set of HRTF filters an

pinna differences between the ears are kept constant). 

5.5.4 Further Work for Binaural and Transaural Optimisation

A method to control the amount of inverse filtering that is carried out on the

crosstalk cancellation filters must be used as the single inverted filters sound 

bass heavy, and the double inverted filters are bass light.  This can be done 

by carrying out the following steps: 

• Create the inverse filter in the frequency domain and split into 

magnitude and phase. 

• Create a unit impulse, delayed by half the length of the inverse

the frequency domain and split into magnitude and phase. 

• Crossfa

ratio, and use the phase from the unit impulse. 

 the magnitude and phase of this filter back into its complex form 

 inverse FFT into the time domain. 
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• Thi

delay) and a magnitude response can be chosen from flat to the 

• Use

the

Once the t 

to determi

5.5.5 Co
Re

lthough the conversion from the base format of Ambisonics has been 

described in Chapter 4, there are still some ongoing issues that have meant 

that listening tests on this part of the project have not taken place.  During this 

project all of the systems have been looked at separately with main 

optimisation work carried out on the Ambisonics decodes and the crosstalk 

cancellation systems.   

 

The conversion of Ambisonics to binaural is now well documented (see 

Noisetering et al., 2003 for the most recent overview) and this, coupled with 

the inverse filtering techniques described in section 5.4 works well.  Similarly, 

playing a standard binaural recording over the two speaker crosstalk 

cancelled system described in the same section also works well, with the 

inverse filtering techniques resulting in a much flatter, un-filtered sound when 

compared to a crosstalk cancelled system using raw HRTF data.  However, 

when combining these two steps and attempting to reproduce an Ambisonic 

decode over either a two or four speaker crosstalk cancelled array, sub-

optimal results are experienced with heavily filtered results perceived.  Further 

work is needed in this area to bring this conversion process up to an 

acceptable level.  However, for further work the following avenues will be 

investigated: 

• The use of Bumlein’s shuffling technique in order to convert a 

coincident recording into a spaced one at low frequencies will be 

attempted as this will remove the need for Ambisonic to binaural 

s will result in a filter that has a linear phase response (that is, pure 

magnitude response of the inverse filter. 

 the above filter as the 2nd inversion filter in the creation process of 

 crosstalk cancellation filters. 

above steps have been carried out, listening tests can be carried ou

ne which filters are perceived as having the flattest response.  

nversion of Ambisonics to Binaural to Transaural 
production 

A
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conversion step, and will reduce some of the filtering applied to the 

• The crosstalk cancellation and Ambisonic to binaural conversion 

tion of 

s 

e filtering is not 

needed as the filters response to pinna should, to some extent, 

system. 

steps are taken in isolation; however, the filtering and calcula

crosstalk cancellation filters can be combined by using the 

Ambisonic to binaural decode function shown in equation (4.3), a

the target function for the crosstalk cancellation inversion equation 

shown in equation (3.13).  This will mean that invers

cancel each other out, resulting in a less filtered system. 
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Chapter 6 - Implementation of a Hierarchical S
Sound System. 

While carrying out this resea

urround 

rch it became apparent that although the 

atlab/Simulink platform was very useful in the auditioning and simulation of 

 

ms 

d in 

se 

udio 

rmation and techniques have been 

disc round sound system 

des ib

.1 Introduction 

 

iques 

nal processor.  However, this seemingly 

 

M

surround sound systems, more efficient results (with regards to processor

loading) could be achieved, particularly when FIR filtering, if custom progra

were written for the Windows platform using the Win32 API.   

 

In this chapter the various signal processing algorithms and implementation 

details will be discussed, so as to build up a library of functions to be use

multi-channel audio applications.   

 

The platform specific code will then be investigated so that an audio ba

class can be constructed, and it is this class that will form the basis for a

applications. 

 

Once the necessary background info

ussed, an example application based upon the sur

cr ed in Chapter 4 will be covered. 

6

At the beginning of this research it was assumed that the best platform for the

implementation of a system that relied on digital signal processing techn

was one based around a digital sig

logical assumption has now been challenged (Lopez & Gonzalez, 2001).   

 

Around ten years ago D.S.P. devices were far faster than home computers 

processors (Intel, IBM, etc.), but whereas D.S.P. core speeds have been 

increasing at a steady rate (approximately doubling every two years), the rate

of increase of core speed of a P.C. processor is now doubling every year.  

This has resulted in the processing power available on fast PCs now being 

greater than that available on more expensive D.S.P. chips (Lopez & 

Gonzalez, 2001).   As much of the testing and algorithm development was 
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already taking place on a PC platform (using Matlab® and Simulink®) it soon 

became apparent that this platform would be suitable for the final 

implementation of the system and, in some ways, be far more suited than a 

dedicated D.S.P. platform. 

d 

ut 

d sound software.  It is, of course, also due to the fact 

that Intel’s Pentium and AMD’s Athlon processors are now very powerful and 

can easily process over 32-channels of audio in real-time.  Therefore, 

convolving long filters with just a few channels of audio (as in crosstalk 

cancellation) is not a problem for today’s PCs (assuming efficient algorithms 

are used, see later in this chapter).   So, when it comes to developing such a 

system, what options are available? 

• Home PC computer (Host Signal Processing). 

• Digital Signal Processor Platform. 

• Hybrid of the two. 

y 

A standard micro-processor is normally designed around the von Neumann 

 

Using the PC as a signal processing platform is not a new idea (Lopez & 

Gonzalez, 2001; Farina et al., 2001), but has not been viable for surroun

sound until fairly recently.  This is mainly due to the fact that reasonably 

priced, multi-channel cards (16 or more channels) are now readily available 

and are not only the perfect test platform for this surround sound project, b

also, once the technology is in place, they provide a perfect platform to 

actually develop surroun

 

Each of the systems described above have their pros and cons and each of 

these methods have been utilised, at some point, during this project.  A 

description of each will be given. 

6.1.1 Digital Signal Processing Platform 

A Digital Signal Processor is basically a fast micro-processor that has been 

designed and optimised with signal processing applications in mind from the 

outset (Paterson-Stephens & Bateman, 2001).  This means that it generally 

has a more complex memory structure when compared to a ‘normal’ micro-

processor and a more specialised command set.  An example of a memor

structure used by D.S.P.s is a system is known as dual-Harvard architecture.  
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architecture (Paterson-Stephens & Bateman, 2001), and although a thorough 

investigation into these techniques is not part of the scope of this project, a 

rief explanation will be given to help differentiate between D.S.P.s and PC 

ory 

 memory 

 

e 

g 

 
Figure 6.1 A Von Neumann Architecture. 
 

A Harvard architecture (see Figure 6.2) based micro-processor (common in 

D.S.P. devices) has a very similar layout to the von Neumann architecture, 

except that three memory spaces, three address buses and three data buses 

are used as follows: one address bus, memory space, and data bus for 

 one for Y data memory.  This 

being able 

to read/write up to three memory locations per clock cycle, as opposed to one 

n 

or 

b

micro-processors. 

 

Von Neumann architecture is reasonably straightforward, having one mem

space, one internal data bus and one internal address bus.  All of these 

components are used in the reading and writing of data to and from

locations etc..  A diagrammatic view of von Neumann architecture is shown in

Figure 6.1.  Basically the Internal Address Bus selects what data is to b

read/written, and then this is sent to the C.P.U. or A.L.U. for processing alon

the internal data bus.   

ALU 

Internal Data Bus

Internal Address Bus

Shared
Program
and Data
Memory

ALU 
Register File

Instruction
decode

and CPU
control

I/O Devices

program memory, one for X data memory and

means that the D.S.P. device can access memory more efficiently, 

using Von Neumann architecture.  Also, a more complex Address Generatio

Unit (A.G.U.) is normally included that can handle such things as modulo 

address (circular buffering) and bit-reversed addressing (used in Fast Fourier 

Transforms).  This is another task that is taken away from the main process

incurring no extra processor overhead. 
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As explained above, it is mainly the architecture of the system that 

differentiates between a D.S.P. and a PC micro-processor.  However, an

difference between a D.S.P. and a PC is that a D.S.P. has no ‘operatin

system’ as such (although specialised real-time operating systems can be 

employed).  That is, each D.S.P. platform is configured for optimal 

performance using whatever peripherals are used with it.  It is not a general, 

‘jack of all trades’ with flexibility being the key feature, like a PC.  The 

advantages of not having an operating system will become more apparent 

when discussing the PC platform.  The D.S.P. platform is designed for r

time processing, that is, processing containing no perceivable delay. 
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Figure 6.2 Diagram of a Harvard Architecture 

6.1.2 Host Signal Processing Platform (home computer). 

A PC (or Apple Macintosh) can be used as a system for carrying out digital 

signal processing.  This is now a viable solution because processors for the

platforms are now becoming very fast and the distinctions between the micro-

processor and D.S.P. are becoming more blurred as the PC has more low-

level optimisations for signal processing applications (such as streamed m

and video, via the World Wide Web).  One of the PC’s biggest assets and 

potentially largest limiting factors is its operating system.  In this project the 
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Windows 2000 operating system was used.  This operating system was 

chosen as it is more stable than Windows 98, is compatible with more 

software than Windows NT and uses fewer resources than Windows XP.  In 

any case, all these Microsoft platforms use the same API, namely, Win32.  

Firstly, the reason that the operating system is the PC’s greatest asset is 

it’s A.P.I. simplifies many operations on the PC and makes programming 

graphical user interfaces relatively straightforward (as opposed to generating 

code to run, say, a separate LCD display).  Also, the operating system

handles all the calls to peripherals using a standard function set.  This means 

that the programmer does not need to know exactly what hardware is in the 

machine, but can just quiz Windows as to w

that 

 

hether the hardware meets the 

requirements needed (e.g. it has the correct number of channels available).  

 

are is 

d 

 

h a system is by using a 

hyb his system 

would ry cost 

effe iv

alread bove 

systems, with a graphic user interface being programmed and realised on the 

host PC system, but with the actual processing of the audio stream being 

latency is no longer a problem, and 

 

ny noticeable latency as the P.C. side is used to 

just update a few parameters on the D.S.P. card.  For example, if a three-

The operating system also has disadvantages for similar reasons.  Windows

is a graphical user environment, that is, it is geared towards graphical 

applications.  Audio, of course, is very well supported, but must be accessed 

using the Windows A.P.I., that is, direct access of the underlying hardw

not possible under Windows.  When using this, it is soon noticed that 

considerable latency can be introduced by both taking audio as an input an

passing it out as an output, and although this latency can be specified (within

limits), the lower the latency, the more unstable the system.  This will be 

explained in more detail later in this Chapter. 

6.1.3 Hybrid System 

The most user-friendly technique for developing suc

rid system comprising of the two systems mentioned above.  T

not only be a very easy system to develop, but would also be ve

ct e as a product, as half of the hardware platform (i.e. the PC) would 

y be in place.  It would include the positive aspects of both of the a

handled by the D.S.P. card, meaning that 

tried and tested G.U.I. techniques can be utilised on the P.C. side.  Such a

system can be devoid of a
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dimensional panning algorithm was to be implemented, then the D.S.P. card 

would handle all of the audio passing through the system, mixing the audio 

signals together, and passing the sounds to the correct speakers, at the 

correct levels.  The P.C. would be passing just the co-ordinates of where the 

virtual sources are to be panned to.  This also has the benefit of taking some 

of the processing load off the D.S.P. card, as the P.C. can be used to 

calculate coefficients, etc. that may rely on computationally expensive floating 

with the 

sults passed to the D.S.P. card for use. 

ystem – Implementation 

Alth  

development of the hierarchical surround sound system, it was not a practical 

sol

develo uch an 

affo a

Device s much of the testing and investigative work was carried 

out using card (using Matlab, Simulink and 

a Sounds d), it was decided that this 

would be ion of the project’s software.  For 

e explanation of the software application developed as part of this project, 

ion of the system described in chapters 3, 4 and 5. 

quired for this platform specific 

6.2.1 

Fig

surround sound system. 

point calculations, such as square roots and trigonometric functions, 

re

6.2 Hierarchical Surround Sound S

ough, as mentioned above, the hybrid system is the ideal solution for the

ution for this particular project, mainly due to the cost of the D.S.P. 

pment boards with true multi-channel capability (although s

rd ble multi-channel board has now become available from Analogue 

s®).  Thus, a

a P.C. with a multi-channel sound 

cape Mixtreme, 16-channel sound car

the platform used for the realisat

th

this section will be split into two main sub-sections: 

• The techniques and algorithms needed for the successful 

implementat

• An explanation of the Windows platform, its associated A.P.I.s, and 

considerations and techniques ac

programming task. 

System To Be Implemented.   

ure 6.3 shows a simplified block diagram of the proposed hierarchical 
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his 

ple) 

• These four-channel B-Format signals will then be decoded in one of 

 order to describe how these functions will be implemented in a C++ 

environment it is necessary to understand how the Windows operating system 

will pass the data. 

• The sound data will be presented in buffers of a fixed size (a size that 

is fixed by the application itself). 

• The sound data will initially be passed to a buffer as an 8-bit unsigned 

ation will always be dealing with 16-bit 

• All intermediate processing will then take place at 32-bit floating point 

n - speaker output 

Figure 6.3 The hierarchical surround sound system to be implemented. 
 

It can be seen from this block diagram that the proposed system has a 

number of distinct sections that consist of: 

• Recording of input signals, which will be in 1st Order B-format, in t

example. 

• Sounds will be able to be manipulated internally (rotated, for exam

while in B-Format. 

 

three ways: 

o Multi-speaker panned output. 

o 2 or 4 speaker transaural output. 

o 2-channel binaural output. 

 

In

(char), although the applic

signed integers (short) on the input and output sections. 

precision. 

• The application will use 8-channels in and 8-channels out from a single 

sound card. 

Sound-field 
Manipulations. 
Rotations etc. 

carrie
n-channel 

r 
decoder   

2 - sp eake
aural d

r trans-
ecoder 

2 - channel 
binaural decoder 

Encoding
Block  

Recorded/ 
Panned 
Signals  
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6.2.2 Fast Convolution 

One of the most processor intensive functions needed in the hierarchical 

surround sound software is that of convolution which is needed for the 

binaural and transaural reproduction systems.  Also, for accuracy it is 

desirable for the cross-over filtering, needed in the Ambisonic decoders, to be 

carried out using F.I.R. filters, as these possess linear phase responses in the 

pass band (that is, pure delay), and so will cause the least distortion to the 

audio when the two separate signals are mixed back together (as long as the 

filter length, and therefore delay, is the same for each of the filters).  F.I.R. 

filters are simple to implement in the time domain (they are the same as 

ationally expensive algorithms 

 perform.  Filtering of this kind is much more efficiently handled in the 

r, 

f 

 

). 

polynomial multiplication) but are very comput

to

frequency domain, thanks to the Fast Fourier Transform algorithm.  Howeve

convolving two signals together in the frequency domain is slightly more 

complex, when compared to its time domain equivalent. 

 

To understand why other considerations must be taken into account for 

frequency domain convolution let us first consider the time domain version o

the convolution algorithm.  If we have two signals, c and h, where c is the 

signal to be convolved and h is the impulse response that we will convolve the

signal with, the convolution of these two signals is given by Equation (6.1

 

( ) ( ) ( )∑
=

8 

e 

 this 

the 

−=

⊗=
128

1i
ihincny

hcy
 

(6.1) 

where y = result 

 n = sample number 

 i = index into impulse response 

 

In the above case, the impulse that is to be convolved with the signal is 12

samples long, and it can be seen that the convolution process works on th

past 128 samples of the signal.  In programming terms this suggest that

algorithm can be implemented using a circular buffer that is set to store 
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current sample, and the preceding 128 samples before the current sample.  If 

the impulse is stored in another circular buffer, then the implementation of this 

lgorithm will follow the block diagram shown in Figure 6.4. 

 
Figure 6.4 Time domain convolution function. 
 

From Figure 6.4 it can be seen that this algorithm will take ‘i’ multiplies and 

additions per sample which, considering 128 samples represents an impulse 

response length of 0.003 seconds at a sampling rate of 44.1kHz, would not be 

suitable for longer impulses.  So, how can this algorithm be transferred to the 

frequency domain?  It has already be noted that time domain polynomial 

multiplication is the same as frequency domain point for point multiplication 

(i.e. time domain convolution is the same as frequency domain multiplication), 

and this fact can be used to improve the speed of this algorithm.  Taking this 

into account for a fixed length signal is relatively straightforward.  If your 

original signal is 256 samples long, and the impulse is 128 samples, as long 

.T. e final length of these convolved 

ation 

h 

al 

orrectly, that is, you cannot just multiply a slice by the frequency domain 

impulse and inverse F.F.T. it again, as the slice has increased in size.  

Therefore, some form of overlap-add scheme must be used (Paterson-

a

z-1 z-1 z-1 z-1

+ + + + +

h(0) h(1) h(2) h(i-1) h(i) 

c(n) 

y(n) 

as the F.F size used is longer than th

signals (256+128-1), then both the signals can be transferred into the 

frequency domain, multiplied, point for point (note that this is the multiplic

of complex numbers), and then an inverse-F.F.T. applied.  However, if the 

incoming signal needs to be monitored as it is being fed into the system (suc

as in a real-time system) then, obviously, we cannot wait to find out the length 

of the signal in question, the incoming signal must be split up into slices 

(which is what happens in a computer, anyway).  Furthermore, once the sign

has been split up, this simple frequency domain convolution will not work 

c
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Stephens & Bateman, 2001).   A block diagram showing this process is shown 

6.5. 

 uses a slice length of 128 samples, an 

nd a zero-padded F.F.T. length of 256 

 256 is the next power of 2 higher 

 means that the minimum latency achievable by this 

   This example is a specific example of 

e simplest overlap relationship 

ments.  A more general relationship between the 

in Equation (6.2). 

in Figure 

 

Slice c0 Slice c1 Slice c2 Slice c3

Slice c0

h 0-Pad 

0-Pad 

Slice c1

h 0-Pad

0-Pad

Slice c2

h 0-Pad

0-Pad

Slice c3

h 0-Pad

0-Pad 

IFFTed Result 

IFFTed Result

IFFTed Result

IFFTed Result

h Conv 

Mult 

Mult 

Mult 

Mult 

Sum 

 
e 6.5 Fast convolution algorithm. 

Sum 

Sum 

Final Convolved Signal

Summation 
Overlap 

Figur
 

The example shown in Figure 6.5

impulse length of 100 samples, a

samples (as 128+100-1 = 227 samples, and

than this).  This system

method is measured by the slice size.

the overlap add system, but shows perhaps th

between the multiplied seg

length of the slice, and the overlap for summation is given 
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Summation Overlap = (FFT Length) – (Length of Slice). 

) + (Length of Impulse) – 1 <= FFT Length. 

ngth 

d the 

on ov

ow so the length of the input slice can be maximised when compared to the 

cy of the program (make more multiplies 

 

pecific function calls and number types that are needed for this algorithm, it 

rts 

 

%zero pad signal, if not an exact multiple of the  
%sl e
if length(c)/slicesize~=ceil(length(c)/slicesize) 
   c(length(c)+1:slicesize*ceil(length(c)/slicesize))=0; 
end
 
for i=1:slicesize:length(c) 

where: 

(Length of Slice

(6.2) 

So, for this example, if the slice length is equal to 225 and the impulse le

is 32, then the F.F.T. size could still be 256 (225+32-1=256), an

summati erlap would be 31 (256-225=31).  This is a useful parameter to 

kn

F.F.T. size to increase the efficien

count, so to speak).  For example, if an F.F.T. size of 256 samples was to be 

used and the impulse had a length of 32 samples, then a slice size of 225

should be used so as to minimise the summation overlap, and minimise the 

number of slices that the sound should be divided into (and, hence, the 

number of times the algorithm must be carried out).   Due to the number of 

s

will be described in C later, when disscussing the more platform specific pa

of the application.  However, as an example, the Matlab code for such an 

algorithm is given in Table 6.1. 
slicesize=225; 
impsize=32; 
 
fftsize=256; 
 
if slicesize+impsize-1>fftsize 
    error('FFT size must be GREATER or EQUAL to slicesize+impsize-1')
end 
 
%Load signal and impulse 
ht=wavread('h0e045a.wav');   
ct=wavread('Test.wav');      
 
%Convert Stereo files to a mono array 
c=ct(:,2)';      
h=ht(1:impsize,2)'; 
 
%create frequency domain impulse 
fh=fft(h,fftsize); 
%clear temp storage for summation block 
told=zeros(1,fftsize); 
 

ic  size 
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    %create frequency domain slice 

oding Algorithms 

c work carried out during this research is concerned 

ing of the B-format (1st or 2nd order) signal, and it is these 

 decoders (apart from the 

oders) rely on filtering techniques, they will be 

 

e fir ing schemes is to decode the Ambisonics 

s originally intended.  As discussed in 

orrect decoding methods, cross-

n established that the samples 

 system of holding multi-channel audio data in memory.  

, 5, 4 or 9 channels 

al only, full 1st order, 

e coefficients needed 

 was covered in Chapter 5 and so will not be repeated here.  

spe  Ambisonic system are derived using 

ful 

 an Ambisonic (1st or 2nd 

er length parameter. 

• A Boolean flag indicating a 1st or 2nd order stream. 

    fc=fft(c(i:i+slicesize-1),fftsize); 
    %multiply with impulse 
    fr=fh.*fc; 
    %IFFT result 
    r = real(ifft(fr,fftsize)); 
    %Summation of result (res) with portion of last result (told) 
    res(i:i+slicesize-1) = r(1:slicesize) + told(1:slicesize); 
    %update using last result ready for summation next time. 
    told=zeros(1,fftsize); 
    told(1:fftsize-slicesize) = r(slicesize+1:fftsize); 
end 
Table 6.1 Matlab code used for the fast convolution of two wave files. 
 

6.2.3 Dec

The crux of the algorithmi

with the decod

algorithms that will be discussed here.  As all of the

simplest multi-speaker dec

utilising the frequency domain filtering techniques discussed in section 6.2.2.

 

T st step in all of the decodh

audio to multiple speakers, as it wa

Chapter 5, for the most psychoacoustically c

over filtering must be used.  So far, it has bee

will arrive for processing, and be passed back into a 2-dimensional array, as 

this is the most flexible

These Ambisonic audio streams will normally consist of 3

of audio data (1st order horizontal only, 2nd order horizont

or full 2  order, respend ctively).  The actual derivation of th

for this process

All of the aker feeds in an

combinations of the various channels available.  To this end, it can be use

to specify an Ambisonic structure specifically so as to simplify writing audio 

applications later on.  The structure used to represent

order) carrier will comprise: 

• Nine pointers to floats. 

• An integ
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 decision as whether to make the Ambi variable a structure or a class wThe as 

ken early on in this research, where a structure was decided upon.  This 

e to be 

g 

e 

}; 
 
void AllocateAmbi(Ambi *aSig, const int iLen, bool bAllocChannels, 
bool bOrder) 
{ 
 aSig->Length = iLen; 
 aSig->Order = bOrder; 
 if(bAllocChannels) 
 { 
  aSig->W = new float[iLen]; 
  aSig->X = new float[iLen]; 
  aSig->Y = new float[iLen]; 
  aSig->Z = new float[iLen]; 
  if(bOrder==SECONDORDER) 
  { 
   aSig->R = new float[iLen]; 

= new float[iLen]; 
  aSig->T = new float[iLen]; 

]; 
]; 

 } 

cture. 

Inc e

setting llocate 

me

• The

pan

allo

ta

was mainly because any functions using this Ambi variable would hav

made global functions, and so not associated with any Ambi structure in 

particular, and this was thought to be a less confusing system when dealin

with more than one Ambisonic stream.  However, in hindsight, it would hav

made little difference either way.  The code for an Ambi structure is given in 

Table 6.2. 
#define FIRSTORDER 0 
#define SECONDORDER 1 
struct Ambi 
{ 
 float *W,*X,*Y,*Z,*R,*S,*T,*U,*V; 
 int Length; 
 bool Order; 

   aSig->S 
 
   aSig->U = new float[iLen

  aSig->V = new float[iLen 
 
 } 
} 
Table 6.2 Ambi Stru
 

lud d in Table 6.2 is a function for allocating memory dynamically and 

 the other flags for the Ambi structure.   A choice of whether to a

mory is necessary as two situations are possible: 

 sources are entering the system as mono signals that are to be 

ned.   The extra channels needed for an Ambisonic signal must be 

cated. 
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• A B-format signal (1st or 2nd order) is entering the system.  These channels 

can be used directly by assigning pointers directly to these channels.   

 

As described in Chapter 5, there are two methods of decoding to an 

Ambisonic array.  There is decoding to a regular array, and decoding to an 

irregular array.  Of course, the decoding for a regular array is really just a 

special case of the irregular decoding (all of the speakers have the virtual 

response pointing in the same directions, with just the polar pattern altering for 

rticularly 

ge arrays, even simpler d

the speakers opposite the 

r array case, as this 

tem is shown in Figure 6.9. 

different frequency bands), and it has also been observed that for pa

ecoding should be used (Malham, 1998), limiting lar

the amount of out of phase signal emanating from 

desired virtual source position.   Let us first take the regula

is the simplest.  A simple block diagram of this sys
   Speaker  Convert to  

Position  Cartesian  
Co - ordinates Angles   

Low Frequency 

B - Format   
Signal   

Decode with LF Polar  
Pattern Select + Pattern   

HF  Polar  
Pattern   

Low Pass 
Filter   

High  Pass 
Filter   

High Frequency 
Decode with 

Pattern Select 

+ 

Multi - 
speaker 
output 

6 sho

decoder to ac

 
Figure 6.6 The regular array decoding problem. 
 

Figure 6. ws that several parameters and settings are needed for the 

t upon: 

• Angular position of the speakers, converted to Cartesian co-ordinates 

using the Ambisonic decoding equations given in equation 3.4. 

• Both a low frequency and a high frequency directivity factor, as shown 

in Equation (3.4).  It is these two parameters that set the frequency 

dependent decoding.  For frequency independent decoding, set both 

parameters to the same setting (0 – 2 = omni – figure of eight). 
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Several functions are needed to fulfil decoding in order to minimise processing 

at run time.  Mainly, this is carried out by the speaker position function.  As the 

speakers are unlikely to move during system usage the Cartesian co-

ordinates of the polar patterns routed to the speakers can be fixed.  This 

e 

real-time part of the application is to be run (sine and cosine functions are 

 

coefficients is shown in Table 6.. 
loat ** DecoderCalc(float *fAzim, float *fElev,  

esult[4][i] = 1.5f*sin(fElev[i])*sin(fElev[i]);//R 
fElev[i]);//S 
fElev[i]);//T 

sin(2*fAzim[i])*cos(fElev[i]) 

 
 

's Cartesian co-ordinates which are 
quations. 

ach speaker 

terial is 

erberant, B-

se in 

 

sed in 

means that all of the sine and cosine function calls can be made before th

very computationally expensive).  A function used to calculate these decoding

f
const int NoOfSpeakers, bool Order) 

{ 
 float **Result; 
 //If 2nd Order decoder needed, 9 Rows 
 if(Order) 
  Result = 2DAlloc(9,NoOfSpeakers); 
 //if 1st Order decoder needed, 4 Rows 
 else 
  Result = 2DAlloc(4,NoOfSpeakers); 
 
 for(int i=0;i<NoOfSpeakers) 
 { 
  Result[0][i] = sqrt(2); //take off W offset of 0.707 
  Result[1][i] = cos(fAzim[i])*cos(fElev[i]);//X 
  Result[2][i] = sin(fAzim[i])*cos(fElev[i]);//Y 
  Result[3][i] = sin(fElev[i]);//Z 
  if(Order) 
  { 
   R
   Result[5][i] = cos(fAzim[i])*sin(2*
   Result[6][i] = sin(fAzim[i])*sin(2*

Result[7][i] = cos(2*fAzim[i])*cos(fElev[i]) 
*cos(fElev[i]);//U 

Result[8][i] = 
*cos(fElev[i]);//V 

 } 
} 

 //Return pointer to a two-dimensional array 
 return (Result); 
} 
Table 6.3 Function used to calculate a speaker

onic decoding eused in the Ambis
If the coefficients calculated in Table 6.3 are used directly then e

will have a cardioid response, meaning that no out-of-phase ma

produced from any of the speakers (assuming a perfect, non-rev

format input captured from a perfect point source).   However, it has been 

shown (see Chapter 5) that it can be beneficial to alter this polar respon

order to make the decoder more psychoacoustically correct at different

frequencies.  For this, the equation shown in Equation (6.3), and discus

Chapters 3 & 5 can be used for the final decoding. 
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( ) ( )[ ]ZgYgXgdWgdS zyxw +++−×= 25.0  

(6.3) 

 of 

is 

uati  as it only involves a few extra multiplies 

 or cosine 

as a cross-

ds fast convolution function given in 

ction 6.2.2 (although, strictly speaking only phase aligned ‘shelving’ filters 

d for 

LP[BLen],XOldLP[BLen],YOldLP[BLen];//etc. 

  

takes LP and HP 

(Sou

; 
 
 

*4); 
*4); 

ROldLP); 

where: gx, gy, gz & gw are the speaker coefficients calculated using 

Table 6.3. 

 d is the pattern selector coefficient (from 0 – 2, omni – figure

eight). 

 

As can be seen from Equation (6.3), it is a simple matter to include th

eq on in the final decoding function

per speaker, and does not use any computationally expensive sine

functions.   However, the decoding function is complicated slightly 

over nee  to be implemented using the 

se

are actually needed, the cross-over technique using FIR filters can be use

both regular and irregular decoders, whereas the shelving filters can only be 

used for regular decoders).  A function for carrying out an Ambisonic cross-

over is shown in Table 6.4. 
#define BLen 2049 
float WOld
float WOldHP[BLen],XOldHP[BLen],YOldHP[BLen];//etc. 
void AmbiXOver(Ambi *Source, Ambi *Dest, SCplx *LP, SCplx *HP,

const int order) 
{ 

//This exmample takes Source as the source, stores the LP 
//signal in Source, the HP signal in Dest, and 
//as the frequency domain filter coefficients. 

 //These original filters must be one sample less in length than  
//the buffer size 

 
 const int Len = Source->Length; 
 //copy samples 
 memcopy(Source->W,Dest->W,Source->Length*4); 
 memcopy(Source->X,Dest->X,Source->Length*4); 
 memcopy(Source->Y,Dest->Y,Source->Length*4); 
 memcopy(Source->Z,Dest->Z,Source->Length*4); 
 if rce->Order) 
 { 
  memcopy(Source->R,Dest->R,Source->Length*4)
  memcopy(Source->S,Dest->S,Source->Length*4);
  memcopy(Source->T,Dest->T,Source->Length*4);
  memcopy(Source->U,Dest->U,Source->Length
  memcopy(Source->V,Dest->V,Source->Length
 
  //Do second order Low pass 
  OverAddFir(Source->R,LP,Len,Len-1,order,

 - 218 - 



Chapter 6 

  OverAddFir(Source->S,LP,Len,Len-1,order,SOldLP); 
 OverAddFir(Source->T,LP,Len,Len-1,order,TOldLP); 

UOldLP); 

P); 
P); 
); 

rce->Y,LP,Len,Len-1,order,YOldLP); 
ir(Source->Z,LP,Len,Len-1,order,ZOldLP); 

OverAddFir(Dest->W,HP,Len,Len-1,order,WOldHP); 

of this function, but it can be changed 

epending on the application.  For example, the 2nd order checking and Z 

s 

 save some processing time.  Now that the crossover function has 

bee g in 

Table 
voi

{ 
 

static float WGainHP,XGainHP,YGainHP,ZGainHP; 

 WGainLP = 0.5f * (2-LPPattern) * Sp[0][j]; 

  YGainHP = 0.5f * HPPattern * Sp[2][j]; 
  ZGainLP = 0.5f * LPPattern * Sp[3][j]; 

 
  OverAddFir(Source->U,LP,Len,Len-1,order,
  OverAddFir(Source->V,LP,Len,Len-1,order,VOldLP); 
 
  //Do second order High pass 
  OverAddFir(Dest->R,HP,Len,Len-1,order,ROldH
  OverAddFir(Dest->S,HP,Len,Len-1,order,SOldH
  OverAddFir(Dest->T,HP,Len,Len-1,order,TOldHP
  OverAddFir(Dest->U,HP,Len,Len-1,order,UOldHP); 
  OverAddFir(Dest->V,HP,Len,Len-1,order,VOldHP); 
 } 
 //Do First order Low pass 
 OverAddFir(Source->W,LP,Len,Len-1,order,WOldLP); 
 OverAddFir(Source->X,LP,Len,Len-1,order,XOldLP); 
 OverAddFir(Sou
 OverAddF
 
 //Do First order High pass 
 
 OverAddFir(Dest->X,HP,Len,Len-1,order,XOldHP); 
 OverAddFir(Dest->Y,HP,Len,Len-1,order,YOldHP); 
 OverAddFir(Dest->Z,HP,Len,Len-1,order,ZOldHP); 
} 
Table 6.4 Ambisonic cross-over function 
 
This is the comprehensive version 

d

signal functions can be removed for a 1st order, horizontal only, application a

this will

n iven, a regular decoding function can be developed, and is shown 

6.5. 
d B2SpeakersReg(Ambi *Signal, float **Samples, float **Sp 

,int NoOfSpeakers ,int NoOfChannels,float LPPattern 
,float HPPattern) 

static float WGainLP,XGainLP,YGainLP,ZGainLP; 
 
 
 //Do XOver using global Ambi variable Signal2 
 AmbiXOver(Signal, Signal2, LPCoefs, HPCoefs,Signal->Order); 
 
 //Do loop check for both number of speakers, and number of  
 //channels available on system, for testing on systems with 
 //only a stereo sound card available 
 for(int j=0;j<NoOfSpeakers && j<NoOfChannels;i++) 
 { 
  //Take pattern calculations out of loop 
  //Calculate only once for each speaker 

buffer.   //per 
 
  WGainHP = 0.5f * (2-HPPattern) * Sp[0][j]; 
  XGainLP = 0.5f * LPPattern * Sp[1][j]; 
  XGainHP = 0.5f * HPPattern * Sp[1][j]; 
  YGainLP = 0.5f * LPPattern * Sp[2][j]; 
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  ZGainHP = 0.5f * HPPattern * Sp[3][j]; 
 
  for(int i=0;i<Signal->Length;i++) 

e 
 

isonic signal to a regular array. 

rder example, but this function 

r functionality.   The two-

d and passed 

ches can be 

ttern, 

aker use decoding coefficients directly.  That is, they are 

 after the pattern, decoding angle and level have been taken 

to 

lated using the heuristic HRTF decoding program described 

 Chapter 5.  The latter will be slightly more efficient (although the program 

n, 

r decoding to irregular arrays were calculated 

ff-line in this project (using the Tabu search algorithm described in Chapter 

  { 
 and decod   //Do Low frequency pattern adjustment

  Samples[j][i] = WGainLP * Signal->W[i] 
    + XGainLP * Signal->X[i] 
    + YGainLP * Signal->Y[i] 
    + ZGainLP * Signal->Z[i]; 
    

  //Do High frequency pattern adjustment and decode  
   Samples[j][i] = WGainHP * Signal2->W[i] 

 + XGainHP * Signal2->X[i]    
    + YGainHP * Signal2->Y[i] 

gnal2->Z[i];     + ZGainHP * Si
  } 
 } 
} 
Table 6.5 Function used to decode an Amb
 
For simplicity, Table 6.5 shows only a first o

could easily be extended to include second orde

dimensional ‘Samples’ array is now ready to be de-interlace

back to the sound card for output. 

 

When it comes to the decoding of an irregular array two approa

taken: 

• Let each speaker (or speaker pair) have a user-definable pa

decoding angle and level. 

• Have each spe

supplied

into account. 

 

Both of these methods are acceptable, with the first being most suited 

optimising a decoder by ear and the second being most suited to using 

coefficients calcu

in

used to pre-calculate the coefficients could be changed to output the patter

angle and level instead of the decoding coefficients directly). 

 

As all of the coefficients used fo

o
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5), the second approach was used.  The code used for this irregular dec

function is shown in Table 6.6. 
void B2SpeakerIrreg(Ambi *Signal, float **Samples, float **SpL, 
 float **SpH, int NoOfSpeakers, int NoOfChannels) 
{ 
 static float WGainLP,XGainLP,YGainLP,ZGainLP; 
 static float WGainHP,XGainHP,YGainHP,ZGainHP; 
 //Do XOver using global Ambi variable Signal2 
 AmbiXOver(Signal, Signal2, LPCoefs, HPCoefs, Signal->O

oder 

rder); 

for (int j=0;j<NoOfSpeakers && j<NoOfChannels;j++ ) 
 { 
  //Use SpL & SpH decoding coefficients directly 
  WGainLP = SpL[0][j]; 
  WGainHP = SpH[0][j]; 
  XGainLP = SpL[1][j]; 
  XGainHP = SpH[1][j]; 

>Length;i++) 
 { 
  //Do Low frequency pattern adjustment and decode 

mbisonic signal to an irregular array. 

 Table 6.5, except that two 

provided since they are 

 regular 

 

sibly the most complex form of 

) are 

set up 

 
 

  YGainLP = SpL[2][j]; 
  YGainHP = SpH[2][j]; 
  ZGainLP = SpL[3][j]; 
  ZGainHP = SpH[3][j];  
 
  for (int i=0;i<Signal-
 
 
   Samples[j][i] = WGainLP * Signal->W[i] 
    + XGainLP * Signal->X[i] 
    + YGainLP * Signal->Y[i] 
    + ZGainLP * Signal->Z[i]; 
    
   //Do High frequency pattern adjustment and decode 
   Samples[j][i] = WGainHP * Signal2->W[i] 
    + XGainHP * Signal2->X[i] 
    + YGainHP * Signal2->Y[i] 
    + ZGainHP * Signal2->Z[i]; 
  } 
 } 
} 
Table 6.6 Function used to decode an A
 
This function is very similar to the one shown in

separate sets of speaker coefficients must be 

potentially very different (not just different in polar pattern, as in a

speaker array). 

T lti-speaker array given above is poshe mu

decoding as the other types (transaural multi-speaker and headphone

based upon binaural technology and, to this end, will only need to be 

once for optimal reproduction. 
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As discussed in Chapter 4, in order to reproduce an Ambisonic system 

ed abinaurally the separate speaker coefficients can be easily represent s a 

als (that is, W, X, 

n are not taken to be left/right 

orizontal only decode would 

ed b

 

set of HRTFs with one HRTF for each of the Ambisonic sign

Y etc.), or two if the rig-room-head combinatio

symmetrical.  So, for example, a second order, h

be replay inaurally using the equation shown in Equation (6.4). 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )hrtfhrtfhrtfhrtfhrtf

hrtfhrtfhrtfhrtfhrtf

VVUUYYXXWWRight

VVUUYYXXWWLeft

⊗−⊗+⊗−⊗+⊗=

⊗+⊗+⊗+⊗+⊗=
 

(6.4) 

where: W, X, Y, U & V are the Ambisonic signals. 

  hrtf denotes a HRTF filter response for a particular channel. 

  ⊗ denotes convolution. 

 

What is possibly not apparent on first inspection is that, when compared to an 

optimised speaker decode, a binaural simulation of an Ambisonic decoder 

actually requires less convolutions if left/right symmetry is assumed (half as 

many, in fact) and the same amount of convolutions if left/right symmetry is 

not assumed.  This is due to the fact that both the crossovers and differing 

levels/polar patterns can be taken into account at the design time of the 

rder 

define BLen 2049 

]; 

  Samples[1][i]=Signal->W[i] + Signal->X[i] - Signal->Y[i]; 

Ambisonic signal filters.  A function used to decode a horizontal 1st o

Ambisonic signal is shown in Table 6.7. 
#
#define Order 12 //FFT Length 2^12=4096 
float WOld[BLen],XOld[BLen],YOld[BLen]; 
 
//Function assumes impulse length is 1 sample less than  
//buffer length (i.e. 2048) 
void B2Headphones(Ambi *Signal, float **Samples,  

SCplx *WFilt, SCplx *XFilt, SCplx *Yfilt,  
int NoOfChannels) 

{  
 const int Len = Signal->Length; 
 OverAddFir(Signal->W,WFilt,Len,Len-1,Order,WOld); 
 OverAddFir(Signal->X,XFilt,Len,Len-1,Order,XOld); 
 OverAddFir(Signal->Y,YFilt,Len,Len-1,Order,YOld); 
 
 for(int i=0;i<Len;i++) 
 { 
  //Left Signal 
  Samples[0][i]=Signal->W[i] + Signal->X[i] + Signal->Y[i
  //Right Signal 
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 } 
 //If more than two channels were inputted and are to be  
 //outputted (i.e. took B-format signal in from live  
 //input) then other channels must be cleared. 
 for(int i=2;i<NoOfChannels;i++) 
 { 
  for(int j=0;j<Len;j++) 
   Samples[i][j] = 0; 
 } 
} 
Table 6.7 Function used to decode a horizontal only, 1st order, Ambisonic signal 

to headphones. 
 
From the B2Headphones function given above, it is easy to see how this 

function can be extended to a two-speaker transaural representation.  The 

block diagram for a two-speaker transaural reproduction is given in Figure 6.7. 

Left Ear 
Signal 

Right Ear 
Signal 

H2 
Filter

H1 
Filter

H1 
Filter

H2 
Filter

+
+

+
+

Left 
Speaker 

Right 
Speaker 

 
Figure 6.7 A two-speaker transaural reproduction system. 

arrangement were discussed in Chapter 5.   

 

For the four-speaker version of the crosstalk cancellation not only is the above 

algorithm (shown in Figure 6.7) needed to be run twice, but also four signals 

must be provided (front left and right, and rear left and right ear signals).  

These can be calculated using a system very similar to the one shown in 

Equation (6.4), except that the front left and right HRTF filters (for the 

eakers, and the rear left and right HRTFs will be calculated using the gains 

Fs for this purpose are shown in 

oding, with no cross-over filtering present).  

hole, as 

 

The method for calculating and optimising the filters needed for this 

conversion to binaural) will only be taken using the gains from the front 

sp

from the rear speakers.  Example sets of HRT

Figure 6.8 (simple, cardioid dec

These graphs show that, although the decoder is not taken as a w
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long as the front and rear portions of the speaker rig are left/r

e binaural simplification can be used where only one HRTF

ight symmetric, 

e sam  is needed 

r-channel 

oding for this 

ction phones function given in Table 6.7, with 

th

for each of the Ambisonic channels.  A block diagram of this fou

crosstalk cancellation system is shown in Figure 6.9.  The c

se  is an extension of the B2Head

an extra call to a transaural function, B2Trans, given in Table 6.7. 

 
nic Figure 6.8 Bank of HRTFs used for a four-channel binauralisation of an Ambiso

signal. 
 

  To Front Left  
Speaker W   

X   
Y   

HRTF 
Simulation 
(3 FIRs) 

Front Cross-
talk 

Cancellation
(4 FIRs)

HRTF 
Simulation 
(3 FIRs) 

Rear Cross-
talk 

Cancellation
(4 FIRs) 

To Front Right   
Speaker 

To Rear Left   
akerSpe  

To Rear Right   
Speaker 

 
em. 

at FLOld[BLen],FROld[BLen],FLCOld[BLen],FRCOld[BLen]; 
Old[

Figure 6.9 Block digram of a four-speaker crosstalk cancellation syst
 
#define BLen 2049 
//Flag that is set for 2 and 4 speakers 
//transarual reproduction. 
bool Trans4; 
flo
float RL BLen],RROld[BLen],RLCOld[BLen],RRCOld[BLen]; 
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void BToTrans(float **Samples,SCplx *h1, SCplx
const int BufferLength, const int NoOfCh

 *h2,  
annels) 

n,Len-1,Order,FLOld); 

 OverAddFir(FLCopy,h2,Len,Len-1,Order,FLCOld); 
 OverAddFir(FRCopy,h2,Len,Len-1,Order,FRCOld); 
 
 
 i++) 

{ 
 FL = Samples[0][i]; 

py[i]; 

 
 
 
 { 

 static float RLCopy[BLen]; 

3][i]; 
 = RL + RRCopy[i]; 

  Samples[3][i] = RR + RLCopy[i];  
 } 

 
{ 
 //Samples should be housing up to four channels,  

//front left, front right 
 //back left, and back right binaural signals. 
 static float FLCopy[BLen]; 
 static float FRCopy[BLen]; 
 memcpy(FLCopy,Samples[0],BufferLength*4); 
 memcpy(FRCopy,Samples[1],BufferLength*4); 
 
 int ChUsed=2; 
  
 //Do 2 Speaker Transaural  
 OverAddFir(Samples[0],h1,Le
 OverAddFir(Samples[1],h1,Len,Len-1,Order,FROld); 

float FL,FR; 
for (int i=0;i<BufferLength;

 
 
  FR = Samples[1][i]; 
  Samples[0][i] = FL + FRCopy[i]; 
  Samples[1][i] = FR + FLCo
 } 

//Do 4 speaker transaural if flag says true 
if(Trans4 && NoOfChannels>=4) 

 
  static float RRCopy[BLen]; 
  memcpy(RLCopy,Samples[2],BufferLength*4); 
  memcpy(RRCopy,Samples[3],BufferLength*4); 
 
  OverAddFir(Samples[2],h1,Len,Len-1,Order,RLOld); 
  OverAddFir(Samples[3],h1,Len,Len-1,Order,RROld); 
  OverAddFir(RLCopy,h2,Len,Len-1,Order,RLCOld); 
  OverAddFir(RRCopy,h2,Len,Len-1,Order,RRCOld); 
 
  float RL,RR; 
  for (int i=0;i<BufferLength;i++) 
  { 
   RL = Samples[2][i]; 
   RR = Samples[
   Samples[2][i]
 
 
  ChUsed=4; 
 } 
  
 //Clear other output channels, ready for outputting 
 for(int i=ChUsed;i<NoOfChannels;i++) 
 { 
  for(int j=0;j<Len;j++) 
   Samples[i][j] = 0; 
 }  
} 
Table 6.8 Code used for 2 and 4 speaker transaural reproduction. 
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6.3 Implementation - Platform Specifics 

All of the algorithmic work discussed so far in this project has been platform

independent, that is, all of the functions could be implemented on any pla

that supports floating point operations and standard C.  However, there has 

come a point where a specific platform must be chosen, and then more 

specialised functions are usually needed

 

tform 

to 

 depending on the 

har icrosoft Windows™ 

ope t erfacing 

wit

a system) 

• 

 

The system used in this project was the standard waveform audio system.  

here were a number of reasons for this: 

Although information about the Waveform Audio API is reasonably 

widespread (for example, see Kientzle (1997) and Petzold (1998) Chapter 22) 

none give a comprehensive guide to setting up a software engine for signal 

processing (that is, capturing some audio live or from wave files, processing it, 

and outputting the processed audio).  For this reason, This section of the 

report will give an in depth summary of how the software used in this project 

was structured and implemented so it can be used as a starting reference for 

ar

 

 

separate entity and programmed for accordingly.   For example, just because 

dware/operating system used.  In this project the M

ra ing system was used, which possesses a number of APIs for int

h the sound system via Windows: 

• Waveform Audio (windows multi-medi

• Direct Sound (part of the Direct X API) 

ASIO (Steinberg’s sound API). 

T

• Waveform audio had easy support for multi-channel sound. 

• All windows compatible sound cards had good support for this API. 

 

further rese ch to be carried out. 

 

So, what is the Waveform Audio API?  The Waveform Audio API is a layer of 

functions that sits between the programmer and the sound card.  This means 

that the function calls necessary to set up and successfully run an audio 

application will be the same no matter what make or model of sound card the

computer possesses.  In this system the input and the output ports of the 

soundcard work seemingly independently, and so each must be taken as a
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the output device has been set up as a 44.1 kHz, 16-bit sample stream, this 

does not mean that the input device will automatically take these setting

when it is started.  Any device act

s 

ivated (be it input or output) using the 

 number of parameters set and structures 

le, 8, 16). 

. 

 

Using all of the above data, the Waveform audio API is almost ready to set up 

e input/output devices, however, let us first look at the block diagram of the 

 buffer and is ready for the next one.  

e work in much the same way as software 

 in order to 

waveform audio API must have a

available for use.  Firstly, let us examine the parameters that must be set 

before an output device can be started: 

• Data type (for example, fixed or floating point). 

• Number of Channels (for example, 1 – mono, 2 – stereo, 4, 8). 

• Sample rate in Hz. (for example, 44100 or 48000). 

• Bits per sample (for examp

• Block align – the alignment of the samples in memory (i.e. the size of 

the data for one sample for all of the channels, in bytes)

• Average bytes per second. 

• Buffer size in bytes. 

th

waveform audio system as shown in Figure 6.10. 

 
Figure 6.10 Waveform audio block diagram – Wave out. 
 

As can be seen from this diagram, the soundcard actually informs the 

program when it has finished with the last

This is because Windows is a message based operating system.  That is, the 

application either passes messages, or waits to receive messages from the 

Windows operating system.  Thes

interrupts on a D.S.P. device, and mean that the application does not have to 

run in a loop, but process and send the appropriate messages

WaveHDR

WaveHDR

WaveHDR

WaveHDR

Send to 
Soundcard 

Message: 
Ready for Samples 

Processed 
Samples 
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keep the program running.  A WaveHDR is a structure that represents a buffer 

/* wave data block header */ 

 buffer */ 
 /* length of data buffer */ 

    /* used for input only */ 

 */ 

erved for driver */ 

able 6.9 WaveHDR structure. 

 flags signifying that the buffer is finished with, 

At least two of these wave e input or 

tput device in order for s aptured.  If only one 

filled and sent 

ver, as many 

tom . 

aveform audio API is 

old nearly all of the data that must 

lly open a device.  The format 

rmats.  
non-PCM formats. 

    /* format type */ 

   ste

of audio samples, along with a few other parameters.   A WaveHDR is 

arranged as shown in Table 6.9. 

typedef struct wavehdr_tag { 
    LPSTR       lpData;           /* pointer to locked data

       DWORD     dwBufferLength;  
   DWORD     dwBytesRecorded;  
    DWORD       dwUser;           /* for client's use */ 
    DWORD       dwFlags;          /* assorted flags (see defines)
    DWORD       dwLoops;          /* loop control counter */ 
    struct wavehdr_tag FAR *lpNext;  /* reserved for driver */ 
    DWORD       reserved;         /* res
} WAVEHDR, *PWAVEHDR, NEAR *NPWAVEHDR, FAR *LPWAVEHDR; 
T
 
Of all of the various parameters available from a WaveHDR structure, only a 

few of them are of importance for this application.  These are: 

• lpData – Pointer to an array of bytes used for the storage of samples. 

• dwBufferLength – Holds the length of the buffer (in bytes). 

• dwFlags – Holds

prepared etc.. 

 

headers need to be sent to either th

ou eamless audio to be heard or c

is used then an audible gap will be heard as the buffer is re

back to the device (in the case of an output device).  Howe

buffers as is desired can be sent to the device, which windows will 

au atically store in a queue

 

The other major structure that is used by the w

WaveformatEX.  This structure is used to h

be presented to Windows in order to successfu

of the WaveformatEX structure is given in Table 6.10. 
/* 
 *  extended waveform format structure used for all non-PCM fo
 *  this structure is common to all 
/  *

typedef struct tWAVEFORMATEX 
{ 

  wFormatTag;         WORD      
    WORD        nChannels;          /* number of channels (i.e. mono,  

reo...) */ 
    DWORD       nSamplesPerSec;     /* sample rate */ 
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    DWORD       nAvgBytesPerSec;    /* for buffer estimation */ 
ck size of data */ 

   of extra information (after    
 

NPWAVEFORMATEX, FAR 
WAVEFORMATEX; 

 

w potentially available for any device that is to be 

evice.   

 

on to 

 information and memory allocation needed.  Example 

evice is shown in Table 6.11. 
r[2]; 

hWa

if(Device==0) 

{ 
WOutHdr[i].dwBufferLength = usBLength * wf.wBitsPerSample  

* wf.nChannels/8; 
  WOutHdr[i].lpData = new char[WOutHdr[i].dwBufferLength]; 

    WORD        nBlockAlign;        /* blo
  WORD        wBitsPerSample;     /* number of bits per sample of    

   mono data */ 
    WORD        cbSize;             /* the count in bytes of the size  

   cbSize) */
} WAVEFORMATEX, *PWAVEFORMATEX, NEAR *
*LP
Table 6.10 WaveformatEX structure. 
 
As can be seen by the comments in Table 6.9 and Table 6.10, all of the

necessary information is no

opened, be it an input, or an output d

 

Various functions are used in the initialisation and running of a Wave device

and the structures given in Table 6.9 and Table 6.10 are relied up

provide the necessary

code used to initialise a wave out d
WAVEHDR WOutHd
WAVEFORMATEX wf; 
AVEOUT veOut; HW

 
void InitialiseWaveOut( unsigned int Device, 

unsigned short usNoOfChannels, 
unsigned short usSRate,  
unsigned short usBLength) 

{ 
 //Pass WAVEFORMATEX structure necessary data 
 wf.wFormatTag = WAVE_FORMAT_PCM; 
 wf.nChannels = usNoOfChannels; 
 wf.nSamplesPerSec = usSRate; 
 wf.wBitsPerSample = 16; 
 wf.nBlockAlign = wf.nChannels * wf.wBitsPerSample / 8; 
 wf.nAvgBytesPerSec= wf.nSamplesPerSec * wf.nBlockAlign; 
 wf.cbSize  = 0; 
 
 
  //let windows choose device 
  Device=WAVE_MAPPER; 
 else 
  //else, use specified device 
  Device--; 
 //Open wave device, specifying callback function 
 //used to catch windows messages from device 
 waveOutOpen(&hWaveOut,Device,&wf,(DWORD)WOCallback, 
    (DWORD)this,CALLBACK_FUNCTION); 
 waveOutPause(hWaveOut); 
 
 //Allocate memory for 2 buffers, and pass them to wave device 
 for(int i=0;i<2;i++) 
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  WOutHdr[i].dwFlags = 0; 
  WOutHdr[i].dwLoops = 0; 
 
 waveOutPrepareHeader(hWaveOut,&WOutHdr[i],sizeof(WOut
  waveOutWrite(hWaveOut,&WOutHdr[i],sizeof(WOutHd
 } 
 //Start wave out device 
 waveOutRestart(hWaveOut); 
} 
//----------------------------------------------------------------
void CALLBACK WaveOutCallback(HWAVEOUT hwo, UINT uMsg,  
  DWORD dwInstance, DWORD dwParam1, DWORD dwParam2) 
{ 
 switch(uMsg) 
 { 
  case WOM_DONE: 
  { 
   //If WOM_DONE, call function used to fill buffe
   //WAVEHDR buffer passed in to callback function 
   //as dwParam1 
   WaveOutFunc((WAVEHDR *)dwParam1); 
   break; 
  } 
  default: 
   break; 
 } 
} 
Table 6.11 Initialisation code used to set up and start an output wave device. 
 
As shown in Table 6.11, a call-back function must be specified in ord

Hdr[i])); 
r[i])); 

--- 

r 

er to 

process the Windows’ messages that are passed by the waveform audio 

system.  For the output device the most important message is WOM_DONE.  

This message is passed to the call-back function every time the wave out 

device has finished with the WAVEHDR buffer, where a function can then be 

called that fills the buffer with processed samples using the processing 

techniques shown in Chapter 6.2 (in this case, the WaveOutFunc function is 

called, passing with it a WaveHdr structure).  

 

The Wave In device is configured in much the same way by the Windows 

operating system, although it is interesting to note that the input and output 

devices are both taken to be two separate devices.  To this end, no automatic 

connection between the two devices exists and it is the programmer that must 

ourse, assuming that both input and output devices have been initialised at 

store the input samples and then pass them to the output device (this is, of 

c

the same frequency, bit rate and channel numbers).   
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In Windows, many audio devices can be opened simultaneously, which is

necessary as most multi-channel sound cards default to being configured as a 

numbe

 

r of stereo devices.  However, for true multi-channel sound 

reproduction it is necessary to have a card that can be configured as one 

multi-channel device.  This is due to the fact that Windows cannot open and 

start multiple devices at exactly the same time and, although some sound 

card manufacturers quote that the drivers will synchronise multiple devices, 

this has not been found to be the case when using their standard wave 

drivers.  This can potentially cause problems when using such a card to feed 

an array of speakers used for multi-channel surround sound, as the time 

alignment of the output channels is assumed to be perfect.  Although this 

artefact is not readily noticeable, it is obviously more desirable to start with a 

system that is as theoretically perfect as possible and so a single multi-

channel device should be used, if possible.  Having one multi-channel device 

This effect wa he Matlab add-on, Simulink.  The block 

also simplifies the processing as multiple call-back functions are not used.  

s discovered using t

arrangement used to document this feature is shown in Figure 6.11. 

 
Figure 6.11 Simulink model used to measure inter-device delays 
 

This system was used to test the latency of various devices a number of times 

four 

and not only was the inter-device latency apparent, but it also changed 

between test runs.  An example plot is shown in Figure 6.12, showing just 
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devices, to make the graph more readable.  This variable device latency 

means that it is almost impossible to correct, and so a single device should be 

used. 
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Figure 6.12 Graphical plot of the output from 4 audio devices using the Waveform 

audio API. 
 

In order to successfully close an audio device, a number of API calls must be 

made.  This is shown (for the output device) in Table 6.12. 
void CloseDevice(UINT Device) 
{ 
 //Reset Wave Device 

waveOutReset(hWaveOut); 
//Unlock and delete dynamic memory allocated for WAVEHDRs 

      for(UINT i=0;i<NoOfBuffers;i++) 
      { 

waveOutUnprepareHeader(hWaveOut,&WaveHeadersOut[i], 
sizeof(WaveHeadersOut[i])); 

            if(WaveHeadersOut[i].lpData)        
delete [] WaveHeadersOut[i].lpData; 

     } 

 the 

 
 
 //Close Wave Device 

waveOutClose(hWaveOut); 
}       
Table 6.12 Closing a Wave Device 
 
Both the opening and closing of an input wave device is identical to that of an 

output wave device, with the only difference being the message passed to

call-back function. 

 

As all of this coding is Windows dependent (that is, it will never be needed for 

any other system), the wave device functions were encapsulated within a 
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class.  This meant that a basic ‘pass-through’ application could be coded, tha

did no processing.  A ne

t 

w class could then be created, inheriting from this first 

edeclared so that minimal extra 

 to be 

nal processing 

g and outgoing samples has been written.  This 

r processed) just after the input and 

just be

lass is shown in Figure 6.13. 

 

 

dy 

 audio 

ata to a data queue.  Then, when the WOM_DONE message has been 

class, but with the processing functions being r

coding is needed for every new sound processing application that is

written.   

 

In order for this first class to be as flexible as possible, a sig

function for both incomin

means that the signal can be monitored (o

fore the output of the audio to the soundcard. 

 

A block diagram of the structure of this c

Figure 6.13 Block Diagram of Generic ‘pass-through’ Audio Template Class 
 
It can be seen from Figure 6.13 that, apart from the initialisation and opening

of the audio devices, the whole of the audio subsystem is driven by 

messages.  The WIM_DATA message signalling that an audio buffer is rea

for use (i.e. full) causes the WaveInFunc to call a function that adds this

d

received signalling that an output buffer is ready to be filled again, the 

ProcessOut function is called, which is where the audio processing will be 

carried out on the data at the end of the audio queue, and then passed to the 

empty output device.   An example of the overridden ProcessOut function is 

Initialise 

Init & Allo
memory for 

c 

WaveHDRs 
Create Sample 
Queue 

Open Device 

Open In/Out 
Devices 
Prepare & Send 
Buffers to 
devices 
Start Devices 

WaveInFunc

Call AddToQueue 
Add Used Buffer 
to device 

WaveOutFunc

Call Process Out 
Add Used Buffer 
to device 

AddToQueue

Add new samples 
to audio queue 

ProcessIn 
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OverRidden 

 

ProcessOut 

Function to be 
OverRidden 

Calls made 
from 
Application 

WIM_DATA 
Message 

WOM_DONE 
Message 

Invoked by Windows Messages 
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shown in Table 6.13.  Example code for the whole of this base class can be 

found in the Appendix. 
void ProcessAudio(WAVEHDR *pWaveHeader,  

unsigned short usNoOfChannels, 
                 unsigned short usBufferLengthPerChannel) 
{ 
      //Output Callback 
 //Grab pointers to in and out buffers 

short *inPtr = (short *)ReadBuffer->lpData; 
      short *outPtr = (short *)pWaveHeader->lpData; 
 
 float yn; 
 

for( 
unsigned int i=0;i<usBufferLengthPerChannel*usNoOfChannels; 
i+=usNoOfChannels) 

      { 
       //Left Channel 
            yn  = (float)inPtr[i]; 
            //Processing Here 
            outPtr[i] = (short)yn; 
 
            //Right Channel 
            yn  = (float)inPtr[i+1]; 
            //Processing Here 
            outPtr[i+1] = (short)yn; 
      } 
} 
Table 6.13 Example implementation of the ProcessAudio function for a Stereo 

Application. 

6.4 Example Application 

Using the signal processing and wave API code given above, it is now a 

 task to build an example signal processing application.  In 

onment of Borland C++ Builder 

orporation, 2003).  This environment has the 

s using 

orland’s own components or custom 

emplates.  This greatly 

tions 

relatively simple

this research project the programming envir

was used (Borland Software C

advantage of drag and drop development of graphical user interface

standard Windows components, B

components based on one of Borland’s component t

simplifies the GUI creation process meaning that working, flexible applica

can be coded quickly, which then makes the use of a powerful, high level 

language, such as C++, a valuable signal processing prototyping tool. 

 

As stated above, applications written for the Windows operating system can 

be programmed using the C++ programming language.  The object oriented 

approach lends itself well to audio programming, particularly when filtering is 

involved (which it generally is).  This is because for each signal that needs to 
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be filtered, separate memory locations are needed for that particular signa

feedback, feedforward, or delay line features.  When coding filters in C it is the

developer th

l’s 

 

at must group all of this memory together, which can be 

umbersome at times with different types of filters needing different memory 

red.  

at 

f 

s object, 

 

rocessaudio’ function.  

 simple template for such a class is shown in Table 6.14. 

Buffer; 
 

fLen; 
ss(float *signal, int iLen, float aval); 

; 
gnal, float dBLP, float dBHP,  

 

lisation unit. 

of t in the 

object must be initialised with an integer length (see the constructors and 

c

requirements.  For example, the fast convolution algorithm described in 

section 6.2.2 needs an additional amount of memory for each channel filte

The size of this memory must be the same size as the FFT window size, th

is, it must be larger than the size of the incoming signal.  Once other types o

filter are also introduced the subsequent memory requirement would soon 

become complicated and difficult to follow.  This, on its own, is not a large 

problem, but means that all the memory requirements for a filter function must 

be clearly documented using comments, and strictly adhered to by the 

developer.  However, in C++ a filter ‘object’ can be created.  Inside thi

all the extra memory requirements can be hidden from the programmer with 

as many filter objects created as needed.  This means that each filter object 

can be imagined as one filter device in a studio, operating on one audio 

stream.  Initially, all the same memory requirements must be taken care of, 

but once implemented inside a C++ class this can then be used as a template

where the developer only has access to, perhaps, a ‘p

A
class AllPass 
{ 
private: 
 float fs,fc,alpha,*
      float ff,fb,in,out;
 const int Bu

void DoAllPa 
public: 
 AllPass(int iLen); 
 ~AllPass(); 

 float fsam) void SetCutOff(float fcut,
id ProcessAudio(float *si vo

bool dBdummy); 
(float *signal, float LinLP, float LinHP); void ProcessAudio

}; 
ss based shelving equaTable 6.14 C++ Class definition file for an allpa

 

An object ype AllPass can now be initialised in the normal way 

application.  However, due to the fact that the private variable BufLen, 

representing the length of an audio buffer, has been declared constant, this 
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destructors, AllPass(int iLen) & ~AllPass()).  This means that, unless the 

application has a fixed buffer length, the object must be declared dynamically 

er it can be seen that the developer 

;  a constructor and a destructor that are 

ct is created or destroyed, a 

o functions.  The latter have been 

proved flexibility, with one function making 

aking use of dB gain values.  As the 

 difference in their passed values, a 

d in one of the functions to indicate 

e variables 

 wi , meaning that the calling object 

s no access to these variables, protecting them from potential wrong doing.  

in the 

ures that 

 

 FLength); 

oat *signal); 

e fast convolution algorithm 

lass definition 

er, if the constructor of this class is shown, it can be 

at run time. 

 

Looking at this object definition file furth

only has access to five functions

called automatically when a new AllPass obje

SetCutOff function, and two ProcessAudi

created in order to give this class im

use of linear gain values, and the other m

same function names need to have some

dummy, unused variable has been include

that dB gains are used.  Also, it can be noted that all of th

associated th this class are declared private

ha

All of these variables are updated, as needed, by the underlying code 

class, either at initialisation, or by a public member function.  This ens

the filter is secure and as intuitive to use as possible, with the developer only

having access to the functions needed, and no more. 

 

This method was also used for the fast convolution filter, greatly simplifying 

the knowledge needed by the developer to use this function.  The definition 

file is shown in Table 6.15. 
class FastFilter 
{ 
private: 
        int order,fftsize,siglen,implen; 
        float *OldArray,*Signal,*tconv,*h; 
        SCplx *fh,*fSig,*fconv; 
public: 
        FastFilter(int FFTOrder,AnsiString *FName,int
        ~FastFilter(); 
       void ReLoadFilter(AnsiString *FName,int FLength);  
        void OverAddFir(fl
}; 

++ class definition file for thTable 6.15 C
 
Again, a system very similar to that shown in the AllPass filter c

file can be seen.  Howev
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seen how much work is taken away from the developer when using this class, 

e 6.16. 
me,int FLength) 

 float[fftsize]; 

Length); 

s is immediately evident, the memory requirements of this class are 

into 

s 

r 

 

6.17 and Table 6.18 respectively. 
fun i
%save array to .dat file for reading in a c program 
%   for example count = savearray(array,'c:\coefs.dat'); 
 
fid = fopen(fname, 
cou  
fclose(fid); 
 
Table 6.17 tion used to write FIR coefficients to a file. 
 
#include <fstream.h> 
void FastFilter::ReLoadFilter(AnsiString *FName,int FLength) 
{ 

as shown in Tabl
FastFilter::FastFilter(int FFTOrder,AnsiString *FNa
{ 
        order = FFTOrder; 
       fftsize = pow(2,order);  
        siglen = (fftsize/2) + 1; 
        implen = fftsize/2; 
 
       OldArray = new float[fftsize];  
        Signal = new float[fftsize]; 

= new float[fftsize];         tconv 
= new        h 

 
;         fh = new SCplx[fftsize]

        fSig = new SCplx[fftsize]; 
        fconv = new SCplx[fftsize]; 
 

LoadFilter(FName,F        Re
 
        nspsRealFftNip(NULL,NULL,order,NSP_Init); 
        nspsRealFftNip(h,fh,order,NSP_Forw); 
} 
Table 6.16 Constructor for the FastFilter class 
 
A

complicated, with a number of memory spaces of two variable types 

(representing data in both the time and frequency domain) needing to be 

dynamically created and destroyed when necessary.  Also, the size of the 

coefficients used in FIR filters can be large, meaning that entering them 

the code is unfeasible.  So, this class actually takes in a filename that contain

the list of numbers used in the filter, in single precision format.  This means 

that the filters can be quickly designed and saved to a file format in Matlab, 

and then tested quickly using a C++ Windows application without the need fo

any changes in the code of the application, meaning that recompilation is not

necessary.  The Matlab code used to create these files and the C++ code 

used to read them are shown in Table 
ct on count = savearray(array, fname); 

'w'); 
nt = fwrite(fid,array,'float'); 

Matlab func
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        F
        
 
      ze); 
      ); 
        memset(tconv,0,sizeof(float)*fftsize); 
        memset(h,0,sizeof(float)*fftsize); 
 
        memset(fh,0,sizeof(SCplx)*fftsize); 
        memset(fSig,0,sizeof(SCplx)*fftsize); 
        memset(fconv,0,sizeof(SCplx)*fftsize); 
 
        f = fopen(FName->c_str(),"rb"); 
        i
       {
               c = fread(h,sizeof(float),FLength,f); 

 

pplication can be designed.  This example application was designed to test a 

e 

 archived), or one mono 

ave file for panning into a B-format signal.  If a mono source is used, then 

this can be panned using a rotary dial, and if a B-format signal is used, then 

the sound field can be rotated using a rotary dial.  The user is able to choose 

from four different decoding methods: 

• Optimised eight speaker regular Ambisonics (using the allpass filters 

described above). 

• Ambisonics to binaural transform (based on an eight speaker array). 

• Ambisonics to two speaker transaural with speaker placements at: 

o +/- 30 

o +/- 50 

o +/- 100 

o +/- 200 

ILE *f; 
int c; 

  memset(OldArray,0,sizeof(float)*fftsi
  memset(Signal,0,sizeof(float)*fftsize

f(f) 
  

 
                if(c!=FLength) 
                        MessageBox(NULL,"Filter Length Error", 

"Filter Length Error", NULL);
                fclose(f); 
        } 
        else 
                MessageBox(NULL,"Cannot open file", 

"Cannot open file", NULL); 
} 
Table 6.18 C++ code used to read in the FIR coefficients from a file. 
 

Now the main signal processing classes have been constructed, the 

a

number of the optimisation techniques discussed in Chapter 5.  However, th

irregular Ambisonic array testing was carried out in Simulink, and is not 

implemented in this application in order to keep things a little simpler.  It will 

be capable of taking in a first order B-format signal (comprised of four wave 

files, as this is how most of our B-format material is

w
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o +/- 300 

• Ambisonics to four speaker transaural with front speaker placements 

as above, and rear speaker placements at: 

o +/- 50 

o +/- 100 

o +/- 200 

o +/- 300 

o +/- 700 

 

In addition to these modes of reproduction, a source from the line input can 

also be used so that the transaural filters (two speaker algorithm) can be 

er to utilise 

ll of the transforms discussed above, a total of fifty six filters must be made 

ne 

sam her reason 

why writing these to separate data files saves time and programming effort. 

 

 

rota e discussed 

her h

 

tested with CD material (both binaural and normal stereo).  In ord

a

available to the application as there must be two versions of each filter.  O

pled at 44.1 kHz and another sampled at 48 kHz.  This is anot

To facilitate the above formats, a GUI was constructed as shown in Figure 

6.14.  All of the controls used are standard Windows controls, apart from the

two rotary controls used for altering the mono source panning and b-format 

tion.  The code for the creation of the rotary controls will not b

e, owever, but can be found in the Appendix. 
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Figure 6.14 Screen shot of simple audio processing application GUI. 
 

In the audio subsystem class, there are two main tasks to be carried out: 

• Initialisation/deinitialisaton of filter structures and graphical 

oscilloscope. 

• Process audio function. 

In order for to avoid storing fifty six FIR filters in memory at once (and, for that 

matter, having to manage fifty six FIR filter structures in the program code), 

only the filters currently available for use will be stored in memory.  These are: 

• 3 Allpass filters for the eight speaker Ambisonic decoder. 

• 3 FIR filters for Ambi to two ear binaural processing 

• 6 FIR filters for Ambi to four ear binaural processing 

• 4 FIR filters for binaural to two speaker transaural processing 

• 4 FIR filters for binaural to four speaker transaural processing (8 used 

in this algorithm in total). 

 is only the crosstalk cancellation filters that need to be updated in real time, 

 filter 

 function for this application is shown in Figure 

5. 

It

and so, in order to facilitate this, the GUI sets a flag to true whenever a

needs changing (that is, the transfilter and rear filter radio boxes are 

changed).  The audio subsystem checks this flag at the start of every audio 

buffer and, if set, reloads the appropriate filter from disk. 

 

A block diagram of the audio

6.1
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Move wave Check for true 
file 

pointer. 
wave file 
skip flag 

false 

Check input 
type 

AmbiIn MonoIn LiveIn

 
of the applications audio processing function. Figure 6.15 Block diagram 

 

The audio cessing function is simplified because all of the va pro rious 

g 

a simpler task, as each function can be taken in isolation.  So, for 

the final section of coding needed for this example application, the decoder 

nd code is shown in Table 6.19. 

processing algorithms are carried out in separate objects/functions, makin

the coding 

type switch statement a
switch(Window->m_effect) 
{ 
 case 0: //8 Speaker Ambisonics 

Ambi-> Ambi-> 
Transx4 Transx2 

Copy four Copy one 
wave files 
data to 

AmbiBuffer 

wave file 
data to 
buffer 

Deinterlace 
incoming 

ReadBuffer 
to a 2D 

Samplebuffer

Pan into 
iBuffer Amb

Rotate B-
format 
signal 

Check 
decode type

Allpass B-
format 

8 Speaker 
Decode 

to 2D array 

3xFIR B-
format 

2 Speaker 
binaural 

ecode D
to 2D array 

4xFIR 2-
channel 

2 Speaker 
saural tran

Decode 
to 2D array

4x2xFIR 4-
channel 

4 Speak
transau

er 
ral 

Decode 
to 2D array

2 Speaker 
transaural 

Decode 
to 2D array 

3xFIR B-
format 

3x2xFIR B-
format 

4xFIR 2-
channel 

Ambisonics Ambi-> 
Binaural 

Re-Interlace 
into WAVEHDR

Stereo->
Transx2 

Signifies 
potential 
filter 

update here 

 - 241 - 



Chapter 6 

  WAP->ProcessAudio(ABuf->W,1.33,1.15); 
  XAP->ProcessAudio(ABuf->X,1.33,1.15); 
  YAP->ProcessAudio(ABuf->Y,1.33,1.15); 
 
 

 B2Speakers(Decode,ABuf,Samples,usNoOfChannels,8,0); 
 break; 

 B2Headphones(ABuf,Samples,usNoOfChannels); 
 B2Trans(ABuf,Samples[0],Samples[1], 

Buf,BBuf,Samples,usNoOfChannels); 
mples[0],Samples[1], 

   usNoOfChannels,h1fl,h2fl,h1fr,h2fr); 
if(usNoOfChannels>=4) 

   B2Trans(ABuf,Samples[2],Samples[3], 
    usNoOfChannels,h1rl,h2rl,h1rr,h2rr); 
  break; 
 case 4:  //Live input to Transaural x 2 
  if(UpdateFilter) 
  { 
    ChooseFilter(SampleRate); 
    UpdateFilter = false; 
  } 
  B2Trans(ABuf,Samples[0],Samples[1], 
    usNoOfChannels,h1fl,h2fl,h1fr,h2fr); 
  break; 
 default: //if none of the above 
  B2Speakers(Decode,ABuf,Samples,usNoOfChannels,8,0); 
  break; 
} 
Table 6.19 Decoding switch statement in the example application 
 

To look at the code in its entirety, this example application is given in the 

Appendix. 

6.5 Conclusions 

Writing the application in this modular fashion makes the potentially complex 

audio processing function much easier to manage and change, if necessary, 

 case 1: //Ambisonics to Binaural 
  B2Headphones(ABuf,Samples,usNoOfChannels); 
  break; 
 case 2: //Ambisonics to Binaural to Transaural x 2 
  if(UpdateFilter) 
  { 
    ChooseFilter(SampleRate); 
    UpdateFilter = false; 
  } 
 
 
    usNoOfChannels,h1fl,h2fl,h1fr,h2fr); 
  break; 
 case 3: //Ambisonics to Binaural x 2 to Transaural x 4 
  if(UpdateFilter) 
  { 
    ChooseFilter(SampleRate); 
    UpdateFilter = false; 
  } 
  if(UpdateRearFilter) 
  { 
    ChooseRearFilter(SampleRate); 
    UpdateRearFilter = false; 
  } 
  B2Headphones4(A
  B2Trans(ABuf,Sa
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and has resulted in a large library of functions and classes that can be used to 

 application very quickly. 

 

st convolution algorithm, and the utilisation of the Intel 

 the 

stead (Intel, 2003b)), 

the  

proces

 

Most o as carried out in Matlab and 

Sim  

Chapte

custom r 

Binaur

based

invalua

filte

 

create a working multi-channel audio

Due to the use of the fa

Signal Processing Library (although Intel have now discontinued this, and

Intel Integrated Performance Primitives must be used in

 implemented surround sound system will run on Intel Pentium II

sors and faster, even when decoding to eight or more speakers. 

f the Ambisonic algorithmic testing w

ulink, but regarding sound quality, the software libraries described in this

r work well and without audio glitches.  It must also be noted that using 

 C software was the only way to test and evaluate the Transaural o

al decoders in real-time due to the lack of a real-time (that is, frame 

) overlap add convolution function in Simulink, so this software was 

ble in the rapid evaluation and testing of the crosstalk cancellation 

rs described in Chapter 5. 
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Chap

7.1 I

This th

surrou

1. 

, the 

2. ntal 1st order 
d order 

 by 

ally, and later by Noisternig et al. (2003), 

none of this work takes into account the correct presentation of the 

latera addressed in point 1, above. 

3. Only d decoding of 

and no 

psychoacoustically correct decoding software for irregular arrays exists. 

ch as follows: 

1992) 

 Ambisonic 

decoders for irregular speaker arrangements using the velocity and 

h 

d in 

esign 

of multi-channel decoders.  This form of decoder is not strictly 

Ambisonic, as it does not conform to the Ambisonic definition as 

described by Gerzon & Barton (1998) and described in section 3.3.1, 

but will allow for the further optimisation of the B-Format decoding 

ter 7 - Conclusions 

ntroduction 

esis has identified the following problems with the current state of 

nd sound systems (as described in Section 3.4): 

Although Gerzon and Barton (1992) suggested a number of 

optimisation equations for use with irregular speaker arrangements

equations are difficult to solve, and so no further research seems to 

have been carried out in this area. 

At least four speakers must be used to decode a horizo

signal, and six speakers must be used to decode a horizontal 2n

system and although the conversion to binaural has been done

McKeag & McGrath (1996) initi

lisation parameters which has been 

a handful of software utilities for the encoding an

Ambisonic material are available (McGriffy, 2002), 

These problems have been addressed in this resear

1. A method of solving the equations given by Gerzon and Barton (

has been demonstrated that simplifies the design of

energy vector criterion as described by Gerzon & Barton (1992) whic

also corrects the problem of low and high frequency decoder 

discrepancies as shown in section 5.3. 

2. Also, a new method of HRTF analysis has been developed in order to 

differentiate between decoders designed using the method describe

point 1, above.  This data has then been utilised directly in the d
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process than is possible using the original velocity/energy vector theory 

(i.e. more frequency bands can be used). 

3. The use of B-format and higher order Ambisonic encoded signals as a 

carrier format for Binaural and Transaural reproduction systems has 

been demonstrated.  The optimisation of both Binaural and Transaural 

techniques through the use of inverse filtering has been formulated, 

with the transaural reproduction technique benefiting particularly from 

this technique.  Also, a new Ambisonic to four speaker Transaural 

decode has been formulated and discussed, although sound quality 

 used in 

onic carrier signal over: 

The de

7.2 Ambisonics Algorithm development 

This project has concentrated on t

surround sound format based on the Ambisonic system.   

 

The traditional method of analysing and optimising Ambisonic decoders is 

through the use of the energy and velocity vector theories.  The algorithmic 

development in this report, in the most part, has been centred on the use of 

HRTF data in order to analyse and optimise the performance of the Ambisonic 

decoders directly.  This form of analysis was shown, in Chapter 5, to give 

results that backed up the original energy and velocity vector theory.   

 

issues have hindered this work, possibly due to the HRTF set

this research, and so work in this area is still ongoing. 

4. Software utilities have been implemented for both the design of 

decoders for irregular speaker arrays, and the replaying of the 

Ambis

a. Headphones 

b. Two or four speaker Transaural 

c. Multi-speaker, optimised, Ambisonic arrays. 

tails of these achievements are discussed below. 

he decoding of a hierarchical based 
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Figure 7.1 Recommended loudspeaker layout, as specified by the ITU. 

 

That is, if an Ambisonic decoder was optimised using the energy and velocity 

vectors, then this result also gave a very good match when analysed using the 

HRTF method.  A number of interesting observations were made from this 

experiment: 

• Although a standard ITU five speaker arrangement was used (as 

shown in Figure 7.1) in the analysis and optimisation stages, the 

velocity vector analysis gave a perfect low frequency match for the 

decoder, as shown in Figure 7.2.  This was surprising as there is such 

a large speaker ‘hole’ at the rear of the rig. 

• However, the HRTF analysis showed some error in the rear of the 

sound fields reproduction, which seems to show a more realistic resu

as demonstrated in Figure 7.3. 

 

lt, 

 
Figure 7.2 Low frequency (in red) and high frequency (in green) analysis of an 

optimised Ambisonic decode for the ITU five speaker layout. 
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Figure 7.3 A graph showing a real source’s (in red) and a low frequency decoded 
source’s (in blue) inter aural time differences. 

 

Also, a number of benefits were found due to the inherent increased flexibility 

of the HRTF analysis technique when compared to the analysis using the 

energy and velocity vectors.  Using the HRTF technique, the effect of head 

movements could be analysed in a quantitative manner.  This can prove 

invaluable when trying to differentiate between a number of potentially optimal 

sets of decoder coefficients, and significant differences can be observed.  For 

example, see Figure 7.4 which shows a comparison between two sets of 

optimised decoder coefficients (using energy and velocity vector theory) and 

their analytical performance under head rotation.  One prominent feature of 

Figure 7.4 can be seen if the low frequency time difference plots for a source 

at 00 are observed.  The second coefficients response to head rotation shows 

that the time difference stays at roughly zero samples no matter what direction 

the listener is facing, indicating that the source is tracking with the listener.  

However, the first coefficients low frequency graphs shows that the time 

difference of a source at 00 changes in the same way as a real source would, 

that is, the source does not track with the listener and more correct cues are 

presented. 
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 Coefficient Set 1

 Coefficient Set 2

 
Figure 7.4

 

 HRTF Simulation of head movement using two sets of decoder 
coefficients. 
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Su nce 

can giv

previo

 

Although the Vienna decoding optimisation technique (using the velocity and 

t 

this paper’s publication.   

 tool, 

nd 

ithout head-turning considerations.   

or 

, source. 

ening to

recording. 

Although a very small test base was used, decoders optimised using both 

energy/velocity vectors and HRTF data directly, via the Tabu search 

algorithm, were shown to outperform the reference decoder in both tests.  The 

best performing decoder in test 1 was an expected result, after observing the 

performance of the decoder using HRTF data.  However, the decoder that 

was chosen unanimously as the preferred choice when auditioning pre-

recorded material was not as easy to predict.  Reasons for this may be: 

 

best, w

depen

ch observed variations between different decoders’ analytical performa

e more indications as to how well the decoder will perform than 

us techniques allow.   

energy vectors) was proposed in 1992, very little (if any) Vienna decoders 

have been calculated and used, mainly due to both the mathematical 

complexity in deriving decoder coefficients using this method and the fact tha

Gerzon’s paper gave results for a speaker layout very different from the ITU 

standard, which was proposed after 

 

To this end, software based on a Tabu search algorithm was developed that, 

once the five speaker positions were entered, would calculate optimised 

decoders automatically.  This heuristic mechanism has proved a valuable

and once the program was written to optimise decoders using the Vienna 

equations, it could easily be adapted to use the HRTF method, both with a

w

 

A limited set of formal listening tests have been carried out on a number of 

decoders optimised using the two techniques described above, as a precurs

to further research in this area.  Two tests were carried out: 

1. Perceived localisation of a panned, dry

2. Decoder preference when list  an excerpt of a reverberant 

1. The most accurate decoder may not be the one that actually sounds

hen replaying pre-recorded material, and will be material 

dant. 
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2. It was noticed that the two best (analytically speaking) performing 

when auditioned in the sweet-spot, which was not apparent with the 

ed 

This re  for 

spatial

availab  

order t

and

 

Overa

can reproduce phantom images both to the side and behind the listener.  

Howev  

decod

differe d in this test (especially for test 1). 

 

It has 

order d

decod

below. 3) and another optimised using the 

Tabu search methodology described above. 
n (2003) 

optimised decoders exhibited a slightly uncomfortable, in-head, sound 

preferred decoder.  This effect disappeared when the listener mov

slightly off-centre. 

sult suggests that when designing decoders artistically, rather than

 accuracy, other parameters may need to be taken into account or be 

le to the user so intuitive control of the decoder can be carried out in

o alter the spatial attributes of the presentation (such as spaciousness 

 perceived depth, for example). 

ll the tests were encouraging and showed that the Ambisonic technique 

er, a much larger test base should be used to further test the new

ers, along with more source positions, due to the reasonably subtle 

nces between the decoders use

also been shown how this software can be adapted to optimise higher 

ecoders for irregular arrays, as described by Craven (2003) and two 

ers for such a system (using 4th order circular harmonics) are shown 

  One suggested by Craven (200

Decoder optimised using Tabu Search Decoder proposed by Crave

 
Figure 7.5 Energy and Velocity vector analysis of two 4th order, frequency 

independent decoders for an ITU five speaker array.  The proposed 
Tabu search’s optimal performance with respect to low frequency 
vector length and high/low frequency matching of source position can 
be seen clearly. 
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7.2.1 Further Work 

This project has raised a number of questions and results that require future 

work: 

1. Altering the coefficients of decoders (i.e. their virtual microphone 

patterns) can drastically alter how reverberant a recording is perceived

to be (as well as altering other spatial attributes).  This is probably 

related to the amount of anti-phase components being reproduced fro

speakers, but needs further work to the relationship between mor

complex spatial attributes and decoder coefficients can be formulated.. 

2. The uncomfortable, ‘in-head’ perception reported by the listening test 

subjects when listening to pre-recorded material requires further wor

which could be coupled into a study of how optimising decoders affects

its off-centre performance. 

3. Altering the optimisation criterion to take into account off-centre 

positions could be i

 

m 

e 

k 

 

nvestigated so determine whether the sweet area of 

the system can be increased. 

4. A study of the higher order decoders, such as the one proposed by 

Craven (2003), or decoders optimised using the Tabu search method, 

as described in section 5.3.4, in order to evaluate what effect higher 

order components have, and whether an upper limit, with respect to 

harmonic order, can be judged. 

7.3 Binaural and Transaural Algorithm Development 

7.3.1 B-format to Binaural Conversion 

The main optimisation method employed using the decoding technologies 

based on binaural techniques is that of inverse filtering.  This is needed for the 

HRTF set used in this report due to the noticeable colouration of the sound 

perceived when these HRTFs are used.  The inverse filtering technique works 

well in improving the quality of these filters, while maintaining their 

performance, as the differences between the ears remain the same and the 

pinna filtering is likely to be incorrect when compared to that of a listener’s (in 

fact, the likelihood of the pinna filtering being the same is extremely slim, if not 

possible).  However, the B-format HRTFs created (see Figure 7.6) do give im
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the impression of a more spatial headphone reproduction, when compa

listening in conventional stereo, even though these are the anechoic forms of 

the filters.  This is especially true when listening to sounds recorded in 

reverberant fields as the ear/brain system will now receive more coherent 

cues than when mixing the B-format to it’s stereo equivalent (which is based

on mid and side microphone signals and relies on the crosstalk between

ears which is destroyed using headphones – see section 3.2.2 on Blumlein 

Stereo for more details).  Two recordings have been obtained from the 

company Serendipity (2000) where recordings of the musicians were made

Lincoln Cathedral using both 

red to 

 

 the 

 in 

a SoundField microphone and a binaural, in-ear 

system, simultaneously.  Although the binaural recording was not from the 

n, a binaural sound artist, 

uld be 

same position (it was carried out by Dallas Simpso

who tends to move around often during recordings for artistic effect), a 

qualitative comparison of the spatial qualities of the two recordings co

made over headphones.  

 
Figure 7.6 B-format HRTF filters used for conversion from B-format to bina

decoder. 
 

ural 
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This confirmed that the B-format to binaural system seems to perform 

favourably when compared to the plain binaural system, although good out 

head effects are still difficult to achieve with both recordings.  This is not due 

to algorithmic erro

of 

rs, but to the fact that the ear/brain system isn’t receiving 

nough coherent cues, and it is interesting as the work by Lake (McKeag & 

ith their large hall 

imp s

impuls

7.3.2 

On  t

chann

employing the filter design techniques outlined and discussed in Chapter 5.  

The inverse filtered crosstalk cancellation filters perform better when 

auditioning standard binaural material when compared to binauralised B-

Format material, with colouration of the sound being noticeable when replying 

B-Format in this way, although the colouration is not noticeable when 

auditioning either the B-Format to binaural, or binaural to crosstalk cancelled 

material in isolation. 

 

As mentioned in Chapter 5, pinna errors seem to worsen the system’s 

accuracy and, to this end, the Ambiophonics system employs a pinna-less 

dummy head in the calculation of the inverse filters for the crosstalk 

cancellation, and in the recording of the event itself (Glasgal, 2001).   

7.3.3 Binaural to Four Speaker Transaural 

The binaural to four speaker transaural system has an interesting effect.  The 

testing of this system has mainly been on the front and rear pair of a standard 

5.1 setup as this speaker array is readily available for quick testing (that is, 

at +

re shown in Figure 7.7 where an overall level difference can be seen 

e 

e

McGrath, 1997) has shown that out of head images are possible using 

headphones alone.  However, they do restrict themselves to recording the 

impulses of ‘good’ listening rooms for this purpose, w

ul e responses seeming no more out-of-head than their smaller room 

es (Lake DSP, 1997). 

Binaural to Two Speaker Transaural 

ce he B-format to binaural transform has been executed, the resulting two 

els can then be played over a transaural reproduction system, 

speakers /- 300 and +/- 1100).  The B-format to four speaker binaural filters 

a

between the two sets of filters.  This is due to the front decode containing th
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combined response of five speakers and the rear decode containing only the 

combined response of three, which is due to the virtual speakers at +/- 900 

being assigned to the front hemisphere decoder (a regular eight speaker a

was simulated).  

 

When carrying out A/B comparisons between the two speaker and four 

speaker systems (note, that the sound colouration problems mentioned abov

are still present), a number of points are noticeable: 

• The four speaker crosstalk cancelled decode produces images furth

away from the listener. 

• The four speaker decode also has a more open, surrounding sound (a

one would expect from adding the rear speakers). 

• The localisation seems slightly clearer and more precis

seems to be a little dependent on the type of material used in testing

rray 

e 

er 

s 

e (although this 

). 

 
Figure 7.7 B-format HRTF filters used for conversion from B-format to binaural 

decoder. 
 

Much of this is probably due to the increase in localisation cue consistency 

associated with splitting the front and rear portions of the decode and 
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reproducing this from the correct portion of the listening room (that is, the rear 

 

ge or a 

to 

nic 

 

 

es 

7)). 

ystem 

that, although possessing very good 

ma d still 

get

experiencing an improved version.  However, it must also be noted that, as 

not

its 

inv

speaker feeds come from behind and the front portion of the decode comes 

from in front), although the ‘moving back’ of the material is an interesting

effect: it is not yet certain whether it is a ‘moving back’ of the sound sta

more realistic sense of depth that is being perceived.  It must also be noticed 

that this effect only occurs when the rear speakers are engaged.  That is, it is 

not noticed when just changing the front pair of speakers’ filters from five 

eight speaker virtual decodes, meaning that it is not due to the ‘folding back’ 

of the rear speakers into the frontal hemisphere in the two speaker, eight 

virtual speaker, decode.  It should also be noted that because the Ambiso

system is designed so that the sum of the speaker outputs at the ear of the

listener (in the centre of the array) produce the correct psychoacoustic cues 

(as far as is possible), this makes it particularly suited to the 

binaural/transaural playback system, as this should make the system less 

dependent on the quality of the actual speaker simulation.  This is in contrast

to the simulation of the five speakers of the 5.1 system over headphon

(such as the Lake developed Dolby Headphones system (Lake DSP, 199

 

One other promising feature of the four speaker crosstalk cancellation s

is that if the speaker span described above is used (+/- 300 and +/- 1100), 

although the most ‘correct’ listening experience is found in the middle of the 

rig, the system still produces imaging outside of this area.  This is in contrast 

to the single +/- 30 speaker placement 

imaging in the sweet area, has virtually no imaging off this line.  This would 

ke this setup more desirable for home use where other listeners coul

 a reasonable approximation to the sound field, but with the central listener 

mentioned in chapter 5, the virtual imaging of the filters created for +/- 300 is 

 as accurate as those created for a smaller span (such as +/- 30), although 

frequency response does not lack (or boost depending on the level of 

erse filtering used) lower frequencies as much. 
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7.3.4 Further Work 

A number of optimisations have been suggested for the crosstalk cancellatio

system, where much less work has been carri

n 

ed out when compared to 

tandard binaural audio reproduction systems, mostly striving for the 

irkby 

ation 

e 

 

single 

rs are set up in an optimum configuration (that is, 

losely spaced).  Nevertheless, this is still not the whole picture.  The single 

inverted filters show (mathematically speaking) that no bass boost is 

perceived by the listener, although it is noticed in reality, and the double 

inverse filtering takes away too much bass response.   A filter part way 

between these two extremes is needed, and this is the next step in the 

development of the crosstalk cancellation filter structures.  Also, much work is 

still needed in how it is that the listener actually perceives the sound stage of 

a crosstalk cancelled system as a number of interesting ‘features’ have been 

noted during informal listening tests.   

• When listening to straight binaural pieces (where the crosstalk cancellation 

system still works best), good distance perception is apparent, with 

sources able to appear closer and further away than the speakers actually 

are. 

• Room reflections can have an interesting effect on the playback.  If the two 

speakers are against the wall, then the perceived material is, for the most 

part (see above), located in a semi-circle around the front of the listener.  

However, if the speakers are moved inwards, then the material is generally 

still perceived towards the back of the room.  In this way, it is as if the 

room is superimposed onto the recorded material. 

s

minimisation of the use of the regularisation parameter as described by K

et al. (1999) and Farina et al. (2001).  This is because, although regularis

accounts for any ill-conditioning that the system may possess, it is at th

expense of crosstalk cancellation accuracy.  This can have the effect of the 

images pulling towards the speakers at these frequencies (Kirkby et al, 1999). 

In this report a number of inverse filtering steps were taken where 

inversion was used to reduce regularisation, and double inversion used to 

remove the need for regularisation completely.  However, this has the effect of 

altering the frequency response of the crosstalk cancelled system quite 

noticeably when the speake

c
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These are two situations that need further investigation, as they may hold 

eption models, one attribute that can be 

ifficult to synthesise in audio presentations. 

l, 

lthough much of this could be attributed to the filters used in the HRTF 

peaker/microphone combination it may be possible to achieve a more out-of-

, 

ation, removing the need for complex dynamic filter changing in real-

me (where careful interpolation is needed to eliminate audible artefacts when 

more clues as to our distance perc

d

 

Overall, it is the original Ambisonic system that sounds the most natura

a

processing.  With filters recorded in a non-anechoic room and a better 

s

head experience, especially if accompanied with some form of head-tracking

where the rotation could be carried out using a standard B-format 

transform

ti

moving between the different HRTF filter structures) as recently demonstrated 

by Noisternig et al (2003). 
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Appendix 

Chapter 9 - Appendix 

investigation.  A list of all code is not given due to the extensive amount of C 

ant programs are given 

hat are not present.  The 

 in the first part of this appendix, followed by two 

or the Windows operating system. 

 Phase differences created in 

 

Speaker Feeds 
hase shifted versions 

/2); 

ls arriving at Ears 
ghtd; 

Right + Leftd; 

); 

,2) 

); 

In this appendix, example code is given for selected programs used in this 

and Matlab code used during this research, but signific

ms tso as to aid in the reproduction of the progra

Matlab script code is given

programs written in C++ f

9.1 Matlab Code 

9.1.1 Matlab Code Used to Show
Blumlein’s Stereo 

%Blumlien Stereo Phase differences 
%Showing amplitude differences at a 
%speaker converted to phase differences
%at the ears of a listener 
 
N = 1024; 
fs = 1024; 
n=0:N; 
f = 2; 
 
%Create Left
%Along with p

 and Right 

Left = sin(f*2*pi*n/fs); 
Leftd = sin(f*2*pi*n/fs - pi/2); 
Right = 0.3 * sin(f*2*pi*n/fs); 
Rightd = 0.3 * sin(f*2*pi*n/fs - pi
 
%Sum Example Signa
LeftEar = Left + Ri
Right
 

Ear = 

%Plot Speaker Signals 
figure(1) 
clf; 
subplot(2,1,1) 
plot(Left)
hold on 

; 

plot(Right,'r'); 
legend('Left Speaker','Right Spea
ylabel('Amplitude'); 

ker'

xlabel('Samples'); 
axis([0 N -1.2 1.2 ]); 
 
%Plot Signals Arriving at Ears 
subplot(2,1
plot(LeftEar); 
hold on; 
plot(RightEar,'r'); 
legend('Left Ear','Right Ear'

 - 269 - 



Appendix 

ylabel('Amplitude'); 
xlabel('Samples'); 

ple Blumlein Spatial 
ation 

al Equalisation 
in Stereo 

  = sin(angle); 
  = cos(angle); 

- Dif)/1.13; 
1.13; 

s(Sum)); 

d','Side'); 

); 

); 

axis([0 N -1.2 1.2 ]); 

9.1.2 Matlab Code Used to Demonstrate Sim
Equalis

%Example of Blumleins Spati
%used to align auditory cues 
 
angle=0:2*pi/127:2*pi; 
 
Sum   
Dif   
 
Left    = (Sum 
Right   = (Sum + Dif)/
 
%Angle Offset used in spatial EQ 
offset = pi/16; 
 
%Derive Left and Right Speaker feeds for both 
%Low and High frequencies 
SumL = (sin(pi/4-offset)*Sum+cos(pi/4-offset)*Dif); 
SumH = (sin(pi/4)*Sum+cos(pi/4)*Dif); 
 
%Plot Mid and Side Signals 
figure(1) 
clf; 
polar(angle,ab
hold on 

bs(Dif),'r'); polar(angle,a
legend('Mi
FSize = 16; 
Co = 0.4; 
text(Co,0,'+','FontSize',FSize); 
text(-Co,0,'-','FontSize',FSize+4); 
text(0,-Co,'+','FontSize',FSize); 
text(0,Co,'-','FontSize',FSize+4); 
 
%Plot M+S and M-S 
figure(2) 
clf; 
polar(angle,abs(Right)); 
hold on 
polar(angle,abs(Left),'r'); 
legend('Sum of MS','Difference of MS'); 
FSize = 16; 
Co = 0.5; 
text(0,Co,'+','FontSize',FSize); 

,'FontSize',FSize+4text(0,-Co,'-'
text(Co,0,'+','FontSize',FSize); 

','FontSize',FSize+4text(-Co,0,'-
 
%Plot Low and High Frequency Versions 
%of the Left and Right Speaker Feeds 
figure(3) 
clf; 
polar(angle,abs(SumL)); 
hold on; 
polar(angle,abs(SumH),'r'); 
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legend('Low Frequency Pickup','High Frequency Pickup'); 

cs 

esenting X,Y,Z and  
s for W,X,Y and Z B-format signals 

; 

 

 

; 

 

im(i-1))*cos(Elev(j-1)); 
b  ),XY(a  ,b  ),XZ(a  ,b  )]= ... 

   sph2cart(Azim(i-1),Elev(j-1),abs(r)); 
=cos(Azim(i-1))*cos(Elev(j)); 
(a+1,b  ),XY(a+1,b  ),XZ(a+1,b  )]= ... 

Azim(i-1),Elev(j  ),abs(r)); 
 ))*cos(Elev(j)); 

  ),XY(a+2,b  ),XZ(a+2,b  )]= ... 
art(Azim(i  ),Elev(j  ),abs(r)); 
m(i  ))*cos(Elev(j-1)); 

a+3,b  ),XY(a+3,b  ),XZ(a+3,b  )]= ... 
2cart(Azim(i  ),Elev(j-1),abs(r)); 

cos(Elev(j-1)); 
+4,b  ),XZ(a+4,b  )]= ... 

 sph2cart(Azim(i-1),Elev(j-1),abs(r)); 

1;1;1;1;0]; 

b)=[0;0;0;0;0]; 

zim(i-1))*cos(Elev(j-1)); 
  ,b  ),YZ(a  ,b  )]= ... 
(i-1),Elev(j-1),abs(r)); 

in(Azim(i-1))*cos(Elev(j)); 
YY(a+1,b  ),YZ(a+1,b  )]= ... 
Azim(i-1),Elev(j  ),abs(r)); 

r=sin(Azim(i  ))*cos(Elev(j)); 

9.1.3 Matlab Code Used To Plot Spherical Harmoni
%Plot 0th and 1st Order Spherical Harmonics 
%Reolution 
N=32; 

ys %Setup Angle Arra
Azim = 0:2*pi/(N-1):2*pi; 

pi/(N-1):pi/2; Elev = -pi/2:
 

o create Matrices repr%Loop Used t
olour Value%C

a=1; 
b=1; 
for i=2:N 
    for j=2:N 
        r=1/sqrt(2); 

         [WX(a  ,b  ),WY(a  ,b  ),WZ(a  ,b  )]= ...
m(i-1),Elev(j-1),1/sqrt(2))            sph2cart(Azi

        [WX(a+1,b  ),WY(a+1,b  ),WZ(a+1,b  )]= ... 
);            sph2cart(Azim(i-1),Elev(j  ),1/sqrt(2)

2,b  ),WZ(a+2,b  )]= ...         [WX(a+2,b  ),WY(a+
            sph2cart(Azim(i  ),Elev(j  ),1/sqrt(2));

         [WX(a+3,b  ),WY(a+3,b  ),WZ(a+3,b  )]= ...
i  ),Elev(j-1),1/sqrt(2))            sph2cart(Azim(

        [WX(a+4,b  ),WY(a+4,b  ),WZ(a+4,b  )]= ... 
);            sph2cart(Azim(i-1),Elev(j-1),1/sqrt(2)

        if(r>=0) 
            WC(:,b)=[1;1;1;1;0]; 
        else 
            WC(:,b)=[0;0;0;0;0]; 
        end 

         
        r=cos(Az

[XX(a  ,        
         

        r
        [XX
            sph2cart(

 r=cos(Azim(i        
        [XX(a+2,b
            sph2c

os(Azi        r=c
X(        [X

            sph
        r=cos(Azim(i-1))*

[XX(a+4,b  ),XY(a        
           
        if(r>=0) 

     XC(:,b)=[       
        else 
            XC(:,

         end
         
        r=sin(A
        [YX(a  ,b  ),YY(a

    sph2cart(Azim        
        r=s
        [YX(a+1,b  ),

     sph2cart(       
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        [YX(a+2,b  ),YY(a+2,b  ),YZ(a+2,b  )]= ... 
art(Azim(i  ),Elev(j  ),abs(r)); 

n(Azim(i  ))*cos(Elev(j-1)); 
3,b  ),YY(a+3,b  ),YZ(a+3,b  )]= ... 
2cart(Azim(i  ),Elev(j-1),abs(r)); 

cos(Elev(j-1)); 
X(a+4,b  ),YY(a+4,b  ),YZ(a+4,b  )]= ... 
 sph2cart(Azim(i-1),Elev(j-1),abs(r)); 

,b)=[1;1;1;1;0]; 

b)=[0;0;0;0;0]; 

lev(j-1)); 
  ,b  ),ZZ(a  ,b  )]= ... 

          sph2cart(Azim(i-1),Elev(j-1),abs(r)); 
        r=sin(Elev(j)); 

        r=sin(Elev(j)); 
        [ZX(a+2,b  ),ZY(a+2,b  ),ZZ(a+2,b  )]= ... 

  sph2cart(Azim(i  ),Elev(j  ),abs(r)); 
sin(Elev(j-1)); 

,b  ),ZY(a+3,b  ),ZZ(a+3,b  )]= ... 
2cart(Azim(i  ),Elev(j-1),abs(r)); 

1)); 
ZY(a+4,b  ),ZZ(a+4,b  )]= ... 
Azim(i-1),Elev(j-1),abs(r)); 

;1;1;1;0]; 

0]; 

equal 

,YZ,YC); 

            sph2c
        r=si
        [YX(a+
            sph
        r=sin(Azim(i-1))*
        [Y
           
        if(r>=0) 
            YC(:
        else 
            YC(:,
        end 
 
        r=sin(E
        [ZX(a  ,b  ),ZY(a
  

        [ZX(a+1,b  ),ZY(a+1,b  ),ZZ(a+1,b  )]= ... 
            sph2cart(Azim(i-1),Elev(j  ),abs(r)); 

          
r=        

        [ZX(a+3
ph            s

        r=sin(Elev(j-
4,b  ),        [ZX(a+

            sph2cart(
        if(r>=0) 

ZC(:,b)=[1            
        else 
            ZC(:,b)=[0;0;0;0;
        end 

       
        b=b+1; 
    end 
end 
%Plot W 
figure(1) 

WX,WY,WZ,WC); fill3(
ght; li

lighting phong; 
shading interp; 
axis equal 
is off; ax

view(-40,30); 
axis([-1 1 -1 1 -1 1]); 
%Plot X 
figure(2) 
fill3(XX,XY,XZ,XC); 
light; 
lighting phong; 

ing interp; shad
is ax

axis off; 
view(-40,30); 
axis([-1 1 -1 1 -1 1]); 
%Plot Y 
figure(3) 
ll3(YX,YYfi

light; 
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lighting phong; 
shading interp; 
axis equal 

p; 

 1]); 

; 
:2*pi; 

caps):2*pi/(noofcaps):2*pi; 
os(AOffset); 

 * sin(-AOffset); 

=yplot(:,a) + POffsety(a); 

axis off; 
view(-40,30); 
axis([-1 1 -1 1 -1 1]); 
%Plot Z 
figure(4) 
fill3(ZX,ZY,ZZ,ZC); 
light; 
lighting phong; 
shading inter
axis equal 
axis off; 
view(-40,30); 
axis([-1 1 -1 1 -1
 

9.1.4 Code used to plot A-format capsule responses (in 2D) using 
oversampling. 

%scaling 
sc=1.5; 

rsampling %ove
fsmult = 64; 
%number of capsules 
noofcaps = 4; 
%sampling frequency 
 = 48000 * fsmult; fs

h=figure(1) 
h1=figure(3) 
set(h,'DoubleBuffer','on'); 
set(h1,'DoubleBuffer','on'); 
i=0; 
%capsule spacing 
spacing = 0.012; 

tion %resolu
0*32N=36

n=0:2*pi/(N-1)
n=n'; 
 
AOffset = 2*pi/(2*noof

g * cPOffsetx = spacin
pacingPOffsety = s

 
xplot = zeros(N,noofcaps); 

ofcaps); yplot = zeros(N,no
for a=1:noofcaps 
   CPolar = 0.5*(2+cos(n+AOffset(a))); 
   [xplot(:,a),yplot(:,a)] = pol2cart(n,CPolar); 

 =xplot(:,a) + POffsetx(a);    xplot(:,a)
plot(:,a)    y

end 
 
%For loop uncomment out next line and comment out  
%the SignalAngle = 5... 

gle = 0:2*pi/32:2*pi; for SignalAn
%SignalAngle = deg2rad(0); 
   i=i+1; 
 
   figure(1) 
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   clf 
   hold on;     

'LineWidth',1.5); 
alAngle) * 2; 

* 2; 
]); 

tle('Polar Diagram of A-Format and signal direction'); 

inIndex = round(SignalAngle*(N-1)/(2*pi))+1; 
 pos = 1; 

noofcaps 
if a > noofcaps/4 & a <= 3 * noofcaps / 4 

; 

        + (yplot(GainIndex,a)-POffsety(a))^2); 
a) = (sqrt((xplot(GainIndex,a)-POffsetx(a))^2 ... 

 + (yplot(GainIndex,a)-POffsety(a))^2)) * pos;    

sc]); 

 (spacing * Gain); 
fs/340) + (spacing*fs/340) + 1; 

); 
ank8 = zeros(round(2*spacing*fs/340) + 1,1); 

s 
round(SDelay(a))) = ... 
nk(round(SDelay(a))) + Gain(a)/2; 

      FilterBank8(round(SDelay(a))) = ... 

,1) 
Bank); 

mpulses (8 imp taken from X rep)'); 

t(FilterBank); 
FilterBank/noofcaps,512*fsmult))); 
FilterBank8/noofcaps,512*fsmult))); 

:512*fsmult/(2*fsmult))) 
ftarrow Omni Rep', ... 
,'left');    

24000,g(1:512*fsmult/(2*fsmult)),'r') 
*24000/255,g(x),'Figure of 8 Rep \rightarrow', ... 

ignment','right'); 

 
   plot(xplot,yplot,
   signalx = cos(Sign
   signaly = sin(SignalAngle) 
   plot([signalx,0],[signaly,0
   axis equal; 
   ti
    
   Ga
  
   for a=1:
      
         pos = -1; 
      else 
         pos = 1; 
      end 
      plot(xplot(GainIndex,a),yplot(GainIndex,a),'p','LineWidth',3)
      Gain(a) = sqrt((xplot(GainIndex,a)-POffsetx(a))^2 ... 
  
   Gain8(
         
   end 
   axis([-sc,sc,-sc,
    
   Delay = spacing -

Delay*   SDelay = (
   FilterBank = zeros(round(2*spacing*fs/340) + 1,1
   FilterB
 
   for a=1:noofcap
      FilterBank(
          FilterBa

          FilterBank8(round(SDelay(a))) + Gain8(a)*sqrt(2);       
      CD(a) = Delay(a);  
      CG(a) = Gain(a); 
   end 
    
   figure(3) 
 clf;   

   subplot(2,1
lter   stem(Fi

   ylim([-4 4]); 
   hold on; 
   stem(FilterBank8,'r'); 

and Figure of 8 i   title('Omni 
   subplot(2,1,2) 

nversefil   invFB = i
   f = 20*log10(abs(fft(

*log10(abs(fft(   g = 20
   h = 1./f; 
    
   x = 120; 
   plot(0:24000/255:24000,f(1
 text(x*24000/255,f(x),'\le  

       'HorizontalAlignment'
   hold on; 

0:24000/255:   plot(
 text(x  

       'HorizontalAl
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   title('Omni and Figure of 8 responses'); 
   

 too!!    

f; 
+ xplot(:,2) + xplot(:,3) + xplot(:,4))/2; 
 + yplot(:,2) + yplot(:,3) + yplot(:,4))/2; 

t(:,1) + xplot(:,2) - xplot(:,3) - xplot(:,4))*sqrt(2); 
(:,1) + yplot(:,2) - yplot(:,3) - yplot(:,4))*sqrt(2); 

1) - xplot(:,2) - xplot(:,3) + xplot(:,4))*sqrt(2); 
plot(:,2) - yplot(:,3) + yplot(:,4))*sqrt(2); 

Yx,Yy,'r'); 

ted polar diagram of B Format'); 
= 0.5; 

-X'); 
,x,'+Y'); 

'); 

reate Free Field Crosstalk Cancellation Filters 

g Radius 

ds (speaker is at origin, symmetry 

cing)); 

%Left 
xr = x
yr = y; 

  
    
   ylim([-20 6]); 
   xlim([0 24000]); 
   xlabel('Frequency (Hz)'); 
   ylabel('Amplitude (dB)'); 
   pause(0.1); 
    
%remember to uncomment me
end 
 
figure(2) 
cl
Wx = (xplot(:,1) 
Wy = (yplot(:,1)
Xx = (xplo
Xy = (yplot
Yx = (xplot(:,
Yy = (yplot(:,1) - y
 
plot(Wx,Wy); 
hold on 
plot(Xx,Xy,'m'); 

-Xy,'m'); plot(-Xx,
plot(
plot(-Yx,-Yy,'r'); 
axis equal; 
title('Reconstruc
x 
text(x,0,'+X'); 
text(-x,0,'
text(0
text(0,-x,'-Y

9.1.5 Code Used to C
%Create matlab free field dipole filters 
%Speakers = +/- 30 deg 
%Distance = 1m 
%Mic spacing radius = 7 cm    (head radius) 
 
%Filter Size 
N = 1024; 

Spacin%Mic 
MSpacing = 0.07; 
%Speaker spacing +/- n degrees 

 = 30; SSpacing
%Sampling Frequency 
fs = 96000; 
%Speed of Sound in Air 
c = 342; 
%Middle of Head x & y co-or
%assumed) 
x = sin(deg2rad(SSpa
y = cos(deg2rad(SSpacing)); 
 

and Right Mic Coords 
 - MSpacing; 

 
xl = x + MSpacing; 
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yl = y; 
 
%Calculate Distances from origin (speaker) 

ference at mics using inverse square law 

e using speed of sound 
ime = rdist/c; 

ime; 
to number of samples 

reate filters 

1  
a) = 1; 

ount=count+2; 
ound(a/(sampdif*2))==a/(sampdif*2) 

      h1(a+1) = ADif^count; 
 

ampdif+1); 
= -ADif; 

=conv(h1,ht); 

 Domain Representation 

ld on 
r'); 
eWidth',2); 
idth',2); 
alk filters at +/- ',num2str(SSpacing),' degrees']); 
',' ','h2',' '); 
itude'); 

abel('Sample Number (at 96kHz, c = 342ms-1)'); 

sentation 

ineWidth',2); 

,1024))),'r:','LineWidth',2); 

esponse at +/- ',num2str(SSpacing),' degrees']); 
 (Hz)'); 
(dB)'); 

alk Cancellation Filters Using 
ring Techniques 

hrtf\ofull\elev0\'; 

rdist = sqrt(xr*xr + yr*yr); 
ldist = sqrt(xl*xl + yl*yl); 
%Calculate Amplitude dif
ADif = 1-(ldist-rdist); 
%Convert distance to tim
rt
ltime = ldist/c; 
timedif = ltime - rt
%Convert time 
sampdif = round(timedif * fs); 
 
%C
h1=zeros(1,N); 
count=1; 
for a=1:N 

 a==    if
        h1(
        c
    elseif r
  
        count=count+2;
    end 
end 
ht = zeros(1,s
ht(sampdif+1) 
h2
 

Time%Plot 
figure(1) 
clf; 
a=stem(h1); 
ho
b=stem(h2,'

'Linset(a,
set(b,'LineW
title(['x-t

('h1legend
ylabel('Ampl
xl
axis([0 1024 -1.05 1.05]); 
%Plot Frequency Domain Respre
figure(2) 
clf; 
freq=0:fs/(N-1):fs; 
plot(freq,20*log10(abs(fft(h1))),'L
hold on 
plot(freq,20*log10(abs(fft(h2
xlim([0 fs/4]); 
title(['Frequency R
xlabel('Frequency
ylabel('Amplitude 
legend('h1','h2'); 

9.1.6 Code Used to Create Crosst
HRTF Data and Inverse Filte

pinna = 1; 
d = 'd:\matlab\
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ref = wavread([d, 'L0e175a.wav']); 
pinna); 
([d, 'L0e185a.wav']); 

d, 'L0e175a.wav']); 
tfR = hrtf(:,pinna); 

L; 

win=hanning(len); 
iL=iL.*win'; 
figure(5) 
clf; 
plot(iL); 
hold on 
plot(win); 
 
L2 = conv(hrtfL,iL); 
R2 = conv(hrtfR,iL); 
win=hanning(length(L2)); 

 
figure(1) 
clf; 
plot(L2); 
hold on 
plot(R2,'r'); 
 
figure(2) 
clf; 
freqz(L2); 
figure(3) 
clf; 
freqz(R2); 
 
[h1,h2] = freqdip([L2'],[R2'],len,0,0); 
 
h1inv = inversefilt(h1,0.0); 
h1i = conv(h1,h1inv); 
h2i = conv(h2,h1inv); 
h1i = h1i((len-1024):(len+1023)); 
h2i = h2i((len-1024):(len+1023)); 
win = hanning(length(h1i)); 
h1i = h1i .* win; 
h2i = h2i .* win; 
figure(6) 
plot([h1i,h2i]); 
h1i48 = resample(h1i,48000,44100); 
h2i48 = resample(h2i,48000,44100); 
h148 = resample(h1,48000,44100); 
h248 = resample(h2,48000,44100); 
 
%Carry out test dipole simulation 
%c = wavread('h0e030a.wav'); 
%c1 = c(:,2); 

refR = ref(:,
ref = wavread
refL = ref(:,pinna); 
hrtf = wavread([
hr
hrtf = wavread([d, 'L0e185a.wav']); 
hrtfL = hrtf(:,pinna); 
 
len=4096; 
temp=zeros(1,len); 
offset=2048; 
mp(offset:offset-1+length(hrtfL))=refte

iL=inversefilt(temp); 
 

L2=L2.*win'; 
R2=R2.*win'; 
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%c2 = c(:,1); 
c1 = hrtfL; 
c2 = hrtfR; 
source=zeros(8191,2); 
source(1,1)=1; 
 
dipolesig=[conv(source(:,1),h1i)+conv(source(:,2),h2i),conv(source(:,
2),h1i)+conv(source(:,1),h2i)]; 
leftspeakerl=conv(dipolesig(:,1),c1); 
leftspeakerr=conv(dipolesig(:,1),c2); 
rightspeakerl=conv(dipolesig(:,2),c2); 
rightspeakerr=conv(dipolesig(:,2),c1); 
 
stereoout=[leftspeakerl+rightspeakerl,leftspeakerr+rightspeakerr]; 
figure(7) 
clf; 
freqz(stereoout(:,1)); 

freqz(stereoout(:,2)); 
 

9.1.7 Matlab Code Used in FreqDip Function for the Generation of 
Crosstalk Cancellation Filters 

function [h1,h2]=freqdip(tc1,tc2,FiltLength,inband,outband) 
%[h1,h2]=freqdip(tc1,tc2,FiltLength,inband,outband) 
%   Frequency Domain XTalk Cancellation Filters 
 
Lf = 500; 
Hf = 20000; 
if(nargin<3) 
    FiltLength=2048; 
    inband=0.0002; 
    outband=1; 
elseif(nargin<5) 

    outband=1; 
end     
LowerFreq=round(FiltLength*Lf/22050); 
UpperFreq=round(FiltLength*Hf/22050); 
reg=ones(FiltLength,1); 
reg(1:LowerFreq) = outband; 
reg(LowerFreq:UpperFreq) = inband; 
reg(UpperFreq:FiltLength)= outband; 
regx=0:22051/FiltLength:22050; 
figure(1) 
clf 
plot(regx,reg); 
 
c1=tc1; 
c2=tc2; 
 
fc1=fft(c1,FiltLength); 
fc2=fft(c2,FiltLength); 
fnc2=fft(-c2,FiltLength); 
 
Filt=(fc1.*fc1)-(fc2.*fc2); 
FiltDenom=1./Filt; 
 
fh1=fc1.*FiltDenom; 
fh2=fnc2.*FiltDenom; 

hold on 

    inband=0.0002; 
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w = hanning(FiltLength); 
 
h1=real(ifft(fh1,FiltLength)) .* w; 
h2=real(ifft(fh2,FiltLength)) .* w; 
 
figure(2) 
clf; 
plot(h1) 
hold on 
plot(h2,'r'); 
figure(3) 
clf 
freqz(h1,1,length(h1),44100) 
hold on 
freqz(h2,1,length(h2),44100) 
 
%Carry out test dipole simulation 
source=zeros(1024,2); 
source(1,1)=1; 
 
dipolesig=[conv(source(:,1),h1)+conv(source(:,2),h2),conv(source(:,2)
,h1)+conv(source(:,1),h2)]; 
leftspeakerl=conv(dipolesig(:,1),c1); 
leftspeakerr=conv(dipolesig(:,1),c2); 
rightspeakerl=conv(dipolesig(:,2),c2); 
rightspeakerr=conv(dipolesig(:,2),c1); 
 
stereoout=[leftspeakerl+rightspeakerl,leftspeakerr+rightspeakerr]; 
figure(4) 
plot(stereoout); 
 

9.1.8 Matlab Code Used To Generate Inverse Filters 
function res = inversefilt(signal,mix) 
%RES = INVERSEFILT(SIGNAL) 
 
if(nargin==1) 
    mix = 1; 
end 
fftsize=2^(ceil(log2(length(signal)))); 
fsignal=fft(signal,fftsize); 
 
mag = abs(fsignal); 
ang = angle(fsignal); 
 
newmag = 1./mag; 
newang = -ang; 
 
newfsignal = newmag.*exp(i*newang); 
 
newsignal = real(ifft(newfsignal,fftsize)); 
 
if(nargin==1) 
    res = newsignal(1:length(signal)); 
else 
    out = newsignal(1:length(signal));     
    a = grpdelay(out,1,fftsize); 
    b = round(sum(a)/fftsize); 
    sig = zeros(size(out)); 
    sig(b) = 1; 
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    fo = fft(out); 
    fm = fft(sig); 
 
    fomag = abs(fo); 
    fmmag = abs(fm); 
     
    foang = angle(fo); 
    fmang = angle(fm); 
     
    newmag = (mix * fomag) + ((1-mix) * fmmag); 
    newang = fmang; 
    newfft = newmag.*exp(i*newang); 
     
    fres = ifft(newfft,fftsize); 
    res = real(fres); 
    res = res(1:length(signal)); 
end 
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9.2 Windows C++ Code 

9.2.1 Code Used for Heuristic Ambisonic Decoder Optimisations 

 

#pragma hdrstop 

//------------------------------------------------------------------- 
//----------------------------MAIN.CPP------------------------------- 
//------------------------------------------------------------------- 
#include <vcl.h> 

 
#include "Main.h" 
 
#include <math.h> 
#include <fstream.h> 
//------------------------------------------------------------------- 
#pragma package(smart_init) 
#pragma link "VolSlider" 
#pragma link "RotorSlider" 
#pragma link "LevelMeter" 
#pragma resource "*.dfm" 
TForm1 *Form1; 
//------------------------------------------------------------------- 
__fastcall TForm1::TForm1(TComponent* Owner) 
        : TForm(Owner) 
{ 
        LamL=LamH=1; 
        OGainL=OGainH=1; 
        SliderLength=32768; 
        Bitmap = new Graphics::TBitmap; 
        Bitmap2 = new Graphics::TBitmap; 
        Bitmap->Height = Bevel1->Height-4; 
        Bitmap->Width = Bevel1->Width-4; 
        Bitmap2->Height = Bevel2->Height-4; 
        Bitmap2->Width = Bevel2->Width-4; 
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        MaxX = Bitmap->Width/2; 
        MaxY = Bitmap->Height/2; 
        NoOfSpeakers = 5; 
        SpeakPos[0] = 0; 
        SpeakPos[1] = Deg2Rad(30); 
        SpeakPos[2] = Deg2Rad(115); 
        SpeakPos[3] = Deg2Rad(-115); 
        SpeakPos[4] = Deg2Rad(-30); 
        ListBox1->ItemIndex=0; 
        ListBox1Click(this); 
        WGain[0] = WGainH[0] =  

(double)VolSlider1->Position/SliderLength; 
        WGain[1] = WGainH[1] =  

(double)VolSlider3->Position/SliderLength; 
        WGain[2] = WGainH[2] =  

(double)VolSlider6->Position/SliderLength; 
        XGain[0] = XGainH[0] =  

(double)VolSlider2->Position/SliderLength; 
        XGain[1] = XGainH[1] =  

(double)VolSlider4->Position/SliderLength; 
        XGain[2] = XGainH[2] =  

-(double)VolSlider7->Position/SliderLength; 
        YGain[1] = YGainH[1] =  

(double)VolSlider5->Position/SliderLength; 
        YGain[2] = YGainH[2] =  

(double)VolSlider8->Position/SliderLength; 
        RadioGroup1->ItemIndex=1; 
        VolSlider1Change(this); 
        RadioGroup1->ItemIndex=0; 
        VolSlider1Change(this); 
} 
//------------------------------------------------------------------- 
double TForm1::Deg2Rad(double Deg) 
{ 
        return (Deg*M_PI/180); 
} 
//------------------------------------------------------------------- 
void TForm1::GPaint() 
{ 
        long a,b,c,d; 
        int SpRad = 5; 
        Bitmap->Canvas->Pen->Style = psDot; 
        Bitmap->Canvas->Pen->Color = clBlack; 
        Bitmap->Canvas->Brush->Style = bsSolid; 
        Bitmap->Canvas->Brush->Color = clWhite; 
        Bitmap->Canvas->Rectangle(0,0,Bitmap->Width,Bitmap->Height); 
        Bitmap->Canvas->Ellipse(0,0,Bitmap->Width,Bitmap->Height); 
        Bitmap->Canvas->Pen->Style = psSolid; 
        Bitmap->Canvas->Brush->Style = bsSolid; 
        Bitmap->Canvas->Brush->Color = clBlue; 
        for(int i=0;i<NoOfSpeakers;i++) 
        { 
                double x,y; 
                int r = MaxY - 10; 
                x = r * cos(SpeakPos[i]) + MaxX; 
                y = r * sin(SpeakPos[i]) + MaxY; 
                Bitmap->Canvas->Rectangle( 

x-SpRad,y-SpRad,x+SpRad,y+SpRad); 
        } 
        double r8 = 0.35355339059327376220042218105242; 
        double r2 = 0.70710678118654752440084436210485; 
        double MFitnessL=0,AFitnessL=0,OFitnessL=0,VFitnessL=0,Ang; 
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        double MFitnessH=0,AFitnessH=0,OFitnessH=0,VFitnessH=0; 
        for(int i=0;i<360;i++) 
        { 
                double Rad = Deg2Rad(i); 
                WSig = 1/sqrt(2); 
                XSig = cos(Rad); 
                YSig = sin(Rad); 
                WSigL = (0.5*(LamL+ILamL)*WSig) +  

(r8*(LamL-ILamL)*XSig); 
                XSigL = (0.5*(LamL+ILamL)*XSig) +  

(r2*(LamL-ILamL)*WSig); 
                YSigL = YSig; 
                WSigH = (0.5*(LamH+ILamH)*WSig) +  

(r8*(LamH-ILamH)*XSig); 
                XSigH = (0.5*(LamH+ILamH)*XSig) +  

(r2*(LamH-ILamH)*WSig); 
                YSigH = YSig; 
 
                SpGain[0] = (WGain[0]*WSigL + XGain[0]*XSigL); 
                SpGain[1] = (WGain[1]*WSigL + XGain[1]*XSigL +  

YGain[1]*YSigL); 
                SpGain[2] = (WGain[2]*WSigL + XGain[2]*XSigL +  

YGain[2]*YSigL); 
                SpGain[3] = (WGain[2]*WSigL + XGain[2]*XSigL -  

YGain[2]*YSigL); 
                SpGain[4] = (WGain[1]*WSigL + XGain[1]*XSigL –  

YGain[1]*YSigL); 
                SpGainH[0] = (WGainH[0]*WSigH + XGainH[0]*XSigH); 
                SpGainH[1] = (WGainH[1]*WSigH + XGainH[1]*XSigH +  

YGainH[1]*YSigH); 
                SpGainH[2] = (WGainH[2]*WSigH + XGainH[2]*XSigH +  

YGainH[2]*YSigH); 
                SpGainH[3] = (WGainH[2]*WSigH + XGainH[2]*XSigH –  

YGainH[2]*YSigH); 
                SpGainH[4] = (WGainH[1]*WSigH + XGainH[1]*XSigH –  

YGainH[1]*YSigH); 
 
                P=P2=E=VecLowX=VecLowY=VecHighX=VecHighY=0; 
                for(int j=0;j<NoOfSpeakers;j++) 
                { 
                        P+=SpGain[j]; 
                        P2+=SpGainH[j]*SpGainH[j]; 
                        E+=pow(SpGainH[j],2); 
                } 
                VolLx[i]=(P*cos(Rad)*MaxX/5)+MaxX; 
                VolLy[i]=(P*sin(Rad)*MaxY/5)+MaxY; 
                VolHx[i]=(P2*cos(Rad)*MaxX/5)+MaxX; 
                VolHy[i]=(P2*sin(Rad)*MaxY/5)+MaxY; 
                if(i==0) 
                { 
                        LFVol = P/NoOfSpeakers; 
                        HFVol = P2/NoOfSpeakers; 
                } 
                for(int j=0;j<NoOfSpeakers;j++) 
                { 
                        VecLowX+=SpGain[j]*cos(SpeakPos[j]); 
                        VecLowY+=SpGain[j]*sin(SpeakPos[j]); 
                        VecHighX+=pow(SpGainH[j],2)*cos(SpeakPos[j]); 
                        VecHighY+=pow(SpGainH[j],2)*sin(SpeakPos[j]); 
                } 
                if(P && E) 
                { 
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                        VecLowX/=P; 
                        VecLowY/=P; 
                        VecHighX/=E; 
                        VecHighY/=E; 
                } 
 
                VFitnessL+=(1-((LFVol*NoOfSpeakers)/P))* 

(1-((LFVol*NoOfSpeakers)/P));//*((LFVol*NoOfSpeakers)-P); 
                if(P2) VFitnessH+=(1-((HFVol*NoOfSpeakers)/P2))* 

(1-((HFVol*NoOfSpeakers)/P2));//*((HFVol*NoOfSpeakers)-P2); 
                MFitnessL+=pow(1- 

    sqrt((VecLowX*VecLowX)+(VecLowY*VecLowY)),2); 
                MFitnessH+=pow(1- 

    sqrt((VecHighX*VecHighX)+(VecHighY*VecHighY)),2); 
                Ang=Rad-atan2(VecLowY,VecLowX); 
                if(Ang>M_PI) Ang-=(2*M_PI); 
                if(Ang<-M_PI) Ang+=(2*M_PI); 
                AFitnessL+=(Ang)*(Ang); 
                if(VecHighY || VecHighX)  

Ang=Rad-atan2(VecHighY,VecHighX); 
                if(Ang>M_PI) Ang-=(2*M_PI); 
                if(Ang<-M_PI) Ang+=(2*M_PI); 
                AFitnessH+=Ang*Ang; 
 
                VecLowX*=MaxX; 
                VecLowY*=MaxY; 
                VecHighX*=MaxX; 
                VecHighY*=MaxY; 
                VecLowX+=MaxX; 
                VecLowY+=MaxY; 
                VecHighX+=MaxX; 
                VecHighY+=MaxY; 
                if(CheckBox1->Checked) 
                { 
                        Bitmap->Canvas->Pen->Color = clRed; 
                        Bitmap->Canvas->Ellipse(VecLowX-2, 

VecLowY-2,VecLowX+2,VecLowY+2); 
                } 
                if(CheckBox2->Checked) 
                { 
                        Bitmap->Canvas->Pen->Color = clGreen; 
                        Bitmap->Canvas->Ellipse(VecHighX-2, 

VecHighY-2,VecHighX+2,VecHighY+2); 
                } 
                if(i==0||i==11||i==22||i==45||i==90||i==135||i==180) 
                { 
                        Bitmap->Canvas->Pen->Color = clBlack; 
                        Bitmap->Canvas->MoveTo(MaxX,MaxY); 
                        Bitmap->Canvas->LineTo((XSig+1)*MaxX, 

(YSig+1)*MaxY); 
                        if(CheckBox1->Checked) 
                        { 
                                Bitmap->Canvas->Pen->Color = clRed; 
                                Bitmap->Canvas->MoveTo(MaxX,MaxY); 
                                Bitmap->Canvas->LineTo(VecLowX, 

VecLowY); 
                        } 
                        if(CheckBox2->Checked) 
                        { 
                                Bitmap->Canvas->Pen->Color = clGreen; 
                                Bitmap->Canvas->MoveTo(MaxX,MaxY); 
                                Bitmap->Canvas->LineTo(VecHighX, 
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VecHighY); 
                        } 
                } 
        } 
        if(CheckBox3->Checked) 
        { 
                int Div=5; 
                Bitmap->Canvas->Pen->Color=clRed; 
                Bitmap->Canvas->MoveTo((int)VolLx[359], 

(int)VolLy[359]); 
                for(int a=0;a<360;a++) 
                { 
                        Bitmap->Canvas->LineTo((int)VolLx[a], 

(int)VolLy[a]); 
                } 
                Bitmap->Canvas->MoveTo( 

(int)((VolLx[359]-MaxX)/Div)+MaxX, 
(int)((VolLy[359]-MaxY)/Div)+MaxY); 

                for(int a=0;a<360;a++) 
                { 
                        Bitmap->Canvas->LineTo( 

(int)((VolLx[a]-MaxX)/Div)+MaxX, 
(int)((VolLy[a]-MaxY)/Div)+MaxY); 

                } 
                Bitmap->Canvas->Pen->Color=clGreen; 
                Bitmap->Canvas->MoveTo((int)VolHx[359], 

(int)VolHy[359]); 
                for(int a=0;a<360;a++) 
                { 
                        Bitmap->Canvas->LineTo((int)VolHx[a], 

(int)VolHy[a]); 
                } 
        } 
        VFitnessL=sqrt(VFitnessL/360.0f); 
        VFitnessH=sqrt(VFitnessH/360.0f); 
        AFitnessL=sqrt(AFitnessL/360.0f); 
        AFitnessH=sqrt(AFitnessH/360.0f); 
        MFitnessL=sqrt(MFitnessL/360.0f); 
        MFitnessH=sqrt(MFitnessH/360.0f); 
        OFitnessL=VFitnessL + AFitnessL + MFitnessL; 
        OFitnessH=VFitnessH + AFitnessH + MFitnessH; 
        a = Bevel1->Left + 2; 
        b = Bevel1->Top + 2; 
        c = Bevel1->Width + a -2; 
        d = Bevel1->Height + b -2; 
        BitBlt(Form1->Canvas->Handle,a,b,c,d, 

Bitmap->Canvas->Handle,0,0,SRCCOPY); 
        MFitL->Text=FloatToStrF(MFitnessL,ffFixed,5,5); 
        MFitH->Text=FloatToStrF(MFitnessH,ffFixed,5,5); 
        AFitL->Text=FloatToStrF(AFitnessL,ffFixed,5,5); 
        AFitL2->Text=FloatToStrF(AFitnessL,ffFixed,5,5); 
        AFitH->Text=FloatToStrF(AFitnessH,ffFixed,5,5); 
        VFitL->Text=FloatToStrF(VFitnessL,ffFixed,5,5); 
        VFitH->Text=FloatToStrF(VFitnessH,ffFixed,5,5); 
        OFitL->Text=FloatToStrF(OFitnessL,ffFixed,5,5); 
        OFitH->Text=FloatToStrF(OFitnessH,ffFixed,5,5); 
        LFEdit->Text=FloatToStrF(LFVol,ffFixed,3,3); 
        HFEdit->Text=FloatToStrF(HFVol,ffFixed,3,3); 
        LevelMeter1->MeterReading=(int)(LFVol*75); 
        LevelMeter2->MeterReading=(int)(HFVol*75); 
} 
//------------------------------------------------------------------- 
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void TForm1::RPaint() 
{ 
        long a,b,c,d; 
        int skip = 9; 
        Bitmap2->Canvas->Pen->Style = psDot; 
        Bitmap2->Canvas->Pen->Color = clBlack; 

        Bitmap2->Canvas->Rectangle(0,0, 
Bitmap2->Width,Bitmap2->Height); 

        for(int i=0;i<360;i+=skip) 
        { 

                        Rep1[i] = 0.5 * (0.7071 * WGain[0] +  
cos(Deg2Rad(i))*XGain[0]); 

                        Rep2[i] = 0.5 * (0.7071 * WGain[1] +  
cos(Deg2Rad(i))*XGain[1] + sin(Deg2Rad(i))*YGain[1]); 

                        Rep4[i] = 0.5 * (0.7071 * WGain[2] +  
cos(Deg2Rad(i))*XGain[2] - sin(Deg2Rad(i))*YGain[2]); 

                        Rep5[i] = 0.5 * (0.7071 * WGain[1] +  
cos(Deg2Rad(i))*XGain[1] - sin(Deg2Rad(i))*YGain[1]); 

                        Rep1[i]<0?Rep1[i]=-Rep1[i]:Rep1[i]=Rep1[i]; 
                        Rep2[i]<0?Rep2[i]=-Rep2[i]:Rep2[i]=Rep2[i]; 
                        Rep3[i]<0?Rep3[i]=-Rep3[i]:Rep3[i]=Rep3[i]; 
                        Rep4[i]<0?Rep4[i]=-Rep4[i]:Rep4[i]=Rep4[i]; 
                        Rep5[i]<0?Rep5[i]=-Rep5[i]:Rep5[i]=Rep5[i]; 
                } 
                else 
                { 
                        Rep1[i] = 0.5 * (0.7071 * WGainH[0] +  

cos(Deg2Rad(i))*XGainH[0]); 
                        Rep2[i] = 0.5 * (0.7071 * WGainH[1] +  

cos(Deg2Rad(i))*XGainH[1] + sin(Deg2Rad(i))*YGainH[1]); 
                        Rep3[i] = 0.5 * (0.7071 * WGainH[2] +  

cos(Deg2Rad(i))*XGainH[2] + sin(Deg2Rad(i))*YGainH[2]); 
                        Rep4[i] = 0.5 * (0.7071 * WGainH[2] +  

cos(Deg2Rad(i))*XGainH[2] - sin(Deg2Rad(i))*YGainH[2]); 
                        Rep5[i] = 0.5 * (0.7071 * WGainH[1] +  

cos(Deg2Rad(i))*XGainH[1] - sin(Deg2Rad(i))*YGainH[1]); 
                        Rep1[i]<0?Rep1[i]=-Rep1[i]:Rep1[i]=Rep1[i]; 
                        Rep2[i]<0?Rep2[i]=-Rep2[i]:Rep2[i]=Rep2[i]; 
                        Rep3[i]<0?Rep3[i]=-Rep3[i]:Rep3[i]=Rep3[i]; 
                        Rep4[i]<0?Rep4[i]=-Rep4[i]:Rep4[i]=Rep4[i]; 
                        Rep5[i]<0?Rep5[i]=-Rep5[i]:Rep5[i]=Rep5[i]; 
                } 
        } 
        Bitmap2->Canvas->Pen->Width = 2; 
        Bitmap2->Canvas->Pen->Style=psSolid; 
        Bitmap2->Canvas->Pen->Color=clBlack; 
        PlotPolar(Bitmap2,Rep1,skip); 
        Bitmap2->Canvas->Pen->Color=clRed; 
        PlotPolar(Bitmap2,Rep2,skip); 
        Bitmap2->Canvas->Pen->Color=clBlue; 
        PlotPolar(Bitmap2,Rep3,skip); 
        Bitmap2->Canvas->Pen->Color=clPurple; 
        PlotPolar(Bitmap2,Rep4,skip); 
        Bitmap2->Canvas->Pen->Color=clTeal; 
        PlotPolar(Bitmap2,Rep5,skip); 
        a = Bevel2->Left + 2; 

        Bitmap2->Canvas->Brush->Style = bsSolid; 
        Bitmap2->Canvas->Brush->Color = clWhite; 

                if(RadioGroup1->ItemIndex==0) 
                { 

                        Rep3[i] = 0.5 * (0.7071 * WGain[2] +  
cos(Deg2Rad(i))*XGain[2] + sin(Deg2Rad(i))*YGain[2]); 
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        b = Bevel2->Top + 2; 
        c = Bevel2->Width + a -2; 
        d = Bevel2->Height + b -2; 
        BitBlt(Form1->Canvas->Handle,a,b,c,d, 

Bitmap2->Canvas->Handle,0,0,SRCCOPY); 
 
} 
//------------------------------------------------------------------- 
void __fastcall TForm1::Button1Click(TObject *Sender) 
{ 
        GPaint(); 
        RPaint(); 
} 
//------------------------------------------------------------------- 
void __fastcall TForm1::FormPaint(TObject *Sender) 
{ 
        GPaint(); 
        RPaint(); 
} 
//------------------------------------------------------------------- 
void __fastcall TForm1::VolSlider1Change(TObject *Sender) 
{ 
                if(RadioGroup1->ItemIndex==0) 
                { 
                        OGainL   =  

(double)VolSlider10->Position*2/SliderLength; 
                        WGain[0] =  

(double)OGainL*VolSlider1->Position/SliderLength; 
                        WGain[1] =  

(double)OGainL*VolSlider3->Position/SliderLength; 
                        WGain[2] =  

(double)OGainL*VolSlider6->Position/SliderLength; 
                        XGain[0] =  

(double)OGainL*VolSlider2->Position/SliderLength; 
                        XGain[1] =  

(double)OGainL*VolSlider4->Position/SliderLength; 
                        XGain[2] =  

-(double)OGainL*VolSlider7->Position/SliderLength; 
                        YGain[1] =  

(double)OGainL*VolSlider5->Position/SliderLength; 
                        YGain[2] =  

(double)OGainL*VolSlider8->Position/SliderLength; 
                        LamL     =  

                        if(LamL) 
                                ILamL=1/LamL; 
 
                } 
                else if(RadioGroup1->ItemIndex==1) 
                { 
                        WGainH[0] =  

(double)OGainH*VolSlider1->Position/SliderLength; 
                        WGainH[1] =  

(double)OGainH*VolSlider3->Position/SliderLength; 
                        WGainH[2] =  

(double)OGainH*VolSlider6->Position/SliderLength; 
                        XGainH[0] =  

(double)OGainH*VolSlider2->Position/SliderLength; 
                        XGainH[1] =  

(double)OGainH*VolSlider4->Position/SliderLength; 
                        XGainH[2] =  

-(double)OGainH*VolSlider7->Position/SliderLength; 

(double)VolSlider9->Position*2/SliderLength; 
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                        YGainH[1] =  
(double)OGainH*VolSlider5->Position/SliderLength; 

                        YGainH[2] =  
(double)OGainH*VolSlider8->Position/SliderLength; 

                        LamH     =  
(double)VolSlider9->Position*2/SliderLength; 

                        if(LamH) 
                                ILamH=1/LamH; 
                        OGainH   =  

(double)VolSlider10->Position*2/SliderLength; 
 
                } 
                else if(RadioGroup1->ItemIndex==2) 
                { 
                        OGainH = OGainL   =  

(double)VolSlider10->Position*2/SliderLength; 
                        WGainH[0] = WGain[0] =  

(double)OGainL*VolSlider1->Position/SliderLength; 
                        WGainH[1] = WGain[1] =  

(double)OGainL*VolSlider3->Position/SliderLength; 
                        WGainH[2] = WGain[2] =  

(double)OGainL*VolSlider6->Position/SliderLength; 
                        XGainH[0] = XGain[0] =  

(double)OGainL*VolSlider2->Position/SliderLength; 
                        XGainH[1] = XGain[1] =  

(double)OGainL*VolSlider4->Position/SliderLength; 
                        XGainH[2] = XGain[2] = - 

                        YGainH[1] = YGain[1] =  
(double)OGainL*VolSlider5->Position/SliderLength; 

                        YGainH[2] = YGain[2] =  
(double)OGainL*VolSlider8->Position/SliderLength; 

                        LamH = LamL     =  
(double)VolSlider9->Position*2/SliderLength; 

                        if(LamL) 
                                ILamL=1/LamL; 
                        if(LamH) 
                                ILamH=1/LamH; 
                } 
        UpdateEdits(); 
        GPaint(); 
        RPaint(); 
} 
//------------------------------------------------------------------- 
void TForm1::UpdateEdits() 
{ 
                if(RadioGroup1->ItemIndex==0) 
                { 
                        Edit1->Text=FloatToStrF(WGain[0], 

ffFixed,3,3); 
                        Edit3->Text=FloatToStrF(WGain[1], 

ffFixed,3,3); 
                        Edit6->Text=FloatToStrF(WGain[2], 

ffFixed,3,3); 
                        Edit2->Text=FloatToStrF(XGain[0], 

ffFixed,3,3); 
                        Edit4->Text=FloatToStrF(XGain[1], 

ffFixed,3,3); 
                        Edit7->Text=FloatToStrF(XGain[2], 

ffFixed,3,3); 
                        Edit5->Text=FloatToStrF(YGain[1], 

ffFixed,3,3); 

(double)OGainL*VolSlider7->Position/SliderLength; 
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                        Edit8->Text=FloatToStrF(YGain[2], 
ffFixed,3,3); 

                        Edit9->Text=FloatToStrF(LamL,ffFixed,3,3); 
                        Edit10->Text=FloatToStrF(OGainL,ffFixed,3,3); 
                } 
                else if(RadioGroup1->ItemIndex==1) 
                { 
                        Edit1->Text=FloatToStrF(WGainH[0], 

ffFixed,3,3); 
                        Edit3->Text=FloatToStrF(WGainH[1], 

ffFixed,3,3); 

ffFixed,3,3); 
                        Edit2->Text=FloatToStrF(XGainH[0], 

ffFixed,3,3); 
                        Edit4->Text=FloatToStrF(XGainH[1], 

ffFixed,3,3); 
                        Edit7->Text=FloatToStrF(XGainH[2], 

ffFixed,3,3); 
                        Edit5->Text=FloatToStrF(YGainH[1], 

ffFixed,3,3); 
                        Edit8->Text=FloatToStrF(YGainH[2], 

ffFixed,3,3); 
                        Edit9->Text=FloatToStrF(LamH,ffFixed,3,3); 
                        Edit10-

                        Edit6->Text=FloatToStrF(WGainH[2], 

>Text=FloatToStrF(OGainH,ffFixed,3,3);                
                } 
} 
//------------------------------------------------------------------- 
void TForm1::UpdateNewEdits() 
{ 
                if(RadioGroup1->ItemIndex==0) 
                { 
                        GEdit1->Text=FloatToStrF( 

(float)GainSlider1->Position/100,ffFixed,3,3); 
                        GEdit2->Text=FloatToStrF( 

(float)GainSlider2->Position/100,ffFixed,3,3); 
                        GEdit3->Text=FloatToStrF( 

(float)GainSlider3->Position/100,ffFixed,3,3); 
                        DEdit1->Text=FloatToStrF( 

(float)DSlider1->Position/100,ffFixed,3,3); 
                        DEdit2->Text=FloatToStrF( 

(float)DSlider2->Position/100,ffFixed,3,3); 
                        DEdit3->Text=FloatToStrF( 

(float)DSlider3->Position/100,ffFixed,3,3); 
                        AEdit1->Text=IntToStr( 

(int)ASlider1->DotPosition); 
                        AEdit2->Text=IntToStr( 

(int)ASlider2->DotPosition); 
                        AEdit3->Text=IntToStr( 

(int)ASlider3->DotPosition); 
                } 
                else if(RadioGroup1->ItemIndex==1) 
                { 
                        GEdit1->Text=FloatToStrF( 

(float)GainSlider1->Position/100,ffFixed,3,3); 
                        GEdit2->Text=FloatToStrF( 

(float)GainSlider2->Position/100,ffFixed,3,3); 
                        GEdit3->Text=FloatToStrF( 

(float)GainSlider3->Position/100,ffFixed,3,3); 
                        DEdit1->Text=FloatToStrF( 

(float)DSlider1->Position/100,ffFixed,3,3); 
                        DEdit2->Text=FloatToStrF( 
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(float)DSlider2->Position/100,ffFixed,3,3); 
                        DEdit3->Text=FloatToStrF( 

(float)DSlider3->Position/100,ffFixed,3,3); 
                        AEdit1->Text=FloatToStrF( 

(float)ASlider1->DotPosition/100,ffFixed,3,3); 
                        AEdit2->Text=FloatToStrF( 

(float)ASlider2->DotPosition/100,ffFixed,3,3); 
                        AEdit3->Text=FloatToStrF( 

(float)ASlider3->DotPosition/100,ffFixed,3,3);                
} 

} 
//------------------------------------------------------------------- 
void __fastcall TForm1::ListBox1Click(TObject *Sender) 
{ 
        if(ListBox1->ItemIndex==0) 
        { 
                VolSlider1->Position = 0.34190f*SliderLength; 
                VolSlider3->Position = 0.26813f*SliderLength; 
                VolSlider6->Position = 0.56092f*SliderLength; 
                VolSlider2->Position = 0.23322f*SliderLength; 
                VolSlider4->Position = 0.38191f*SliderLength; 
                VolSlider7->Position = 0.49852f*SliderLength; 
                VolSlider5->Position = 0.50527f*SliderLength; 
                VolSlider8->Position = 0.45666f*SliderLength; 
                VolSlider9->Position = 1*SliderLength/2; 
                VolSlider10->Position = 1*SliderLength/2; 
                VolSlider1Change(this); 
                WGainH[0]=0.38324f; 
                WGainH[1]=0.44022f; 
                WGainH[2]=0.78238f; 
                XGainH[0]=0.37228f; 
                XGainH[1]=0.23386f; 
                XGainH[2]=-0.55322f; 
                YGainH[1]=0.54094f; 
                YGainH[2]=0.42374f; 
                LamH=1; 
                ILamH=1/LamH; 
                OGainH=1; 
 
 
        } 
        else if(ListBox1->ItemIndex==1) 
        { 
                RadioGroup1->ItemIndex=0; 
                VolSlider1->Position = 0.58*SliderLength;                 
      VolSlider3->Position = 0.16*SliderLength; 
                VolSlider6->Position = 1*SliderLength; 
                VolSlider2->Position = 0.47*SliderLength;                 
      VolSlider4->Position = 0.53*SliderLength; 

VolSlider7->Position = 0.77*SliderLength;                
VolSlider5->Position = 0.55*SliderLength; 

                VolSlider8->Position = 0.83*SliderLength; 
                VolSlider9->Position = 1*SliderLength/2; 
                VolSlider10->Position = 1*SliderLength/2; 
                VolSlider1Change(this); 
                WGainH[0]=0.260; 
                WGainH[1]=0.320; 
                WGainH[2]=1.000; 
                XGainH[0]=0.200; 
                XGainH[1]=0.280; 
                XGainH[2]=-0.64; 
                YGainH[1]=0.480; 
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                YGainH[2]=0.340; 
                LamH=1; 
                ILamH=1/LamH; 
                OGainH=1; 
        } 
        else if(ListBox1->ItemIndex==2) 
        { 
                RadioGroup1->ItemIndex=0; 
                VolSlider1->Position = sqrt(2.0f)*SliderLength; 
                VolSlider3->Position = sqrt(2.0f)*SliderLength; 
                VolSlider6->Position = sqrt(2.0f)*SliderLength; 
                VolSlider2->Position = cos(SpeakPos[0])*SliderLength; 
                VolSlider4->Position = cos(Deg2Rad(45))*SliderLength; 
                VolSlider7->Position = -cos(Deg2Rad(135)) 

*SliderLength; 
                VolSlider5->Position = sin(Deg2Rad(45))*SliderLength; 
                VolSlider8->Position = sin(Deg2Rad(135)) 

*SliderLength; 
                VolSlider9->Position = 1*SliderLength/2; 
                VolSlider10->Position = 1*SliderLength/2; 
                VolSlider1Change(this); 
                WGainH[0]=WGain[0]; 
                WGainH[1]=WGain[1]; 
                WGainH[2]=WGain[2]; 
                XGainH[0]=XGain[0]; 
                XGainH[1]=XGain[1]; 
                XGainH[2]=XGain[2]; 

                YGainH[2]=YGain[2]; 
                LamH=1; 
                ILamH=1/LamH; 
                OGainH=1; 

        else if(ListBox1->ItemIndex==3) 
        { 
                RadioGroup1->ItemIndex=0; 
                VolSlider1->Position = 0.023*SliderLength; 
                VolSlider3->Position = 0.4232*SliderLength; 
                VolSlider6->Position = 0.9027*SliderLength; 
                VolSlider2->Position = 0.2518*SliderLength; 
                VolSlider4->Position = 0.6014*SliderLength; 
                VolSlider7->Position = 0.7245*SliderLength; 
                VolSlider5->Position = 0.2518*SliderLength; 
                VolSlider8->Position = 0.9062*SliderLength; 
                VolSlider9->Position = 1*SliderLength/2; 
                VolSlider10->Position = 1*SliderLength/2; 
                VolSlider1Change(this); 

                WGainH[1]=0.6086; 
                WGainH[2]=1.0290; 
                XGainH[0]=0; 
                XGainH[1]=0.4998; 
                XGainH[2]=-0.2058; 
                YGainH[1]=0.3861; 
                YGainH[2]=0.2489; 
                LamH=0.9270; 
                ILamH=1/LamH; 
                OGainH=1; 
        } 
        else if(ListBox1->ItemIndex==4) 
        { 
                RadioGroup1->ItemIndex=0; 

                YGainH[1]=YGain[1]; 

        } 

                WGainH[0]=0; 
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                VolSlider1->Position = 0.26*SliderLength; 
                VolSlider3->Position = 0.34*SliderLength; 
                VolSlider6->Position = 1*SliderLength; 
                VolSlider2->Position = 0.247*SliderLength; 
                VolSlider4->Position = 0.66*SliderLength; 
                VolSlider7->Position = 0.78*SliderLength; 
                VolSlider5->Position = 1*SliderLength; 
                VolSlider8->Position = 0.587*SliderLength; 
                VolSlider9->Position = 1*SliderLength/2; 
                VolSlider10->Position = 1*SliderLength/2; 
                VolSlider1Change(this); 
                WGainH[0]=0.312; 
                WGainH[1]=0.503; 
                WGainH[2]=0.868; 
                XGainH[0]=0.176; 
                XGainH[1]=0.563; 
                XGainH[2]=-0.41; 
                YGainH[1]=0.517; 

                LamH=1.030; 
                ILamH=1/LamH; 
                OGainH=1; 
        } 
        GPaint(); 
        RPaint(); 
 
} 
//------------------------------------------------------------------- 
void __fastcall TForm1::CheckBox1Click(TObject *Sender) 
{ 
        VolSlider1Change(this); 
} 
//-------------------------------------------------------------------
void TForm1::PlotPolar(Graphics::TBitmap *Bmap,double *Radius, 

int skip) 
{ 
        int t1,t2; 
        t1=(int)(Radius[360-skip]*cos(Deg2Rad(360-skip))*MaxX)+MaxX; 
        t2=(int)(Radius[360-skip]*sin(Deg2Rad(360-skip))*MaxY)+MaxY; 
        Bmap->Canvas->MoveTo(t1,t2); 
        for(int i=0;i<360;i+=skip) 
        { 
                t1=(int)(Radius[i]*cos(Deg2Rad(i))*MaxX)+MaxX; 
                t2=(int)(Radius[i]*sin(Deg2Rad(i))*MaxY)+MaxY; 
                Bmap->Canvas->LineTo(t1,t2); 
        } 
} 
//------------------------------------------------------------------- 
void __fastcall TForm1::RadioGroup1Click(TObject *Sender) 
{ 
        if(RadioGroup1->ItemIndex==0) 
        { 
                VolSlider1->Position = (int)(WGain[0]*SliderLength); 
                VolSlider3->Position = (int)(WGain[1]*SliderLength); 
                VolSlider6->Position = (int)(WGain[2]*SliderLength); 
                VolSlider2->Position = (int)(XGain[0]*SliderLength); 
                VolSlider4->Position = (int)(XGain[1]*SliderLength); 
                VolSlider7->Position = (int)(-XGain[2]*SliderLength); 
                VolSlider5->Position = (int)(YGain[1]*SliderLength); 
                VolSlider8->Position = (int)(YGain[2]*SliderLength); 
                VolSlider9->Position = (int)(LamL*SliderLength/2); 
                VolSlider10->Position = (int)(OGainL*SliderLength/2); 

                YGainH[2]=0.510; 
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        } 
        else if(RadioGroup1->ItemIndex==1) 
        { 
                VolSlider1->Position = (int)(WGainH[0]*SliderLength); 
                VolSlider3->Position = (int)(WGainH[1]*SliderLength); 
                VolSlider6->Position = (int)(WGainH[2]*SliderLength); 
                VolSlider2->Position = (int)(XGainH[0]*SliderLength); 
                VolSlider4->Position = (int)(XGainH[1]*SliderLength); 
                VolSlider7->Position =  

(int)(-XGainH[2]*SliderLength); 
                VolSlider5->Position = (int)(YGainH[1]*SliderLength); 
                VolSlider8->Position = (int)(YGainH[2]*SliderLength); 

                VolSlider10-
                VolSlider9->Position = (int)(LamH*SliderLength/2); 

>Position = (int)(OGainH*SliderLength/2);                
        } 
        UpdateEdits(); 
        RPaint(); 
} 
//------------------------------------------------------------------- 
void __fastcall TForm1::GainSlider1Change(TObject *Sender) 
{ 
        if(RadioGroup1->ItemIndex==0) 
        { 
                WGain[0] = (double)((double)GainSlider1->Position/100 

*(2-(double)DSlider1->Position/100)); 
                WGain[1] = (double)((double)GainSlider2->Position/100 

                WGain[2] = (double)((double)GainSlider3->Position/100 
*(2-(double)DSlider3->Position/100)); 

                XGain[0] = (double)((double)GainSlider1->Position/100 
*((double)DSlider1->Position/100  
* cos(Deg2Rad((double)ASlider1->DotPosition)))); 

                XGain[1] = (double)((double)GainSlider2->Position/100 
*((double)DSlider2->Position/100  
* cos(Deg2Rad((double)ASlider2->DotPosition)))); 

                XGain[2] = (double)((double)GainSlider3->Position/100 
*((double)DSlider3->Position/100  
* cos(Deg2Rad((double)ASlider3->DotPosition)))); 

                YGain[1] = (double)((double)GainSlider2->Position/100 
*((double)DSlider2->Position/100  
* sin(Deg2Rad((double)ASlider2->DotPosition)))); 

                YGain[2] = (double)((double)GainSlider3->Position/100 
*((double)DSlider3->Position/100  

        } 
        else if(RadioGroup1->ItemIndex==1) 
        { 
                WGainH[0] = (double)(GainSlider1->Position/100 

*(2-DSlider1->Position/100)); 
                WGainH[1] = (double)(GainSlider2->Position/100 

*(2-DSlider2->Position/100)); 
                WGainH[2] = (double)(GainSlider3->Position/100 

*(2-DSlider3->Position/100)); 
                XGainH[0] = (double)(GainSlider1->Position/100 

*(DSlider1->Position/100  
* cos(Deg2Rad((double)ASlider1->DotPosition)))); 

                XGainH[1] = (double)(GainSlider2->Position/100 
*(DSlider2->Position/100  
* cos(Deg2Rad((double)ASlider1->DotPosition)))); 

                XGainH[2] = (double)(GainSlider3->Position/100 

* cos(Deg2Rad((double)ASlider1->DotPosition)))); 

*(2-(double)DSlider2->Position/100)); 

* sin(Deg2Rad((double)ASlider3->DotPosition)))); 

*(DSlider3->Position/100  
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                YGainH[1] = (double)(GainSlider2->Position/100 
*(DSlider2->Position/100  
* sin(Deg2Rad((double)ASlider1->DotPosition)))); 

                YGainH[2] = (double)(GainSlider3->Position/100 
*(DSlider3->Position/100  
* sin(Deg2Rad((double)ASlider1->DotPosition)))); 

        } 
        UpdateNewEdits(); 
        GPaint(); 
        RPaint(); 
 
} 
//------------------------------------------------------------------- 
void __fastcall TForm1::RadioGroup2Click(TObject *Sender) 
{ 
        if(RadioGroup2->ItemIndex==0) 
        { 
                Panel1->Show(); 
                Panel2->Hide(); 
        } 
        else if(RadioGroup2->ItemIndex==1) 
        { 
                Panel2->Show(); 
                Panel1->Hide(); 
        } 
} 
//------------------------------------------------------------------- 
void __fastcall TForm1::Button2Click(TObject *Sender) 
{ 
        RadioGroup1->ItemIndex=0; 
        double GainDif=HFVol/LFVol; 
        VolSlider1->Position*=GainDif; 
        VolSlider2->Position*=GainDif; 
        VolSlider3->Position*=GainDif; 
        VolSlider4->Position*=GainDif; 
        VolSlider5->Position*=GainDif; 
        VolSlider6->Position*=GainDif; 
        VolSlider7->Position*=GainDif; 
        VolSlider8->Position*=GainDif; 
        VolSlider1Change(this); 
        RPaint(); 
        GPaint(); 
} 
//------------------------------------------------------------------- 
void __fastcall TForm1::Button3Click(TObject *Sender) 
{ 
        RadioGroup1->ItemIndex=1; 
        double GainDif=LFVol/HFVol; 
        VolSlider1->Position*=GainDif; 
        VolSlider2->Position*=GainDif; 
        VolSlider3->Position*=GainDif; 
        VolSlider4->Position*=GainDif; 
        VolSlider5->Position*=GainDif; 
        VolSlider6->Position*=GainDif; 
        VolSlider7->Position*=GainDif; 
        VolSlider8->Position*=GainDif; 
        VolSlider1Change(this); 
        RPaint(); 
        GPaint(); 
} 
//------------------------------------------------------------------- 
void __fastcall TForm1::Button4Click(TObject *Sender) 
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{ 
        Button4->Enabled=false; 
        RadioGroup1->ItemIndex=0; 
        Iterations = StrToInt(Edit12->Text); 
        int ItCount = Iterations; 
        MaxTabu = StrToInt(Edit13->Text); 
        StepSize = StrToFloat(Edit14->Text); 
        TempArray[0]=WGain[0]; 
        TempArray[2]=WGain[1]; 
        TempArray[5]=WGain[2]; 
        TempArray[1]=XGain[0]; 

        TempArray[6]=-XGain[2]; 
        TempArray[4]=YGain[1]; 
        TempArray[7]=YGain[2]; 
        TempArray[8]=LamL; 
        TSearch = new Tabu(TempArray,SpeakPos,5); 
        TSearch->StepSize = StepSize; 
        TSearch->MMax = MaxTabu; 
        for(int a=0;a<Iterations;a++) 
        { 
                TSearch->StartTabu(); 
                WGain[0]=TSearch->CBest[0]; 
                XGain[0]=TSearch->CBest[1]; 
                WGain[1]=TSearch->CBest[2]; 
                XGain[1]=TSearch->CBest[3]; 
                YGain[1]=TSearch->CBest[4]; 
                WGain[2]=TSearch->CBest[5]; 
                XGain[2]=-TSearch->CBest[6]; 
                YGain[2]=TSearch->CBest[7]; 
                LamL=TSearch->CBest[8]; 
                TEdit1->Text=FloatToStrF( 

TSearch->CBest[0],ffFixed,3,3); 
                TEdit2->Text=FloatToStrF( 

TSearch->CBest[1],ffFixed,3,3); 
                TEdit3->Text=FloatToStrF( 

TSearch->CBest[2],ffFixed,3,3); 
                TEdit4->Text=FloatToStrF( 

TSearch->CBest[3],ffFixed,3,3); 
                TEdit5->Text=FloatToStrF( 

TSearch->CBest[4],ffFixed,3,3); 
                TEdit6->Text=FloatToStrF( 

TSearch->CBest[5],ffFixed,3,3); 
                TEdit7->Text=FloatToStrF( 

-TSearch->CBest[6],ffFixed,3,3); 
                TEdit8->Text=FloatToStrF( 

TSearch->CBest[7],ffFixed,3,3); 
                TEdit9->Text=FloatToStrF( 

TSearch->CBest[8],ffFixed,3,3); 
                TEditRes->Text=FloatToStrF( 

TSearch->ResBestLocal,ffFixed,5,5); 
                Edit11->Text=FloatToStrF( 

TSearch->ResBestOverall,ffFixed,5,5); 
                RadioGroup1Click(this); 
                VolSlider1Change(this); 
                Edit12->Text = IntToStr(--ItCount); 
                Application->ProcessMessages(); 
        } 
        WGain[0]=TSearch->OBest[0]; 
        XGain[0]=TSearch->OBest[1]; 
        WGain[1]=TSearch->OBest[2]; 
        XGain[1]=TSearch->OBest[3]; 

        TempArray[3]=XGain[1]; 
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        YGain[1]=TSearch->OBest[4]; 
        WGain[2]=TSearch->OBest[5]; 
        XGain[2]=-TSearch->OBest[6]; 
        YGain[2]=TSearch->OBest[7]; 
        RadioGroup1Click(this); 
        VolSlider1Change(this); 
        Application->ProcessMessages(); 
        delete TSearch; 
        Button4->Enabled=true; 
        Edit12->Text = IntToStr(Iterations); 
} 
//------------------------------------------------------------------- 
void __fastcall TForm1::Button5Click(TObject *Sender) 
{ 
        Button5->Enabled=false; 
        RadioGroup1->ItemIndex=1; 
        Iterations = StrToInt(Edit12->Text); 
        int ItCount = Iterations; 
        MaxTabu = StrToInt(Edit13->Text); 
        StepSize = StrToFloat(Edit14->Text); 
        TempArray[0]=WGainH[0]; 
        TempArray[2]=WGainH[1]; 
        TempArray[5]=WGainH[2]; 
        TempArray[1]=XGainH[0]; 

        TempArray[4]=YGainH[1]; 
        TempArray[7]=YGainH[2]; 
        TempArray[8]=LamH; 
        TSearchH = new HighTabu(TempArray,SpeakPos,5); 
        TSearchH->StepSize = StepSize; 
        TSearchH->MMax = MaxTabu; 
        for(int a=0;a<Iterations;a++) 
        { 
                TSearchH->StartTabu(); 
                WGainH[0]=TSearchH->CBest[0]; 
                XGainH[0]=TSearchH->CBest[1]; 
                WGainH[1]=TSearchH->CBest[2]; 
                XGainH[1]=TSearchH->CBest[3]; 
                YGainH[1]=TSearchH->CBest[4]; 
                WGainH[2]=TSearchH->CBest[5]; 
                XGainH[2]=-TSearchH->CBest[6]; 
                YGainH[2]=TSearchH->CBest[7]; 
                LamH=TSearchH->CBest[8]; 
                TEdit1->Text=FloatToStrF( 

TSearchH->CBest[0],ffFixed,3,3); 
                TEdit2->Text=FloatToStrF( 

TSearchH->CBest[1],ffFixed,3,3); 
                TEdit3->Text=FloatToStrF( 

TSearchH->CBest[2],ffFixed,3,3); 
                TEdit4->Text=FloatToStrF( 

TSearchH->CBest[3],ffFixed,3,3); 
                TEdit5->Text=FloatToStrF( 

TSearchH->CBest[4],ffFixed,3,3); 
                TEdit6->Text=FloatToStrF( 

                TEdit8->Text=FloatToStrF( 
TSearchH->CBest[7],ffFixed,3,3); 

                TEdit9->Text=FloatToStrF( 
TSearchH->CBest[8],ffFixed,3,3); 

        TempArray[3]=XGainH[1]; 
        TempArray[6]=-XGainH[2]; 

TSearchH->CBest[5],ffFixed,3,3); 
                TEdit7->Text=FloatToStrF( 

-TSearchH->CBest[6],ffFixed,3,3); 
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                TEditRes->Text=FloatToStrF( 
TSearchH->ResBestLocal,ffFixed,5,5); 

                Edit11->Text=FloatToStrF( 

                VolSlider1Change(this); 

        YGainH[2]=TSearchH->OBest[7]; 

n->ProcessMessages(); 

TSearchH->ResBestOverall,ffFixed,5,5); 
                RadioGroup1Click(this); 

                Edit12->Text = IntToStr(--ItCount); 
                Application->ProcessMessages(); 
 
        } 
        WGainH[0]=TSearchH->OBest[0]; 
        XGainH[0]=TSearchH->OBest[1]; 
        WGainH[1]=TSearchH->OBest[2]; 
        XGainH[1]=TSearchH->OBest[3]; 
        YGainH[1]=TSearchH->OBest[4]; 
        WGainH[2]=TSearchH->OBest[5]; 
        XGainH[2]=-TSearchH->OBest[6]; 

        RadioGroup1Click(this); 
        VolSlider1Change(this); 
        Applicatio
        delete TSearchH; 
        Button5->Enabled=true; 
        Edit12->Text = IntToStr(Iterations); 
} 
//------------------------------------------------------------------- 
#define Write(a) 
fwrite((FloatToStrF(a,ffFixed,5,5)).c_str(),1,5,File) 
#define WriteTxt(a) fwrite(a,1,sizeof(a)-1,File) 
#define NewLine fwrite("\n",1,1,File) 
void __fastcall TForm1::SaveButtonClick(TObject *Sender) 
{ 
        FILE *File; 
        if(SaveDialog1->Execute()) 
        { 
                File = fopen(SaveDialog1->FileName.c_str(),"w"); 
                WriteTxt("WLow-C\t");Write(WGain[0]);NewLine; 
                WriteTxt("XLow-C\t");Write(XGain[0]);NewLine; 
                WriteTxt("WLow-F\t");Write(WGain[1]);NewLine; 
                WriteTxt("XLow-F\t");Write(XGain[1]);NewLine; 
                WriteTxt("YLow-F\t");Write(YGain[1]);NewLine; 
                WriteTxt("WLow-R\t");Write(WGain[2]);NewLine; 
                WriteTxt("XLow-R\t");Write(XGain[2]);NewLine; 
                WriteTxt("YLow-R\t");Write(YGain[2]);NewLine; 
                NewLine; 
                WriteTxt("WHigh-C\t");Write(WGainH[0]);NewLine; 
                WriteTxt("XHigh-C\t");Write(XGainH[0]);NewLine; 
                WriteTxt("WHigh-F\t");Write(WGainH[1]);NewLine; 
                WriteTxt("XHigh-F\t");Write(XGainH[1]);NewLine; 
                WriteTxt("YHigh-F\t");Write(YGainH[1]);NewLine; 
                WriteTxt("WHigh-R\t");Write(WGainH[2]);NewLine; 
                WriteTxt("XHigh-R\t");Write(XGainH[2]);NewLine; 
                WriteTxt("YHigh-R\t");Write(YGainH[2]);NewLine; 
                fclose(File); 
        } 
} 
//------------------------------------------------------------------- 
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//------------------------------------------------------------------- 
//-------------------------MAIN.H------------------------------------ 
//------------------------------------------------------------------- 
#ifndef MainH 
#define MainH 
//------------------------------------------------------------------- 
#include <Classes.hpp> 
#include <Controls.hpp> 
#include <StdCtrls.hpp> 
#include <Forms.hpp> 
#include <ExtCtrls.hpp> 
#include "VolSlider.h" 
#include "RotorSlider.h" 
#include "LevelMeter.h" 
#include "Tabu.h" 
#include "HighTabu.h" 
#include <Dialogs.hpp> 
//------------------------------------------------------------------- 
class TForm1 : public TForm 
{ 
__published: // IDE-managed Components 
        TBevel *Bevel1; 
        TButton *Button1; 
        TListBox *ListBox1; 
        TBevel *Bevel2; 
        TRadioGroup *RadioGroup1; 
        TGroupBox *GroupBox1; 
        TCheckBox *CheckBox2; 
        TCheckBox *CheckBox1; 
        TListBox *ListBox2; 
        TPanel *Panel1; 
        TVolSlider *VolSlider1; 
        TVolSlider *VolSlider2; 
        TVolSlider *VolSlider3; 
        TVolSlider *VolSlider4; 
        TVolSlider *VolSlider5; 
        TVolSlider *VolSlider6; 
        TVolSlider *VolSlider7; 
        TVolSlider *VolSlider8; 
        TEdit *Edit1; 
        TEdit *Edit2; 
        TEdit *Edit3; 
        TEdit *Edit4; 
        TEdit *Edit5; 
        TEdit *Edit6; 
        TEdit *Edit7; 
        TEdit *Edit8; 
        TLabel *CW; 
        TLabel *CX; 
        TLabel *Label2; 
        TLabel *Label3; 
        TLabel *Label4; 
        TLabel *Label5; 
        TLabel *Label6; 
        TLabel *Label7; 
        TRadioGroup *RadioGroup2; 
        TPanel *Panel2; 
        TVolSlider *GainSlider1; 
        TRotorSlider *ASlider1; 
        TVolSlider *DSlider1; 
        TEdit *GEdit1; 
        TEdit *AEdit1; 
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        TEdit *DEdit1; 
        TLabel *Label1; 
        TLabel *Label8; 
        TVolSlider *GainSlider2; 
        TEdit *GEdit2; 
        TEdit *AEdit2; 
        TRotorSlider *ASlider2; 
        TVolSlider *DSlider2; 
        TEdit *DEdit2; 
        TLabel *Label9; 
        TVolSlider *GainSlider3; 
        TEdit *GEdit3; 
        TEdit *AEdit3; 
        TRotorSlider *ASlider3; 
        TVolSlider *DSlider3; 
        TEdit *DEdit3; 
        TLevelMeter *LevelMeter1; 
        TLevelMeter *LevelMeter2; 
        TEdit *LFEdit; 
        TEdit *HFEdit; 
        TLabel *Label10; 
        TLabel *Label11; 
        TButton *Button2; 
        TButton *Button3; 
        TCheckBox *CheckBox3; 
        TVolSlider *VolSlider9; 
        TVolSlider *VolSlider10; 
        TLabel *Label12; 
        TLab
        TEdit *Edit9; 
        TEdit *Edit10; 
        TLabel *Label14; 
        TLabel *Label15; 
        TLabel *Label16; 
        TEdit *MFitL; 
        TEdit *AFitL; 
        TEdit *VFitL; 
        TLabel *Label17; 
        TLabel *Label18; 
        TLabel *Label19; 
        TEdit *MFitH; 
        TEdit *AFitH; 
        TEdit *VFitH; 
        TLabel *Label20; 
        TLabel *Label21; 
        TEdit *OFitL; 
        TEdit *OFi
        TLabel *Label22; 
        TLabel *Label23; 
        TPanel *Panel3; 
        TLabel *Label24; 
        TEdit *TEdit1; 
        TEdit *TEdit2; 
        TEdit *TEdit3; 

        TEdit *TEdit7; 
        TEdit *TEdit8; 
        TEdit *TEdit9; 
        TLabel *Label25; 
        TEdit *TEditRes; 

el *Label13; 

tH; 

        TEdit *TEdit4; 
        TEdit *TEdit5; 
        TEdit *TEdit6; 
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        TButton *Button4; 
        TEdit *Edit11; 
        TLabel *Label26; 

        TEdit *Edit12; 

        void __fastcall Button5Click(TObject *Sender); 

        double TempArray[9],StepSize,MaxTabu;         

        void RPaint(); 

        TLabel *Label27; 
        TButton *Button5; 

        TLabel *Label28; 
        TLabel *Label29; 
        TEdit *Edit13; 
        TLabel *Label30; 
        TEdit *Edit14; 
        TButton *SaveButton; 
        TSaveDialog *SaveDialog1; 
        TEdit *AFitL2; 
        TLabel *Label31; 
        void __fastcall Button1Click(TObject *Sender); 
        void __fastcall FormPaint(TObject *Sender); 
        void __fastcall VolSlider1Change(TObject *Sender); 
        void __fastcall ListBox1Click(TObject *Sender); 
        void __fastcall CheckBox1Click(TObject *Sender); 
        void __fastcall RadioGroup1Click(TObject *Sender); 
        void __fastcall GainSlider1Change(TObject *Sender); 
        void __fastcall RadioGroup2Click(TObject *Sender); 
        void __fastcall Button2Click(TObject *Sender); 
        void __fastcall Button3Click(TObject *Sender); 
        void __fastcall Button4Click(TObject *Sender); 

        void __fastcall SaveButtonClick(TObject *Sender); 
private: // User declarations 
        bool InUse; 
        long MaxX, MaxY; 
        Graphics::TBitmap *Bitmap,*Bitmap2; 
        int NoOfSpeakers,SliderLength,Iterations; 
        double SpeakPos[8],SpGain[8],SpGainH[8],WSig,XSig,YSig, 

WGain[3],XGain[3],YGain[3],WGainH[3],XGainH[3], 
YGainH[3],WSigH,WSigL,XSigH,XSigL,YSigH,YSigL; 

        double P,P2,E,VecLowX,VecLowY,VecHighX,VecHighY, 
Rep1[360],Rep2[360],Rep3[360],Rep4[360],Rep5[360], 
LFVol,HFVol,VolLx[360],VolHx[360],VolLy[360], 
VolHy[360],LamL,ILamL,LamH,ILamH,OGainL,OGainH; 

        double Deg2Rad(double Deg); 
        void PlotPolar(Graphics::TBitmap *Bitmap,double *Radius, 

int skip); 
        void UpdateEdits(); 
        void UpdateNewEdits(); 

public:  // User declarations 
        __fastcall TForm1(TComponent* Owner); 
        void GPaint(); 

        Tabu   *TSearch; 
        HighTabu *TSearchH; 
 
}; 
//------------------------------------------------------------------- 
extern PACKAGE TForm1 *Form1; 
//------------------------------------------------------------------- 
#endif 
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//------------------------------------------------------------------- 
//---------------------------TABU.H---------------------------------- 
//------------------------------------------------------------------- 
#ifndef TabuH 
#define TabuH 
//------------------------------------------------------------------- 
#include <math.h> 
class Tabu 
{ 
private: 
        double Current[32],SPosition[32],SGain[32],Vx[512],Vy[512], 

V2x[512],V2y[512]; 
        double ResCurrent; 
        double MFit,VFit,AFit,AFit2,P,VolScale,E; 
        double NAngles,AStep; 
        double W,X,Y,WSig,XSig,YSig; 
        int NSpeakers,ResControl,CDir[32],ResCDir; 
public: 
        double CBest[32],OBest[32],ResBestLocal,ResBestOverall; 
        double StepSize; 
        int MUp[32],MDown[32],MMax; 
        Tabu(double *Array, double *SPos, int NPoints); 
        ~Tabu(); 
        void StartTabu(); 
        double CalcArrays(); 
}; 
//------------------------------------------------------------------- 
Tabu::Tabu(double *Array, double *SPos, int NPoints) 
{ 
        NAngles=90; 
        StepSize=0.01; 
        AStep=M_PI*2/NAngles; 
        NSpeakers=NPoints; 
        MMax=99999999; 
 
        for(int a=0;a<(NPoints*2)-1;a++) 
        { 
                //Copy initial Startup array 
                Current[a]=CBest[a]=OBest[a]=Array[a]; 
                SPosition[a]=SPos[a]; 
                MUp[a]=MDown[a]=0; 
        } 
        W=1/(sqrt(2.0f)); 
        ResBestOverall=CalcArrays(); 
} 
//------------------------------------------------------------------- 
Tabu::~Tabu() 
{ 
} 
//------------------------------------------------------------------- 
void Tabu::StartTabu() 
{ 
        double CMax; 
        ResBestLocal=999999; 
        for(int control=0;control<(NSpeakers*2)-2;control++) 
        { 
                if(control==(NSpeakers*2)-2) 
                        CMax=2.0f; 
                else 
                        CMax=1.0f; 
 
                for(int test=1;test<3;test++) 
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                { 
                        if(!MUp[control] && test==1) 
                        { 
                                if(Current[control]>=CMax) 
                                { 
                                        Current[control]=CMax; 
                                        MUp[control]+=5; 
                                        CDir[control]=0; 
                                } 
                                else 
                                { 
                                        Current[control]+=StepSize; 
                                        CDir[control]=1; 
                                } 
                        } 
                        else if(test==1) 
                        { 
                                CDir[control]=0; 
                        } 
 
                        if(!MDown[control] && test==2) 

                                if(Current[control]<=0) 
                                { 
                                        Current[control]=0; 
                                        MDown[control]+=5; 
                                        CDir[control]=0; 
                                } 
                                else 
                                { 
                                        Current[control]-=StepSize; 
                                        CDir[control]=-1; 
                                } 
                        } 
                        else if(test==2) 
                        { 
                                CDir[control]=0; 
                        } 
 
                        if(MUp[control]&&MDown[control]) 
                        { 
                                CDir[control]=0; 
                        } 
 
                        if(CDir[control]) 
                        { 
                                ResCurrent=CalcArrays(); 
                        } 
                        else 
                        { 
                                ResCurrent=999999; 
                        } 
 
                        if(ResCurrent<ResBestLocal) 
                        { 
                                ResCDir=CDir[control]; 
                                ResControl=control; 
                                for(int a=0;a<(NSpeakers*2)-1;a++) 
                                        CBest[a]=Current[a]; 
                                ResBestLocal=ResCurrent; 
                        } 
                        Current[control]-=StepSize 

                        { 
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*((double)CDir[control]); 
                } 
                if(MDown[control]>MMax) MDown[control]=MMax; 
                if(MUp[control]>MMax) MUp[control]=MMax; 
 
                if(MDown[control]) MDown[control]--; 
                if(MUp[control]) MUp[control]--; 
        } 
        if(ResCDir==1) MDown[ResControl]+=5; 
        if(ResCDir==-1) MUp[ResControl]+=5; 
        for(int a=0;a<(NSpeakers*2)-1;a++) 
        { 
                Current[a]=CBest[a]; 
        } 
        if(ResBestLocal<ResBestOverall) 
        { 
                ResBestOverall=ResBestLocal; 
                for(int a=0;a<(NSpeakers*2)-1;a++) 
                        OBest[a]=CBest[a]; 
        } 
} 
//------------------------------------------------------------------- 
double Tabu::CalcArrays() 
{ 
        if(!NSpeakers) Application->MessageBox("Stop1",NULL,NULL); 
        double Ll=Current[8]; 
        double w1=Current[0],x1=Current[1],y1=0; 
        double w2=Current[2],x2=Current[3],y2=Current[4]; 
        double w3=Current[5],x3=Current[6],y3=Current[7]; 
        double iLl=1/Ll,P; 
        int i=0; 
        MFit=VFit=AFit=E=0; 
        for(double Ang=0;Ang<2*M_PI;Ang+=AStep) 
        { 
                X=cos(Ang); 
                Y=sin(Ang); 
 
                WSig=(0.5*(Ll+iLl)*W) + ((1/sqrt(8))*(Ll-iLl)*X); 
                XSig=(0.5*(Ll+iLl)*X) + ((1/sqrt(2))*(Ll-iLl)*W); 
                YSig=Y; 
 
                SGain[0]=(w1*WSig) + (x1*XSig) + (y1*YSig); 
                SGain[1]=(w2*WSig) + (x2*XSig) + (y2*YSig); 
                SGain[2]=(w3*WSig) - (x3*XSig) + (y3*YSig); 
                SGain[3]=(w3*WSig) - (x3*XSig) - (y3*YSig); 
                SGain[4]=(w2*WSig) + (x2*XSig) - (y2*YSig); 
 
                P=0;Vx[i]=0;Vy[i]=0;E=0;V2x[i]=0;V2y[i]=0; 
                if(!NSpeakers)  

Application->MessageBox("Stop2",NULL,NULL); 
                for(int a=0;a<NSpeakers;a++) 
                { 
                        P+=SGain[a]; 
                        E+=SGain[a]*SGain[a]; 
                } 
                if(i==0) VolScale=P; 
                for(int a=0;a<NSpeakers;a++) 
                { 
                        Vx[i]+=SGain[a]*cos(SPosition[a]); 
                        Vy[i]+=SGain[a]*sin(SPosition[a]); 
                        V2x[i]+=SGain[a]*SGain[a]*cos(SPosition[a]); 
                        V2y[i]+=SGain[a]*SGain[a]*sin(SPosition[a]); 
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                } 
                if(P) 
                { 
                        Vx[i]/=P; 
                        Vy[i]/=P; 
                        V2x[i]/=E; 
                        V2y[i]/=E; 
                } 
                VFit+=(1-(VolScale/P))*(1-(VolScale/P)); 
                MFit+=pow(1-sqrt((Vx[i]*Vx[i])+(Vy[i]*Vy[i])),2); 
                double tAng=Ang-atan2(Vy[i],Vx[i]); 
                if(tAng>M_PI) tAng-=(2*M_PI); 
                if(tAng<-M_PI) tAng+=(2*M_PI); 
                double tAng2=Ang-atan2(V2y[i],V2x[i]); 
                if(tAng2>M_PI) tAng2-=(2*M_PI); 
                if(tAng2<-M_PI) tAng2+=(2*M_PI); 
                AFit2+=tAng2*tAng2; 
                i++; 
        } 
        VFit=sqrt(VFit/(double)NAngles); 
        MFit=sqrt(MFit/(double)NAngles); 
        AFit=sqrt(AFit/(double)NAngles); 
        AFit2=sqrt(AFit2/(double)NAngles); 
        return(AFit+(AFit2)+(MFit*4.0f/5.0f)+(VFit)); 
} 
#endif 
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//------------------------------------------------------------------- 
//-------------------------HIGHTABU.H-------------------------------- 
//------------------------------------------------------------------- 
#ifndef HighTabuH 
#define HighTabuH 
 
#include <math.h> 
 
class HighTabu 
{ 
private: 
        double Current[32],SPosition[32],SGain[32],Vx[512],Vy[512]; 
        double ResCurrent; 
        double MFit,VFit,AFit,AFit2,P,VolScale,E; 
        double NAngles,AStep; 
        double W,X,Y,WSig,XSig,YSig; 
        int NSpeakers,ResControl,CDir[32],ResCDir; 
public: 
        double CBest[32],OBest[32],ResBestLocal,ResBestOverall; 
        double StepSize; 
        int MUp[32],MDown[32],MMax; 
        HighTabu(double *Array, double *SPos, int NPoints); 
        ~HighTabu(); 
        void StartTabu(); 
        double CalcArrays(); 
}; 
//------------------------------------------------------------------- 
HighTabu::HighTabu(double *Array, double *SPos, int NPoints) 
{ 
        NAngles=90; 
        StepSize=0.01; 
        AStep=M_PI*2/NAngles; 
        NSpeakers=NPoints; 
        MMax=99999999; 
 
        for(int a=0;a<(NPoints*2)-1;a++) 
        { 
                //Copy initial Startup array 
                Current[a]=CBest[a]=OBest[a]=Array[a]; 
                SPosition[a]=SPos[a]; 
                MUp[a]=MDown[a]=0; 
        } 
        W=1/(sqrt(2.0f)); 
        ResBestOverall=CalcArrays(); 
} 
//-------------------------------------------------------------------
HighTabu::~HighTabu() 
{ 
} 
//-------------------------------------------------------------------
void HighTabu::StartTabu() 
{ 
        double CMax; 
        ResBestLocal=999999; 
        for(int control=0;control<(NSpeakers*2)-1;control++) 
        { 
                if(control==(NSpeakers*2)-2) 
                        CMax=2.0f; 
                else 
                        CMax=1.0f; 
                         
                for(int test=1;test<3;test++) 
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                { 
                        if(!MUp[control] && test==1) 
                        { 
                                if(Current[control]>=CMax) 
                                { 
                                        Current[control]=CMax; 
                                        MUp[control]+=5; 
                                        CDir[control]=0; 
                                } 
                                else 
                                { 
                                        Current[control]+=StepSize; 
                                        CDir[control]=1; 
                                } 
                        } 
                        else if(test==1) 
                        { 
                                CDir[control]=0; 
                        } 
 
                        if(!MDown[control] && test==2) 

                                if(Current[control]<=0) 
                                { 
                                        Current[control]=0; 
                                        MDown[control]+=5; 
                                        CDir[control]=0; 
                                } 
                                else 
                                { 
                                        Current[control]-=StepSize; 
                                        CDir[control]=-1; 
                                } 
                        } 
                        else if(test==2) 
                        { 
                                CDir[control]=0; 
                        } 
 
                        if(MUp[control]&&MDown[control]) 
                        { 
                                CDir[control]=0; 
                        } 
 
                        if(CDir[control]) 
                        { 
                                ResCurrent=CalcArrays(); 
                        } 
                        else 
                        { 
                                ResCurrent=999999; 
                        } 
 
                        if(ResCurrent<ResBestLocal) 
                        { 
                                ResCDir=CDir[control]; 
                                ResControl=control; 
                                for(int a=0;a<(NSpeakers*2)-1;a++) 
                                        CBest[a]=Current[a]; 
                                ResBestLocal=ResCurrent; 
                        } 
                        Current[control]-=StepSize* 

                        { 
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((double)CDir[control]); 
                } 
                if(MDown[control]>MMax) MDown[control]=MMax; 
                if(MUp[control]>MMax) MUp[control]=MMax; 
 
                if(MDown[control]) MDown[control]--; 
                if(MUp[control]) MUp[control]--; 
        } 
        if(ResCDir==1) MDown[ResControl]+=5; 
        if(ResCDir==-1) MUp[ResControl]+=5; 
        for(int a=0;a<(NSpeakers*2)-1;a++) 
        { 
                Current[a]=CBest[a]; 
        } 
        if(ResBestLocal<ResBestOverall) 
        { 
                ResBestOverall=ResBestLocal; 
                for(int a=0;a<(NSpeakers*2)-1;a++) 
                        OBest[a]=CBest[a]; 
        } 
} 
//------------------------------------------------------------------- 
double HighTabu::CalcArrays() 
{ 
        if(!NSpeakers) Application->MessageBox("Stop1",NULL,NULL); 
        double Ll=Current[8]; 
        double w1=Current[0],x1=Current[1],y1=0; 
        double w2=Current[2],x2=Current[3],y2=Current[4]; 
        double w3=Current[5],x3=Current[6],y3=Current[7]; 
        double iLl=1/Ll,P; 
        int i=0; 
        MFit=VFit=AFit=0; 
        for(double Ang=0;Ang<2*M_PI;Ang+=AStep) 
        { 
                X=cos(Ang); 
                Y=sin(Ang); 
 
                WSig=(0.5*(Ll+iLl)*W) + ((1/sqrt(8))*(Ll-iLl)*X); 
                XSig=(0.5*(Ll+iLl)*X) + ((1/sqrt(2))*(Ll-iLl)*W); 
                YSig=Y; 
 
                SGain[0]=(w1*WSig) + (x1*XSig) + (y1*YSig); 
                SGain[1]=(w2*WSig) + (x2*XSig) + (y2*YSig); 
                SGain[2]=(w3*WSig) - (x3*XSig) + (y3*YSig); 
                SGain[3]=(w3*WSig) - (x3*XSig) - (y3*YSig); 
                SGain[4]=(w2*WSig) + (x2*XSig) - (y2*YSig); 
 
                P=0;Vx[i]=0;Vy[i]=0,E=0; 
                for(int a=0;a<NSpeakers;a++) 
                { 
                        P+=SGain[a]*SGain[a]; 
                        E+=SGain[a]*SGain[a]; 
                } 
                if(i==0) VolScale=P; 
                for(int a=0;a<NSpeakers;a++) 
                { 
                        Vx[i]+=SGain[a]*SGain[a]*cos(SPosition[a]); 
                        Vy[i]+=SGain[a]*SGain[a]*sin(SPosition[a]); 
                } 
                if(E) 
                { 
                        Vx[i]/=E; 
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                        Vy[i]/=E; 
                } 
                VFit+=(1-(VolScale/P))*(1-(VolScale/P)); 
                MFit+=pow(1-sqrt((Vx[i]*Vx[i])+(Vy[i]*Vy[i])),2); 
                double tAng=Ang-atan2(Vy[i],Vx[i]); 

                i
        } 
        VFit=sqrt(VFit/(double)NAngles); 
        MFit=sqrt(MFit/(double)NAngles); 
        AFit=sqrt(AFit/(double)NAngles); 

} 
#endif 

                if(tAng>M_PI) tAng-=(2*M_PI); 
                if(tAng<-M_PI) tAng+=(2*M_PI); 
                AFit+=tAng*tAng; 

++; 

        return(AFit+MFit/3+VFit/2); 
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9.2.2 Windows C++ Code used in the Real-Time Audio System 

//------------------------------------------------------------------- 
//---------------------------MAIN.CPP-------------------------------- 
//-------------------------------------------------------------------
#include <vcl.h> 
#pragma hdrstop 
 

//------------------------------------------------------------------- 
#pragma package(smart_init) 
#pragma resource "*.dfm" 
TAmbiToAll *AmbiToAll; 
WigSound2 *WAudio; 
//------------------------------------------------------------------- 
__fastcall TAmbiToAll::TAmbiToAll(TComponent* Owner) 
        : TForm(Owner) 
{ 
} 

{ 
        WAudio = new WigSound2(this); //Gives this pointer to the 
form class 
        Button2->Enabled=false; 
        Button3->Enabled=false; 
        Button4->Enabled=false; 
        ScrollBar2Change(ScrollBar2); 
        ScrollBar3Change(ScrollBar3);         
} 
//------------------------------------------------------------------- 
void __fastcall TAmbiToAll::Button1Click(TObject *Sender) 
{ 
        unsigned short Buff=2049; 

        if(SampleRate->ItemIndex==1) 
        { 
                WAudio->InitMem(nchan,Buff,48000); 
                WAudio->SkipAudio(ScrollBar1->Position); 
                WAudio->Initialise(nchan,48000,Buff,4,4); 
        } 
        else 
        { 
                WAudio->InitMem(nchan,Buff,44100); 
                WAudio->SkipAudio(ScrollBar1->Position); 
                WAudio->Initialise(nchan,44100,Buff,4,4); 
        } 
        WAudio->OpenDevice(1); 
        Button1->Enabled=false; 
        Button3->Enabled=true; 
        Button4->Enabled=false; 
} 
//------------------------------------------------------------------- 
void __fastcall TAmbiToAll::Button3Click(TObject *Sender) 
{ 
        WAudio->Pause(); 
        Button2->Enabled=true; 

Software 

#include "Main.h" 
#include "WigSound2.h" 

//------------------------------------------------------------------- 
void __fastcall TAmbiToAll::FormCreate(TObject *Sender) 

        int nchan = (NumChannels->ItemIndex+1)*2; 
        m_volume = -ScrollBar2->Position/100.0f;         
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        Button3->Enabled=false; 
        Button4->Enabled=true; 
} 
//------------------------------------------------------------------- 
void __fastcall TAmbiToAll::Button2Click(TObject *Sender) 
{ 
        WAudio->SkipAudio(ScrollBar1->Position); 
        WAudio->UnPause(); 
        Button2->Enabled=false; 
        Button3->Enabled=true; 
        Button4->Enabled=false; 
} 
//------------------------------------------------------------------- 
void __fastcall TAmbiToAll::Button4Click(TObject *Sender) 
{ 
        unsigned short Buff=2049; 
        Button1->Enabled=true; 
        Button2->Enabled=false; 
        Button3->Enabled=false; 
        Button4->Enabled=false; 
        WAudio->CloseDevice(1); 
        WAudio->UnInitMem(2,Buff); 
        ScrollBar1->Position = 0; 
} 
//------------------------------------------------------------------- 
void __fastcall TAmbiToAll::FormDestroy(TObject *Sender) 
{ 
        if(Button3->Enabled) 
        { 
                Button3Click(Button3); 

        } 
        if(Button4->Enabled) 
        { 
                Button4Click(Button4); 
                Sleep(400); 
        } 

} 
//------------------------------------------------------------------- 
void __fastcall TAmbiToAll::WButClick(TObject *Sender) 
{ 
        TEdit *ptr = (TEdit *)Sender; 
        char *cptr = ptr->Name.c_str(); 

        if(cptr[0]!='c') 
                result = OpenDialog1->Execute(); 
        else 
                result = true; 

        { 
                switch(cptr[0]) 
                { 
                        case 'W': 
                                WFName = OpenDialog1->FileName; 

                        case 'X': 
                                XFName = OpenDialog1->FileName; 
                                XEdit->Text = XFName; 
                        break; 
                        case 'Y': 

                Sleep(400); 

        delete WAudio; 

        bool result; 

        if(result) 

                                WEdit->Text = WFName; 
                        break; 
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                                YFName = OpenDialog1->FileName; 

                                        break; 
                                        case 'X': 

                                        YFName = NULL; 

                                        break; 

void TAmbiToAll::UpdateWaveTime(unsigned long WRead) 

                                YEdit->Text = YFName; 
                        break; 
                        case 'Z': 
                                ZFName = OpenDialog1->FileName; 
                                ZEdit->Text = ZFName; 
                        case 'c': 
                                switch(cptr[1]) 
                                { 
                                        case 'W': 
                                        WFName = NULL; 
                                        WEdit->Text = WFName; 

                                        XFName = NULL; 
                                        XEdit->Text = XFName; 
                                        break; 
                                        case 'Y': 

                                        YEdit->Text = YFName; 
                                        break; 
                                        case 'Z': 
                                        ZFName = NULL; 
                                        ZEdit->Text = ZFName; 

                                } 
                        break; 
                } 
        } 
} 
//------------------------------------------------------------------- 

{ 
        WaveRead = WRead; 
        ScrollBar1->Position = 
(int)((float)(WaveRead)*200.0f/(float)(WaveSize)); 
} 
//------------------------------------------------------------------- 
void __fastcall TAmbiToAll::RotorSlider1Change(TObject *Sender) 
{ 
        Label1->Caption = IntToStr((int)(360 –  

RotorSlider1->DotPosition + 0.5f)); 
        RotAngle = -RotorSlider1->DotPosition*M_PI/180.0f; 
} 
//-------------------------------------------------------------------
void __fastcall TAmbiToAll::AmbiEffectClick(TObject *Sender) 
{ 
        m_effect = AmbiEffect->ItemIndex; 
} 
//-------------------------------------------------------------------
void __fastcall TAmbiToAll::RotorSlider2Change(TObject *Sender) 
{ 
        Label2->Caption = IntToStr((int)(360 - RotorSlider2-
>DotPosition+0.5f)); 
        monopan = -RotorSlider2->DotPosition*M_PI/180.0f; 
} 
//------------------------------------------------------------------- 
void __fastcall TAmbiToAll::TransFilterClick(TObject *Sender) 
{ 
        WAudio->UpdateFilter = true; 
} 
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//-------------------------------------------------------------------
void __fastcall TAmbiToAll::ScrollBar2Change(TObject *Sender) 
{ 

        if(m_volume) 

} 

        float db; 
        m_volume = -ScrollBar2->Position/100.0f; 

        { 
                db = 20 * log10(m_volume); 
                Label5->Caption = FloatToStrF(db,ffFixed,3,1) + "dB"; 
        } 
        else 
                Label5->Caption = "-Inf"; 
} 
//------------------------------------------------------------------- 
void __fastcall TAmbiToAll::RearFilterClick(TObject *Sender) 
{ 
        WAudio->UpdateRearFilter = true; 

//------------------------------------------------------------------- 
void __fastcall TAmbiToAll::ScrollBar3Change(TObject *Sender) 
{ 
        m_width = -ScrollBar3->Position/100.0f; 
        Label6->Caption = FloatToStrF(m_width,ffFixed,4,2); 
} 
//------------------------------------------------------------------- 
void __fastcall TAmbiToAll::RotorSlider3Change(TObject *Sender) 
{ 
        Label9->Caption = IntToStr( 

(int)(RotorSlider3->DotPosition - 90.0f + 0.5f)); 
        TiltAngle = (RotorSlider3->DotPosition - 90.0f)*M_PI/180.0f; 
} 
//------------------------------------------------------------------- 
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//------------------------------------------------------------------- 
//-----------------------------MAIN.H-------------------------------- 
//------------------------------------------------------------------- 
#ifndef MainH 
#define MainH 
//------------------------------------------------------------------- 
#include <Classes.hpp> 
#include <Controls.hpp> 
#include <StdCtrls.hpp> 
#include <Forms.hpp> 
#include "RotorSlider.h" 
#include "LevelMeter2.h" 
#include "Oscilloscope.h" 
#include "GLGraph.h" 
#include <ComCtrls.hpp> 
#include <Ex
#include <Dialogs.hpp> 
//------------------------------------------------------------------- 
class TAmbiToAll : public TForm 
{ 
__published: // IDE-managed Components 
        TButton *Button1; 
        TButton *Button2; 
        TButton *Button3; 
        TButton *Button4; 
        TEdit *WEdit; 
        TEdit *XEdit; 
        TEdit *YEdit; 
        TEdit *ZEdit; 
        TButton *WBut; 
        TButton *XBut; 
        TButton *YBut; 
        TButton *ZBut; 
        TOpenDialog *OpenDialog1; 
        TScrollBar *ScrollBar1; 
        TButton *cW; 
        TButton *cX; 
        TButton *cY; 
        TButton *cZ; 
        TRotorSlider *RotorSlider1; 
        TLabel *Label1; 
        TOscilloscope *Oscilloscope1; 
        TOscilloscope *Oscilloscope2; 
        TRadioGroup *AmbiEffect; 
        TRadioGroup *AmbiInput; 
        TRotorSlider *RotorSlider2; 
        TLabel *Label2; 
        TLabel *Label3; 
        TLabel *Label4; 
        TRadioGroup *NumChannels; 
        TRadioGroup *SampleRate; 
        TRadioGroup *TransFilter; 
        TRadioGroup *RearFilter; 
        TScrollBar *ScrollBar2; 
        TLabel *Label5; 
        TScrollBar *ScrollBar3; 
        TLabel *Label6; 
        TLabel *Label7; 
        TLabel *Label8; 
        TRotorSlider *RotorSlider3; 
        TLabel *Label9; 
        TLabel *Label10; 

tCtrls.hpp> 
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        void __fastcall Button1Click(TObject *Sender); 
        void __fastcall Button3Click(TObject *Sender); 
        void __fastcall Button2Click(TObject *Sender); 
        void __fastcall Button4Click(TObject *Sender); 
        void __fastcall FormCreate(TObject *Sender); 
        void __fastcall FormDestroy(TObject *Sender); 
        void __fastcall WButClick(TObject *Sender); 
        void __fastcall RotorSlider1Change(TObject *Sender); 
        void __fastcall AmbiEffectClick(TObject *Sender); 
        void __fastcall RotorSlider2Change(TObject *Sender); 
        void __fastcall TransFilterClick(TObject *Sender); 
        void __fastcall ScrollBar2Change(TObject *Sender); 
        void __fastcall RearFilterClick(TObject *Sender); 
        void __fastcall ScrollBar3Change(TObject *Sender); 
        void __fastcall RotorSlider3Change(TObject *Sender); 
private: // User declarations 
        bool TWriting; 
public: // User declarations 
        unsigned long WaveRead; 
        unsigned long WaveSize; 
        void UpdateWaveTime(unsigned long WRead); 
        __fastcall TAmbiToAll(TComponent* Owner); 
        AnsiString WFName, XFName, YFName, ZFName; 
        short m_effect; 
        float m_volume,m_width; 
        float RotAngle,monopan,TiltAngle; 
}; 
//------------------------------------------------------------------- 
extern PACKAGE TAmbiToAll *AmbiToAll; 
//------------------------------------------------------------------- 
#endif 
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//------------------------------------------------------------------- 
//--------------------------WIGSOUND.H------------------------------- 
//------------------------------------------------------------------- 
#ifndef WigSoundH 
#define WigSoundH 
 
#include <mmsystem.h> 
 
class WigSound 
{ 
private: 
        WAVEHDR *WaveHeadersOut,*WaveHeadersIn,*SampleBuffer; 
        HWAVEOUT hWaveOut; 
        HWAVEIN hWaveIn; 
        MMRESULT Error; 
        unsigned int NoOfBuffers,NoOfQueueBuffers; 
        unsigned short NoOfChannels,BufferLengthPerChannel; 
 
        friend void CALLBACK WaveOutCallback(HWAVEOUT hwo, UINT uMsg, 

WORD dwInstance,DWORD dwParam1, DWORD dwParam2); 
        friend void CALLBACK WaveInCallback(HWAVEIN hwi, UINT uMsg, 

DWORD dwInstance,DWORD dwParam1, DWORD dwParam2); 
 
        void ClearBufferFromFIFO(); 
        void ProcessErrorIn(MMRESULT Error); 
        void ProcessErrorOut(MMRESULT Error); 
protected: 
        WAVEFORMATEX WaveFormat; 
public: 
        WigSound(); 
        void Initialise(unsigned short usNoOfChannels,  
unsigned long usSampleRate,unsigned short usBufferLengthPerChannel,  
unsigned int uiNoOfBuffers,unsigned int uiNoOfQueueBuffers); 
        virtual void ProcessAudio(WAVEHDR *pWaveHeader,  

unsigned short usNoOfChannels,  
unsigned short usBufferLengthPerChannel); 

        virtual void MonitorAudio(WAVEHDR *pWaveHeader,  
unsigned short usNoOfChannels, 
unsigned short usBufferLengthPerChannel); 

        void ProcessAudioIn(WAVEHDR *pWaveHeader,  
unsigned short usNoOfChannels, 

            unsigned short usBufferLengthPerChannel); 
        void OpenDevice(UINT Device); 
        void CloseDevice(UINT Device); 
        void Pause(); 
        void UnPause(); 
        void WaveInFunc(WAVEHDR *pWaveHeader); 
        void WaveOutFunc(WAVEHDR *pWaveHeader); 
        bool Closing,Paused; 
        WAVEHDR *ReadBuffer,*WriteBuffer; 
}; 
//------------------------------------------------------------------- 
WigSound::WigSound() 
{ 
} 

void WigSound::Initialise( 
        unsigned short usNoOfChannels,unsigned long usSampleRate, 
        unsigned short usBufferLengthPerChannel, 

  unsigned int uiNoOfBuffers,unsigned int uiNoOfQueueBuffers) 
{ 
        WaveFormat.wFormatTag           = WAVE_FORMAT_PCM; 

//------------------------------------------------------------------- 
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        WaveFormat.nChannels            = usNoOfChannels; 
        WaveFormat.nSamplesPerSec       = usSampleRate; 
        WaveFormat.wBitsPerSample       = 16; 
        WaveFormat.nBlockAlign          =  

(unsigned short)(usNoOfChannels*16/8); 
        WaveFormat.nAvgBytesPerSec      =  

(unsigned long)(usSampleRate*WaveFormat.nBlockAlign); 
        WaveFormat.cbSize               = 0; 
 
        NoOfBuffers                     = uiNoOfBuffers; 
        NoOfQueueBuffers                = uiNoOfQueueBuffers; 
        NoOfChannels                    = usNoOfChannels; 
        BufferLengthPerChannel          = usBufferLengthPerChannel; 
        SampleBuffer                    =  

new WAVEHDR[NoOfQueueBuffers]; 
        WriteBuffer                     = SampleBuffer; 
        ReadBuffer                      = SampleBuffer; 
        WaveHeadersOut                  = new WAVEHDR[NoOfBuffers]; 
        WaveHeadersIn                   = new WAVEHDR[NoOfBuffers]; 
        Closing                         = false; 
        Paused                          = true; 
 
        for(UINT i=0;i<NoOfBuffers;i++) 
        { 
                WaveHeadersOut[i].dwBufferLength =  
   usBufferLengthPerChannel*16*usNoOfChannels/8; 
                WaveHeadersOut[i].lpData =  

new char[WaveHeadersOut[i].dwBufferLength]; 
                
memset(WaveHeadersOut[i].lpData,0,WaveHeadersOut[i].dwBufferLength); 
                WaveHeadersOut[i].dwFlags=0; 
                WaveHeadersOut[i].dwLoops=0; 
 

WaveHeadersIn[i].dwBufferLength =  
 usBufferLengthPerChannel*16*usNoOfChannels/8; 

                WaveHeadersIn[i].lpData =  
new char[WaveHeadersIn[i].dwBufferLength]; 

                
memset(WaveHeadersIn[i].lpData,0,WaveHeadersIn[i].dwBufferLength); 
                WaveHeadersIn[i].dwFlags=0; 
                WaveHeadersIn[i].dwLoops=0; 

 
        for(UINT i=0;i<NoOfQueueBuffers;i++) 
        { 
                SampleBuffer[i].dwBufferLength =  
   usBufferLengthPerChannel*16*usNoOfChannels/8; 
                SampleBuffer[i].lpData =  

new char[SampleBuffer[i].dwBufferLength]; 
                
memset(SampleBuffer[i].lpData,0,SampleBuffer[i].dwBufferLength); 
                SampleBuffer[i].dwFlags = 0; 
                SampleBuffer[i].dwLoops = 0; 
        } 
} 
//------------------------------------------------------------------- 
void WigSound::OpenDevice(UINT Device) 
{ 
        Device?Device--:Device=WAVE_MAPPER; 
 
        Error = waveOutOpen(&hWaveOut,Device,&WaveFormat, 

(DWORD)WaveOutCallback, 

        } 
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                 (DWORD)this,CALLBACK_FUNCTION); 
        if(Error)       ProcessErrorOut(Error); 
 
        Error = waveOutPause(hWaveOut); 
        if(Error)       ProcessErrorOut(Error); 
 
        for(UINT i=0;i<NoOfBuffers;i++) 
        { 
                Error = waveOutPrepareHeader(hWaveOut, 

&WaveHeadersOut[i],sizeof(WaveHeadersOut[i])); 
                if(Error)       ProcessErrorOut(Error); 
 
                Error = waveOutWrite(hWaveOut, 

&WaveHeadersOut[i],sizeof(WaveHeadersOut[i])); 
                if(Error)       ProcessErrorOut(Error); 
        } 
 
        Error = waveInOpen(&hWaveIn,Device,&WaveFormat, 

        if(Error)       ProcessErrorIn(Error); 
 
        for(UINT i=0;i<NoOfBuffers;i++) 
        { 

&WaveHeadersIn[i], 
sizeof(WaveHeadersIn[i])); 

                if(Error)       ProcessErrorIn(Error); 
 

sizeof(WaveHeadersIn[i])); 
                if(Error)       ProcessErrorIn(Error); 
        } 
 
        Error = waveOutRestart(hWaveOut); 
        if(Error)       ProcessErrorOut(Error); 

        Error = waveInStart(hWaveIn); 
        if(Error)       ProcessErrorIn(Error); 
        Paused=false; 
} 
//------------------------------------------------------------------- 
void WigSound::CloseDevice(UINT Device) 
{ 

        Error = waveInReset(hWaveIn); 
        if(Error)       ProcessErrorIn(Error); 
        Error = waveOutReset(hWaveOut); 
        if(Error)       ProcessErrorOut(Error); 
        Sleep(300); 
 
        for(UINT i=0;i<NoOfBuffers;i++) 
        { 

&WaveHeadersOut[i],sizeof(WaveHeadersOut[i])); 
                if(Error)       ProcessErrorOut(Error); 
                if(WaveHeadersOut[i].lpData)        

delete [] WaveHeadersOut[i].lpData; 
 
                Error = waveInUnprepareHeader(hWaveIn, 

&WaveHeadersIn[i], 
sizeof(WaveHeadersIn[i])); 

(DWORD)WaveInCallback, 
(DWORD)this,CALLBACK_FUNCTION); 

                Error = waveInPrepareHeader(hWaveIn, 

                Error = waveInAddBuffer(hWaveIn,&WaveHeadersIn[i], 

 

        Closing=true; 

                Error = waveOutUnprepareHeader(hWaveOut, 
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                if(Error)       ProcessErrorIn(Error); 

        if(Error)       ProcessErrorOut(Error); 

} 

 

        Error = waveInAddBuffer(hWaveIn,pWaveHeader, 

                if(WaveHeadersIn[i].lpData)        
delete [] WaveHeadersIn[i].lpData; 

        } 
        for(UINT i=0;i<NoOfQueueBuffers;i++) 
        { 
                if(SampleBuffer[i].lpData)         

delete [] SampleBuffer[i].lpData; 
        } 
 
        if(WaveHeadersOut) delete [] WaveHeadersOut; 
        if(WaveHeadersIn) delete [] WaveHeadersIn; 
        if(SampleBuffer) delete [] SampleBuffer; 
 
        Error = waveInClose(hWaveIn); 
        if(Error)       ProcessErrorIn(Error); 
        Error = waveOutClose(hWaveOut); 

} 
//------------------------------------------------------------------- 
void WigSound::Pause() 
{ 
        Paused=true; 
} 
//------------------------------------------------------------------- 
void WigSound::UnPause() 
{ 
        Paused=false; 
} 
//------------------------------------------------------------------- 
void WigSound::ProcessErrorIn(MMRESULT Error) 
{ 
        char Text[256]; 
        waveInGetErrorText(Error,Text,sizeof(Text)); 
        MessageBox(NULL,Text,"Error",MB_OK); 

//------------------------------------------------------------------- 
void WigSound::ProcessErrorOut(MMRESULT Error) 
{ 
        char Text[256]; 
        waveOutGetErrorText(Error,Text,sizeof(Text)); 
        MessageBox(NULL,Text,"Error",MB_OK); 

} 
//------------------------------------------------------------------- 
void WigSound::WaveInFunc(WAVEHDR *pWaveHeader) 
{ 
        ProcessAudioIn(pWaveHeader,NoOfChannels, 

BufferLengthPerChannel); 

sizeof(*pWaveHeader)); 
 
} 
//------------------------------------------------------------------- 
void WigSound::WaveOutFunc(WAVEHDR *pWaveHeader) 
{ 
        ProcessAudio(pWaveHeader,NoOfChannels, 

BufferLengthPerChannel); 
        ClearBufferFromFIFO(); 
        Error = waveOutWrite(hWaveOut,pWaveHeader, 

sizeof(*pWaveHeader)); 
} 
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//------------------------------------------------------------------- 
void CALLBACK WaveOutCallback(HWAVEOUT hwo, UINT uMsg,  

                } 

DWORD dwInstance,DWORD dwParam1, DWORD dwParam2) 
{ 
        WigSound *me = (WigSound *)dwInstance; 
        switch(uMsg) 
        { 
                case WOM_DONE: 
                { 
                        if(!me->Closing)  

me->WaveOutFunc((WAVEHDR *)dwParam1); 
                        break; 

                default: 
                        break; 
        } 
} 
//------------------------------------------------------------------- 
void CALLBACK WaveInCallback(HWAVEIN hwi, UINT uMsg, DWORD 
dwInstance, 
                DWORD dwParam1, DWORD dwParam2) 
{ 
        WigSound *me = (WigSound *)dwInstance; 
        switch(uMsg) 
        { 
                case WIM_DATA: 
                { 
                        if(!me->Closing)  

me->WaveInFunc((WAVEHDR *)dwParam1); 
                        break; 
                } 
                default: 
                        break; 
        } 
} 
//------------------------------------------------------------------- 
void WigSound::ProcessAudio(WAVEHDR *pWaveHeader,  

unsigned short usNoOfChannels, 
unsigned short usBufferLengthPerChannel) 

{ 
 
} 
//------------------------------------------------------------------- 
void WigSound::MonitorAudio(WAVEHDR *pWaveHeader, unsigned short 
usNoOfChannels, 
                unsigned short usBufferLengthPerChannel) 
{ 
 
} 
//------------------------------------------------------------------- 
void WigSound::ProcessAudioIn(WAVEHDR *pWaveHeader, unsigned short 
usNoOfChannels, 
                unsigned short usBufferLengthPerChannel) 
{ 
        memcpy(WriteBuffer->lpData,pWaveHeader->lpData, 

pWaveHeader->dwBufferLength); 
        WriteBuffer++; 
        if(WriteBuffer>&SampleBuffer[NoOfQueueBuffers-1]) 
                WriteBuffer=&SampleBuffer[NoOfQueueBuffers-1]; 
 
        MonitorAudio(pWaveHeader,usNoOfChannels, 

usBufferLengthPerChannel); 
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} 
//------------------------------------------------------------------- 
void WigSound::ClearBufferFromFIFO() 
{ 
        for(UINT i=0;i<NoOfQueueBuffers-1;i++) 
        { 
                memcpy(SampleBuffer[i].lpData, 

SampleBuffer[i+1].lpData, 
                        SampleBuffer[i].dwBufferLength); 
        } 
        if(WriteBuffer>SampleBuffer)    WriteBuffer--; 
} 
//------------------------------------------------------------------- 
#endif 
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//------------------------------------------------------------------- 
//-------------------------WIGSOUND2.H------------------------------- 
//------------------------------------------------------------------- 
#ifndef WigSoundH2 
#define WigSoundH2 
 
#include <fstream.h> 
#include "WigSound.h" 
#include "WigAmbi.h" 
#include "WaveFile.h" 
#include "FastConv.h" 

#include "Main.h" 
 
#define BLEN 4096 
#define FFTORDER 12 
#define FFTSIZE 4096 
 
class WigSound2 : public WigSound 
{ 
private: 
        float **Samples,**Decode,*SElev,*SAzim,*mono; 
        bool bSkip; 
        long SkipOffset; 
        AmbiBuffer *ABuf,*BBuf; 
        int NoOfSpeakers,SampleRate; 
        AnsiString DIR; 
 
        //For 2 ears 
        FastFilter *WF,*XF,*YF,*ZF; 
        FastFilter *WF2D,*XF2D,*YF2D; 
        //For 4 ears 
        FastFilter *WFf,*WFr,*XFf,*XFr,*YFf,*YFr; 
        //For Front... 
        FastFilter *h1fl,*h2fl,*h1fr,*h2fr; 
        // and Back X-Talk Cancellation Filters 
        FastFilter *h1rl,*h2rl,*h1rr,*h2rr; 
        //AllPass Filters for cheap Ambisonics decoder 
        AllPass *WAP,*XAP,*YAP; 
 
        void LoadFilters(int SRate); 
        void UnloadFilters(); 
 
        void ChooseFilter(int SRate); 
        void ChooseRearFilter(int SRate); 
        void B2Headphones(AmbiBuffer *Signal, float **Samples, 

int NoOfChannels); 
        void B2Headphones2D(AmbiBuffer *Signal, float **Samples, 

int NoOfChannels);         
        void B2Headphones4(AmbiBuffer *Signal, AmbiBuffer *Signal2, 

float **Samples,int NoOfChannels); 
        void B2Trans(AmbiBuffer *Signal,float *Left,float *Right, 

int NoOfChannels,FastFilter *h1, FastFilter *h2, 
FastFilter *h1r, FastFilter *h2r); 

public: 
        WigSound2(TAmbiToAll *Sender); 
        ~WigSound2(); 
        void InitMem(unsigned short usNoOfChannels, 
                unsigned short usBufferLengthPerChannel, 
                int SRate); 
        void UnInitMem( unsigned short usNoOfChannels, 
                 unsigned short usBufferLengthPerChannel); 

#include "AllPass.h" 
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        void ProcessAudio(WAVEHDR *pWaveHeader,  
unsigned short usNoOfChannels, 

                 unsigned short usBufferLengthPerChannel); 
        void MonitorAudio(WAVEHDR *pWaveHeader,  

unsigned short usNoOfChannels, 
                 unsigned short usBufferLengthPerChannel); 
        void SkipAudio(int Offset); 
        WigFile WFile,XFile,YFile,ZFile; 
        TAmbiToAll *Window; 
        bool UpdateFilter,UpdateRearFilter; 
}; 
//------------------------------------------------------------------- 
WigSound2::WigSound2(TAmbiToAll *Sender) 
{ 
        Window = Sender; 
        NoOfSpeakers=8; 
 
        SkipOffset = 0; 
        bSkip = false; 
        UpdateFilter = false; 
 
        DIR = GetCurrentDir(); 
        DIR+="\\"; 
} 
WigSound2::~WigSound2() 
{ 
} 
void WigSound2::LoadFilters(int SRate) 
{ 
        AnsiString wname,xname,yname,zname; 
        ZF=NULL; 
        if(SRate==48000) 
        { 
                wname = DIR + "Wh481024.dat"; 
                xname = DIR + "Xh481024.dat"; 
                yname = DIR + "Yh481024.dat"; 
                zname = DIR + "Zh481024.dat"; 
                WF = new FastFilter(FFTORDER,&wname,1024); 
                XF = new FastFilter(FFTORDER,&xname,1024); 
                YF = new FastFilter(FFTORDER,&yname,1024,1); 
                ZF = new FastFilter(FFTORDER,&zname,1024); 
                wname = DIR + "Wh4810242D.dat"; 
                xname = DIR + "Xh4810242D.dat"; 
                yname = DIR + "Yh4810242D.dat"; 
                WF2D = new FastFilter(FFTORDER,&wname,1024); 
                XF2D = new FastFilter(FFTORDER,&xname,1024); 
                YF2D = new FastFilter(FFTORDER,&yname,1024,1); 
                wname = DIR + "WhFront1024.dat"; 
                xname = DIR + "XhFront1024.dat"; 
                yname = DIR + "YhFront1024.dat"; 
                WFf = new FastFilter(FFTORDER,&wname,1024); 
                XFf = new FastFilter(FFTORDER,&xname,1024); 
                YFf = new FastFilter(FFTORDER,&yname,1024,1); 
                wname = DIR + "WhRear1024.dat"; 
                xname = DIR + "XhRear1024.dat"; 
                yname = DIR + "YhRear1024.dat"; 
                WFr = new FastFilter(FFTORDER,&wname,1024); 
                XFr = new FastFilter(FFTORDER,&xname,1024); 
                YFr = new FastFilter(FFTORDER,&yname,1024,1); 
                wname = DIR + "h1348.dat"; 
                xname = DIR + "h2348.dat"; 
                h1fl = new FastFilter(FFTORDER,&wname,2048); 
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                h2fl = new FastFilter(FFTORDER,&xname,2048); 
                h1fr = new FastFilter(FFTORDER,&wname,2048); 
                h2fr = new FastFilter(FFTORDER,&xname,2048); 
        } 
        else 
        { 
                wname = DIR + "Wh1024.dat"; 
                xname = DIR + "Xh1024.dat"; 
                yname = DIR + "Yh1024.dat"; 
                zname = DIR + "Zh1024.dat"; 
                WF = new FastFilter(FFTORDER,&wname,1024); 
                XF = new FastFilter(FFTORDER,&xname,1024); 
                YF = new FastFilter(FFTORDER,&yname,1024,1); 
                ZF = new FastFilter(FFTORDER,&zname,1024); 
                wname = DIR + "Wh1024.dat"; 
                xname = DIR + "Xh1024.dat"; 
                yname = DIR + "Yh1024.dat"; 
                WF2D = new FastFilter(FFTORDER,&wname,1024); 
                XF2D = new FastFilter(FFTORDER,&xname,1024); 
                YF2D = new FastFilter(FFTORDER,&yname,1024,1); 
                wname = DIR + "WhFront1024.dat"; 
                xname = DIR + "XhFront1024.dat"; 
                yname = DIR + "YhFront1024.dat"; 
                WFf = new FastFilter(FFTORDER,&wname,1024); 
                XFf = new FastFilter(FFTORDER,&xname,1024); 
                YFf = new FastFilter(FFTORDER,&yname,1024,1); 
                wname = DIR + "WhRear1024.dat"; 
                xname = DIR + "XhRear1024.dat"; 
                yname = DIR + "YhRear1024.dat"; 
                WFr = new FastFilter(FFTORDER,&wname,1024); 
                XFr = new FastFilter(FFTORDER,&xname,1024); 
                YFr = new FastFilter(FFTORDER,&yname,1024,1); 
                wname = DIR + "h13.dat"; 
                xname = DIR + "h23.dat"; 
                h1fl = new FastFilter(FFTORDER,&wname,2048); 
                h2fl = new FastFilter(FFTORDER,&xname,2048); 
                h1fr = new FastFilter(FFTORDER,&wname,2048); 
                h2fr = new FastFilter(FFTORDER,&xname,2048); 
        } 
} 
void WigSound2::UnloadFilters() 
{ 
        delete WF; 
        delete XF; 
        delete YF; 
        delete ZF; 
        delete WF2D; 
        delete XF2D; 
        delete YF2D; 
        delete WFf; 
        delete XFf; 
        delete YFf; 
        delete WFr; 
        delete XFr; 
        delete YFr; 
        delete h1fl; 
        delete h2fl; 
        delete h1fr; 
        delete h2fr; 
} 
void WigSound2::InitMem(   unsigned short usNoOfChannels, 
                unsigned short usBufferLengthPerChannel, 
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                int SRate) 
{ 
        SampleRate = SRate; 
        Samples = AllocSampleBuffer(usNoOfChannels, 

usBufferLengthPerChannel); 
        ABuf = AmbiAllocate(usBufferLengthPerChannel,0,1); 
        //BBuf used for 4-ear algorithms 
        BBuf = AmbiAllocate(usBufferLengthPerChannel,0,1); 
 
        SElev = new float[NoOfSpeakers]; 
        SAzim = new float[NoOfSpeakers]; 
        mono = new float[usBufferLengthPerChannel]; 
        for(int i=0;i<NoOfSpeakers;i++) 
        { 
                SElev[i]=0; 
                SAzim[i]=(M_PI/(float)NoOfSpeakers)+ 

i*2*M_PI/(float)NoOfSpeakers; 
        } 
        Decode=AllocDecodeArray(NoOfSpeakers,0); 
        DecoderCalc(SAzim,SElev,NoOfSpeakers,0,sqrt(2),Decode); 
 
        WFile.WaveFile(Window->WFName.c_str()); 
        XFile.WaveFile(Window->XFName.c_str()); 
        YFile.WaveFile(Window->YFName.c_str()); 
        ZFile.WaveFile(Window->ZFName.c_str()); 
        Window->WaveSize = WFile.GetWaveSize(); 
 
        WAP = new AllPass(usBufferLengthPerChannel); 
        XAP = new AllPass(usBufferLengthPerChannel); 
        YAP = new AllPass(usBufferLengthPerChannel); 
        WAP->SetCutOff(500.0f,(float)SRate); 
        XAP->SetCutOff(500.0f,(float)SRate); 
        YAP->SetCutOff(500.0f,(float)SRate); 
 
        Application->GetNamePath(); 
        LoadFilters(SRate); 
        Window->Oscilloscope1->Prepare(); 
        Window->Oscilloscope2->Prepare(); 
        UpdateFilter = UpdateRearFilter = true; 
} 
void WigSound2::UnInitMem( unsigned short usNoOfChannels, 
                unsigned short usBufferLengthPerChannel) 
{ 
        Window->Oscilloscope1->Unprepare(); 
        Window->Oscilloscope2->Unprepare(); 
        UnloadFilters(); 
        delete WAP; 
        delete XAP; 
        delete YAP; 
        WFile.CloseWaveFile(); 
        XFile.CloseWaveFile(); 
        YFile.CloseWaveFile(); 
        ZFile.CloseWaveFile(); 
        FreeSampleBuffer(Samples,usNoOfChannels); 
        delete[] mono; 
        delete[] SAzim; 
        delete[] SElev; 
        FreeDecodeArray(Decode,0); 
        AmbiFree(ABuf); 
        AmbiFree(BBuf); 
} 
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void WigSound2::MonitorAudio(WAVEHDR *pWaveHeader, unsigned short 
usNoOfChannels, 
                unsigned short usBufferLengthPerChannel) 
{ 
        //Input Callback 
        //Not Much Here as using Wave Files as input. 
} 
void WigSound2::ProcessAudio(WAVEHDR *pWaveHeader, unsigned short 
usNoOfChannels, 
                unsigned short usBufferLengthPerChannel) 
{ 
        short *inPtr = (short *)ReadBuffer->lpData; 
        short *outPtr = (short *)pWaveHeader->lpData; 
        float yn; 
        //Output Callback 
        if(!Paused) 
        { 
                if(bSkip) 
                { 
                        bSkip = false; 
                        //Scale Offset from 0->200 to 0->WaveSize 
                        SkipOffset =  
     (long)(((double)SkipOffset/200.0)* 

(double)WFile.GetWaveSize()); 
                        //Guarantee an even number (as offset is in 
bytes) 
                        //and wave file data is in shorts 
                        SkipOffset = SkipOffset/2; 
                        SkipOffset = SkipOffset*2; 
                        //Offset all files 
                        WFile.SkipIntoFile(SkipOffset); 
                        XFile.SkipIntoFile(SkipOffset); 
                        YFile.SkipIntoFile(SkipOffset); 
                        ZFile.SkipIntoFile(SkipOffset); 
                } 
                switch(Window->AmbiInput->ItemIndex) 
                { 
                case 0: 
                        //Wave File 
                        WFile.GetWaveSamples(ABuf->W,ABuf->Length); 
                        XFile.GetWaveSamples(ABuf->X,ABuf->Length); 
                        YFile.GetWaveSamples(ABuf->Y,ABuf->Length); 
                        ZFile.GetWaveSamples(ABuf->Z,ABuf->Length); 
                        Window->UpdateWaveTime(WFile.GetWaveRead()); 
                        break; 
                case 1: 
                        //Mono in to be panned 
                        WFile.GetWaveSamples(mono,ABuf->Length); 
                        Window->UpdateWaveTime(WFile.GetWaveRead()); 
                        Mono2B(mono,ABuf,Window->monopan,0.0f); 
                        break; 
                case 2: 
                        //Live in 
                        DeInterlace(ReadBuffer, 

Samples,usNoOfChannels); 
                        break; 
 
                } 
 
                BTilt(ABuf,Window->TiltAngle); 
                BRotate(ABuf,Window->RotAngle); 
                const float vol = Window->m_volume; 
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                switch(Window->m_effect) 
                { 
                        case 0: 
                                WAP->ProcessAudio(ABuf->W,1.33,1.15); 
                                XAP->ProcessAudio(ABuf->X,1.33,1.15); 
                                YAP->ProcessAudio(ABuf->Y,1.33,1.15); 
                                B2Speakers(Decode,ABuf,Samples, 

usNoOfChannels,8,0); 
                                break; 
                        case 1: 
                                B2Headphones(ABuf,Samples, 

usNoOfChannels); 
                                break; 
                        case 2: 
                                B2Headphones2D(ABuf,Samples, 

usNoOfChannels); 
                                break; 
 
                        case 3: 
                                if(UpdateFilter) 
                                { 
                                        ChooseFilter(SampleRate); 
                                        UpdateFilter = false; 
                                } 
                                B2Headphones(ABuf,Samples, 

usNoOfChannels); 
B2Trans(ABuf,Samples[0],Samples[1],                  
usNoOfChannels,h1fl,h2fl,h1fr,h2fr); 

                                break; 
                        case 4: 
                                if(UpdateFilter) 
                                { 
                                        ChooseFilter(SampleRate); 
                                        UpdateFilter = false; 
                                } 
                                if(UpdateRearFilter) 
                                { 
                                        ChooseRearFilter(SampleRate); 
                                        UpdateRearFilter = false; 
                                } 
                                B2Headphones4(ABuf,BBuf, 

Samples,usNoOfChannels); 
                                B2Trans(ABuf,Samples[0],Samples[1], 
                                usNoOfChannels,h1fl,h2fl,h1fr,h2fr); 
                                if(usNoOfChannels>=4) 
                                        B2Trans(ABuf,Samples[2], 

Samples[3],                             
usNoOfChannels,h1rl,h2rl, 
h1rr,h2rr); 

                                break; 
                        case 5: 
                                if(UpdateFilter) 
                                { 
                                        ChooseFilter(SampleRate); 
                                        UpdateFilter = false; 
                                } 
                                B2Trans(ABuf,Samples[0],Samples[1], 
 
                                usNoOfChannels,h1fl,h2fl,h1fr,h2fr); 
                                break; 
                        default: 
                                B2Speakers(Decode,ABuf,Samples, 
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usNoOfChannels,8,0); 
                                break; 
                } 
 
                //Do Volume 
                for(int i=0;i<usBufferLengthPerChannel;i++) 
                { 
                        for(int j=0;j<usNoOfChannels;j++) 
                        { 
                                Samples[j][i]*= vol; 
                        } 
                } 
                Window->Oscilloscope1->SampleArray = Samples[0]; 
                Window->Oscilloscope2->SampleArray = Samples[1]; 
                Window->Oscilloscope1->UpdateGraph(); 
                Window->Oscilloscope2->UpdateGraph(); 
                ReInterlace(pWaveHeader,Samples,usNoOfChannels); 
        } 
        else 
        { 
                memset(pWaveHeader->lpData,0, 

pWaveHeader->dwBufferLength); 
        } 
} 
void WigSound2::SkipAudio(int Offset) 
{ 
        SkipOffset = (unsigned long)Offset; 
        bSkip = true; 
} 
void WigSound2::B2Headphones(AmbiBuffer *Signal, float **Samples,int 
NoOfChannels) 
{ 
        const int Len = Signal->Length; 
        const float Wid = Window->m_width; 
        if(Window->m_effect==1 || Window->m_effect==2) 
        { 
                WF->OverAddFir(Signal->W,Wid); 
                XF->OverAddFir(Signal->X,Wid); 
                YF->OverAddFir(Signal->Y,Wid); 
                if(ZF) 
                        ZF->OverAddFir(Signal->Z,Wid); 
        } 
        else 
        { 
                WF->OverAddFir(Signal->W); 
                XF->OverAddFir(Signal->X); 
                YF->OverAddFir(Signal->Y); 
                if(ZF) 
                        ZF->OverAddFir(Signal->Z); 
        } 
 
        for(int i=0;i<Len;i++) 
        { 
                Samples[0][i] = 0.5*(Signal->W[i] + Signal->X[i] +  
   Signal->Y[i] + Signal->Z[i]); 
                Samples[1][i] = 0.5*(Signal->W[i] + Signal->X[i] –  
   Signal->Y[i] + Signal->Z[i]); 
        } 
 
        for(int i=2;i<NoOfChannels;i++) 
        { 
                for(int j=0;j<Len;j++) 
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                        Samples[i][j] = 0.0f; 
        } 
} 
void WigSound2::B2Headphones4(AmbiBuffer *Signal,  

AmbiBuffer *Signal2, float **Samples,int NoOfChannels) 
{ 
        const int Len = Signal->Length; 
        if(NoOfChannels>=4) 
        { 
                memcpy(Signal2->W,Signal->W,sizeof(float)*Len); 
                memcpy(Signal2->X,Signal->X,sizeof(float)*Len); 
                memcpy(Signal2->Y,Signal->Y,sizeof(float)*Len); 
 
                WFf->OverAddFir(Signal->W); 
                XFf->OverAddFir(Signal->X); 
                YFf->OverAddFir(Signal->Y); 
                WFr->OverAddFir(Signal2->W); 
                XFr->OverAddFir(Signal2->X); 
                YFr->OverAddFir(Signal2->Y); 
                for(int i=0;i<Len;i++) 
                { 
                        Samples[0][i] = Signal->W[i]  + Signal->X[i]   
       + Signal->Y[i]; 
                        Samples[1][i] = Signal->W[i]  + Signal->X[i]   
       - Signal->Y[i]; 
                        Samples[2][i] = Signal2->W[i] + Signal2->X[i]  
       + Signal2->Y[i]; 
                        Samples[3][i] = Signal2->W[i] + Signal2->X[i]  
       - Signal2->Y[i]; 
                } 
 
                for(int i=4;i<NoOfChannels;i++) 
                { 
                        for(int j=0;j<Len;j++) 
                                Samples[i][j] = 0.0f; 
                } 
        } 
} 
void WigSound2::B2Headphones2D(AmbiBuffer *Signal,  

float **Samples,int NoOfChannels) 
{ 
        const int Len = Signal->Length; 
        const float Wid = Window->m_width; 
        if(Window->m_effect==1 || Window->m_effect==2) 
        { 
                WF2D->OverAddFir(Signal->W,Wid); 
                XF2D->OverAddFir(Signal->X,Wid); 
                YF2D->OverAddFir(Signal->Y,Wid); 
        } 
        else 
        { 
                WF2D->OverAddFir(Signal->W); 
                XF2D->OverAddFir(Signal->X); 
                YF2D->OverAddFir(Signal->Y); 
        } 
 
        for(int i=0;i<Len;i++) 
        { 
                Samples[0][i] = Signal->W[i]  

+ Signal->X[i]  
+ Signal->Y[i]; 

                Samples[1][i] = Signal->W[i]  
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+ Signal->X[i]  
- Signal->Y[i]; 

        } 
 
        for(int i=2;i<NoOfChannels;i++) 
        { 
                for(int j=0;j<Len;j++) 
                        Samples[i][j] = 0.0f; 
        } 
} 
void WigSound2::B2Trans(AmbiBuffer *Signal,float *Left, 

float *Right,int NoOfChannels, 
                  FastFilter *h1l, FastFilter *h2l,  

FastFilter *h1r, FastFilter *h2r) 
{ 
        const int Len = Signal->Length; 
        const float Width = Window->m_width; 
        float *tL = new float[Signal->Length]; 
        float *tR = new float[Signal->Length]; 
 
        memcpy(tL,Left,sizeof(float)*Len); 
        memcpy(tR,Right,sizeof(float)*Len); 
 
        h1l->OverAddFir(Left); 
        h2l->OverAddFir(tL); 
        h1r->OverAddFir(Right); 
        h2r->OverAddFir(tR); 
 
        for(int i=0;i<Len;i++) 
        { 
                Left[i] = Left[i] + (Width * tR[i]); 
                Right[i] = Right[i] + (Width * tL[i]); 
        } 
 
        delete[] tL; 
        delete[] tR; 
} 
void WigSound2::ChooseFilter(int SRate) 
{ 
        AnsiString h1name,h2name; 
        if(SRate==44100) 
        { 
                switch(Window->TransFilter->ItemIndex) 
                { 
                case 0: 
                        h1name = DIR + "h13.dat"; 
                        h2name = DIR + "h23.dat"; 
                        break; 
                case 1: 
                        h1name = DIR + "h15.dat"; 
                        h2name = DIR + "h25.dat"; 
                        break; 
                case 2: 
                        h1name = DIR + "h110.dat"; 
                        h2name = DIR + "h210.dat"; 
                        break; 
                case 3: 
                        h1name = DIR + "h120.dat"; 
                        h2name = DIR + "h220.dat"; 
                        break; 
                case 4: 
                        h1name = DIR + "h130.dat"; 



Appendix 

 - 330 - 

                        h2name = DIR + "h230.dat"; 
                        break; 
                case 5: 
                        h1name = DIR + "h13b.dat"; 
                        h2name = DIR + "h23b.dat"; 
                        break; 
                } 
        } 
        else if(SRate==48000) 
        { 
                switch(Window->TransFilter->ItemIndex) 
                { 
                case 0: 
                        h1name = DIR + "h1348.dat"; 
                        h2name = DIR + "h2348.dat"; 
                        break; 
                case 1: 
                        h1name = DIR + "h1548.dat"; 
                        h2name = DIR + "h2548.dat"; 
                        break; 
                case 2: 
                        h1name = DIR + "h11048.dat"; 
                        h2name = DIR + "h21048.dat"; 
                        break; 
                case 3: 
                        h1name = DIR + "h12048.dat"; 
                        h2name = DIR + "h22048.dat"; 
                        break; 
                case 4: 
                        h1name = DIR + "h13048.dat"; 
                        h2name = DIR + "h23048.dat"; 
                        break; 
                case 5: 
                        h1name = DIR + "h13b48.dat"; 
                        h2name = DIR + "h23b48.dat"; 
                        break; 
                } 
        } 
        delete h1fl; 
        delete h2fl; 
        delete h1fr; 
        delete h2fr; 
        h1fl = new FastFilter(FFTORDER,&h1name,2048); 
        h2fl = new FastFilter(FFTORDER,&h2name,2048); 
        h1fr = new FastFilter(FFTORDER,&h1name,2048); 
        h2fr = new FastFilter(FFTORDER,&h2name,2048); 
} 
void WigSound2::ChooseRearFilter(int SRate) 
{ 
        AnsiString h1name,h2name; 
        if(SRate==44100) 
        { 
                switch(Window->RearFilter->ItemIndex) 
                { 
                case 0: 
                        h1name = DIR + "h1175.dat"; 
                        h2name = DIR + "h2175.dat"; 
                        break; 
                case 1: 
                        h1name = DIR + "h1170.dat"; 
                        h2name = DIR + "h2170.dat"; 
                        break; 



Appendix 

 - 331 - 

                case 2: 
                        h1name = DIR + "h1160.dat"; 
                        h2name = DIR + "h2160.dat"; 
                        break; 
                case 3: 
                        h1name = DIR + "h1150.dat"; 
                        h2name = DIR + "h2150.dat"; 
                        break; 
                case 4: 
                        h1name = DIR + "h1110.dat"; 
                        h2name = DIR + "h2110.dat"; 
                        break; 
                } 
        } 
        else if(SRate==48000) 
        { 
                switch(Window->RearFilter->ItemIndex) 
                { 
                case 0: 
                        h1name = DIR + "h117548.dat"; 
                        h2name = DIR + "h217548.dat"; 
                        break; 
                case 1: 
                        h1name = DIR + "h117048.dat"; 
                        h2name = DIR + "h217048.dat"; 
                        break; 
                case 2: 
                        h1name = DIR + "h116048.dat"; 
                        h2name = DIR + "h216048.dat"; 
                        break; 
                case 3: 
                        h1name = DIR + "h115048.dat"; 
                        h2name = DIR + "h215048.dat"; 
                        break; 
                case 4: 
                        h1name = DIR + "h111048.dat"; 
                        h2name = DIR + "h211048.dat"; 
                        break; 
                } 
        } 
        h1rl = new FastFilter(FFTORDER,&h1name,2048); 
        h2rl = new FastFilter(FFTORDER,&h2name,2048); 
        h1rr = new FastFilter(FFTORDER,&h1name,2048); 
        h2rr = new FastFilter(FFTORDER,&h2name,2048); 
} 
#endif 
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//------------------------------------------------------------------- 
//--------------------------ALLPASS.H-------------------------------- 
//------------------------------------------------------------------- 
#ifndef HALLPASS 
#define HALLPASS 
 
#include <math.h> 
//----------------------------------------------------------------- 
//----------------------------------------------------------------- 
class AllPass 
{ 
private: 
 float fs,fc,alpha,*Buffer; 
        float ff,fb,in,out; 
 const int BufLen; 
 void DoAllPass(float *signal, int iLen, float aval); 
public: 
 AllPass(int iLen); 
 ~AllPass(); 
 void SetCutOff(float fcut, float fsam); 
 void ProcessAudio(float *signal, float dBLP, float dBHP,  

bool dummy); 
 void ProcessAudio(float *signal, float LinLP, float LinHP); 
}; 
//----------------------------------------------------------------- 
//----------------------------------------------------------------- 
AllPass::AllPass(int iLen) : BufLen(iLen) 
{ 
 //Constructor - Set Default Cutoff, incase user doesn't ;-) 
 SetCutOff(700.0f,44100.0f); 
      ff=fb=in=out=0.0f; 
 Buffer = new float[BufLen]; 
} 
AllPass::~AllPass() 
{ 
 delete[] Buffer; 
} 
inline void AllPass::SetCutOff(float fcut,float fsam) 
{ 
 fs = fsam; 
 fc = fcut; 
 
 float fcnorm = fc/fs; 
 float w = 2*M_PI*fcnorm; 
 float cw = cos(w); 
 
 alpha = ((2-sqrt(pow(-2,2) - 4 * cw * cw)))/(2*cw); 
} 
//----------------------------------------------------------------- 
inline void AllPass::DoAllPass(float *signal, int iLen, float aval) 
{ 
        float a,b; 
        a = ff; 
        b = fb; 
 for(int i=0;i<iLen;i++) 
 { 
  out = (aval * signal[i]) - ff + (aval * fb); 
  fb = out; 
  ff = signal[i]; 
  signal[i] = out; 
 } 
} 
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//----------------------------------------------------------------- 
void AllPass::ProcessAudio(float *signal, float dBLP, float dBHP 

, bool dummy) 
{ 
 float LinLP,LinHP,HP,LP; 
 LinLP = pow(10,dBLP/20); 
 LinHP = pow(10,dBHP/20); 
 
 memcpy(Buffer,signal,sizeof(float) * BufLen); 
 DoAllPass(Buffer,BufLen,alpha); 
 
 for(int i=0;i<BufLen;i++) 
 { 
  HP = 0.5 * (signal[i] + Buffer[i]); 
  LP = 0.5 * (signal[i] - Buffer[i]); 
  signal[i] = LP * LinLP + HP * LinHP; 
 } 
} 
//----------------------------------------------------------------- 
void AllPass::ProcessAudio(float *signal, float LinLP, float LinHP) 
{ 
      float HP,LP; 
 memcpy(Buffer,signal,sizeof(float) * BufLen); 
 DoAllPass(Buffer,BufLen,alpha); 
 
 for(int i=0;i<BufLen;i++) 
 { 
  HP = 0.5 * (signal[i] + Buffer[i]); 
  LP = 0.5 * (signal[i] - Buffer[i]); 
  signal[i] = (LP * LinLP) + (HP * LinHP); 
 } 
} 
//----------------------------------------------------------------- 
#endif 
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//------------------------------------------------------------------- 
//---------------------------FASTFILTER.H---------------------------- 
//------------------------------------------------------------------- 
#ifndef HFASTCONV 
#define HFASTCONV 
 
#ifndef nsp_UsesTransform 
        extern "C"      { 
        #define nsp_UsesTransform 
        #include "nsp.h" 
        } 
#endif 
 
#include <math.h> 
#include <fstream.h> 
 
class FastFilter 
{ 
private: 
        int order,fftsize,siglen,implen; 
        float *OldArray,*Signal,*tconv,*h; 
        SCplx *fh,*fSig,*fconv; 
public: 
        FastFilter(int FFTOrder,AnsiString *FName,int FLength); 
        FastFilter(int FFTOrder,AnsiString *FName, 

int FLength,bool inv); 
        void ReLoadFilter(AnsiString *FName,int FLength); 
        ~FastFilter(); 
        void OverAddFir(float *signal); 
        void OverAddFir(float *signal,float g); 
}; 
//------------------------------------------------------------------- 
FastFilter::FastFilter(int FFTOrder,AnsiString *FName,int FLength) 
{ 
        order = FFTOrder; 
        fftsize = pow(2,order); 
        siglen = (fftsize/2) + 1; 
        implen = fftsize/2; 
 
        OldArray = new float[fftsize]; 
        Signal = new float[fftsize]; 
        tconv = new float[fftsize]; 
        h = new float[fftsize]; 
 
        fh = new SCplx[fftsize]; 
        fSig = new SCplx[fftsize]; 
        fconv = new SCplx[fftsize]; 
 
        ReLoadFilter(FName,FLength); 
 
        nspsRealFftNip(NULL,NULL,order,NSP_Init); 
        nspsRealFftNip(h,fh,order,NSP_Forw); 
} 
//------------------------------------------------------------------- 
FastFilter::FastFilter(int FFTOrder,AnsiString *FName,int 
FLength,bool inv) 
{ 
        order = FFTOrder; 
        fftsize = pow(2,order); 
        siglen = (fftsize/2) + 1; 
        implen = fftsize/2; 
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        OldArray = new float[fftsize]; 
        Signal = new float[fftsize]; 
        tconv = new float[fftsize]; 
        h = new float[fftsize]; 
 
        fh = new SCplx[fftsize]; 
        fSig = new SCplx[fftsize]; 
        fconv = new SCplx[fftsize]; 
 
        ReLoadFilter(FName,FLength); 
        for(int i=0;i<FLength;i++) 
        { 
                h[i] = -h[i]; 
        } 
        nspsRealFftNip(NULL,NULL,order,NSP_Init); 
        nspsRealFftNip(h,fh,order,NSP_Forw); 
} 
//------------------------------------------------------------------- 
FastFilter::~FastFilter() 
{ 
        delete[] tconv; 
        delete[] OldArray; 
        delete[] Signal; 
        delete[] h; 
 
        delete[] fh; 
        delete[] fSig; 
        delete[] fconv; 
} 
//------------------------------------------------------------------- 
void FastFilter::ReLoadFilter(AnsiString *FName,int FLength) 
{ 
        FILE *f; 
        int c; 
 
        memset(OldArray,0,sizeof(float)*fftsize); 
        memset(Signal,0,sizeof(float)*fftsize); 
        memset(tconv,0,sizeof(float)*fftsize); 
        memset(h,0,sizeof(float)*fftsize); 
 
        memset(fh,0,sizeof(SCplx)*fftsize); 
        memset(fSig,0,sizeof(SCplx)*fftsize); 
        memset(fconv,0,sizeof(SCplx)*fftsize); 
 
        f = fopen(FName->c_str(),"rb"); 
        if(f) 
        { 
                c = fread(h,sizeof(float),FLength,f); 
                if(c!=FLength) 
                        MessageBox(NULL,FName->c_str(), 

"Wrong Filter Length",NULL); 
                fclose(f); 
        } 
        else 
                MessageBox(NULL,FName->c_str(),"Couldn't Open 
File",NULL); 
} 
//------------------------------------------------------------------- 
void FastFilter::OverAddFir(float *signal) 
{ 
        static unsigned int i,j=0,k; 
        memcpy(Signal,signal,siglen*sizeof(float)); 



Appendix 

 - 336 - 

 
        //FFT Real Input Signal 
        nspsRealFftNip(Signal,fSig,order,NSP_Forw); 
 
        //Do processing in unrolled loop to maximise pipeline 
        //usage 
        for(i=0;i<implen;i+=4) 
        { 
                fconv[i].re =   (fh[i].re   * fSig[i].re) - 
                                (fh[i].im   * fSig[i].im); 
                fconv[i].im =   (fh[i].re   * fSig[i].im) + 
                                (fh[i].im   * fSig[i].re); 
                fconv[i+1].re = (fh[i+1].re * fSig[i+1].re) - 
                                (fh[i+1].im * fSig[i+1].im); 
                fconv[i+1].im = (fh[i+1].re * fSig[i+1].im) + 
                                (fh[i+1].im * fSig[i+1].re); 
                fconv[i+2].re = (fh[i+2].re * fSig[i+2].re) - 
                                (fh[i+2].im * fSig[i+2].im); 
                fconv[i+2].im = (fh[i+2].re * fSig[i+2].im) + 
                                (fh[i+2].im * fSig[i+2].re); 
                fconv[i+3].re = (fh[i+3].re * fSig[i+3].re) - 
                                (fh[i+3].im * fSig[i+3].im); 
                fconv[i+3].im = (fh[i+3].re * fSig[i+3].im) + 
                                (fh[i+3].im * fSig[i+3].re); 
        } 
        fconv[i+1].re = (fh[i+1].re * fSig[i+1].re) - 
                        (fh[i+1].im * fSig[i+1].im); 
        fconv[i+1].im = (fh[i+1].re * fSig[i+1].im) + 
                        (fh[i+1].im * fSig[i+1].re); 
 
        //do inverse FFT 
        nspsCcsFftNip(fconv,tconv,order,NSP_Inv); 
 
        //Do overlap add 
        for(i=0;i<siglen;i++) 
                signal[i]=(tconv[i]+OldArray[i]); 
 
        //update storage of 'old' samples 
        for(i=siglen,k=0;i<siglen+implen-1;i++,k++) 
        { 
                OldArray[k]=tconv[i]; 
                OldArray[i]=0; 
        } 
} 
//------------------------------------------------------------------- 
void FastFilter::OverAddFir(float *signal, float g) 
{ 
        static unsigned int i,j=0,k; 
        memcpy(Signal,signal,siglen*sizeof(float)); 
 
        //FFT Real Input Signal 
        nspsRealFftNip(Signal,fSig,order,NSP_Forw); 
 
        //Do processing in unrolled loop to maximise pipeline 
        //usage 
        for(i=0;i<implen;i+=4) 
        { 
                fconv[i].re =   (fh[i].re   * fSig[i].re) - 
                                (fh[i].im   * fSig[i].im); 
                fconv[i].im =   (fh[i].re   * fSig[i].im) + 
                                (fh[i].im   * fSig[i].re); 
                fconv[i+1].re = (fh[i+1].re * fSig[i+1].re) - 
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                                (fh[i+1].im * fSig[i+1].im); 
                fconv[i+1].im = (fh[i+1].re * fSig[i+1].im) + 
                                (fh[i+1].im * fSig[i+1].re); 
                fconv[i+2].re = (fh[i+2].re * fSig[i+2].re) - 
                                (fh[i+2].im * fSig[i+2].im); 
                fconv[i+2].im = (fh[i+2].re * fSig[i+2].im) + 
                                (fh[i+2].im * fSig[i+2].re); 
                fconv[i+3].re = (fh[i+3].re * fSig[i+3].re) - 
                                (fh[i+3].im * fSig[i+3].im); 
                fconv[i+3].im = (fh[i+3].re * fSig[i+3].im) + 
                                (fh[i+3].im * fSig[i+3].re); 
        } 
        fconv[i+1].re = (fh[i+1].re * fSig[i+1].re) - 
                        (fh[i+1].im * fSig[i+1].im); 
        fconv[i+1].im = (fh[i+1].re * fSig[i+1].im) + 
                        (fh[i+1].im * fSig[i+1].re); 
 
        //do inverse FFT 
        nspsCcsFftNip(fconv,tconv,order,NSP_Inv); 
 
        //Do overlap add 
        for(i=0;i<siglen;i++) 
                signal[i]=((1.0f - g) * signal[i]) +  

(g * (tconv[i]+OldArray[i])); 
 
        //update storage of 'old' samples 
        for(i=siglen,k=0;i<siglen+implen-1;i++,k++) 
        { 
                OldArray[k]=tconv[i]; 
                OldArray[i]=0; 
        } 
} 
//------------------------------------------------------------------- 
#endif 
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//------------------------------------------------------------------- 
//----------------------------WIGFILE.H------------------------------ 
//------------------------------------------------------------------- 
#ifndef WaveFileH 
#define WaveFileH 
 
#include <windows.h> 
#include <mmsystem.h> 
 
class WigFile 
{ 
private: 
        HMMIO FileHandle; 
        MMCKINFO FileInfo,CkInfo,CkSubInfo; 
        MMIOINFO IoInfo; 
        long WaveSize,WavRead,InitialOffset; 
        //char FileBuffer[16384]; 
public: 
        WigFile(); 
        ~WigFile(); 
        void WaveFile(char *FileName); 
        void GetWaveSamples(float *samples, UINT length); 
        void SkipIntoFile(long Skip); 
        void CloseWaveFile(); 
        unsigned long GetWaveSize()     {return(WaveSize);}; 
        unsigned long GetWaveRead()     {return(WavRead);}; 
        PCMWAVEFORMAT WaveFormat; 
}; 
//------------------------------------------------------------------- 
//Function Declarations---------------------------------------------- 
//------------------------------------------------------------------- 
WigFile::WigFile() 
{ 
} 
//------------------------------------------------------------------- 
WigFile::~WigFile() 
{ 
} 
//------------------------------------------------------------------- 
void WigFile::WaveFile(char *FileName) 
{ 
                FileHandle = mmioOpen(FileName,NULL, 

MMIO_READ|MMIO_ALLOCBUF); 
                if(FileHandle==NULL){ 
                        return; 
                } 
 
                CkInfo.fccType=mmioFOURCC('W','A','V','E'); 
 
                if(mmioDescend(FileHandle,&CkInfo, 

NULL,MMIO_FINDRIFF)) 
                { 
                        mmioClose(FileHandle,0); 
                        ShowMessage("Invalid WaveFormat for file: "  

+ *FileName); 
                } 
                CkSubInfo.ckid = mmioFOURCC('f','m','t',' '); 
                if(mmioDescend(FileHandle,&CkSubInfo, 

&CkInfo,MMIO_FINDCHUNK)) 
                { 
                        mmioClose(FileHandle,0); 
                        ShowMessage("Invalid Format Chunk for file: " 
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 + *FileName); 
                } 
                unsigned long n = CkSubInfo.cksize; 
                mmioRead(FileHandle,(LPSTR)&WaveFormat,n); 
 
                if(WaveFormat.wf.wFormatTag!=WAVE_FORMAT_PCM) 
                { 
                        mmioClose(FileHandle,0); 
                        ShowMessage(*FileName  

+ " is not a Wave File!"); 
                } 
 
                mmioAscend(FileHandle,&CkSubInfo,0); 
                CkSubInfo.ckid = mmioFOURCC('d','a','t','a'); 
 
                if(mmioDescend(FileHandle,&CkSubInfo, 

&CkInfo,MMIO_FINDCHUNK)) 
                { 
                        mmioClose(FileHandle,0); 
                        ShowMessage("Could not descend into  

data chunk: " + *FileName); 
                } 
                WavRead = 0; 
                WaveSize = CkSubInfo.cksize; 
                InitialOffset = CkSubInfo.dwDataOffset; 
} 
//------------------------------------------------------------------- 
void WigFile::GetWaveSamples(float *samples, UINT length) 
{ 
        long c1; 
        short *buf = new short[length]; 
        //Offset file reading by Pos bytes 
        if(FileHandle) 
        { 
                c1 = mmioRead(FileHandle,(char *)buf,length * 2); 
                //Increase wavefile position counter 
                if(c1<=0)       WavRead=WaveSize; 
                else            WavRead+=c1; 
                if(WavRead<WaveSize) 
                { 
                        for(int i=0;i<c1/2;i++) 
                        { 
                                samples[i] = (float)(buf[i]); 
                        } 
                        for(int i=c1/2;i<length;i++) 
                        { 
                                samples[i] = 0.0f; 
                        } 
                } 
                if(c1<=0) 
                { 
                        if(FileHandle) 
                        { 
                                mmioClose(FileHandle,0); 
                                FileHandle = NULL; 
                        } 
                } 
        } 
        else 
        { 
                for(int i=0;i<length;i++) 
                { 



Appendix 

 - 340 - 

                        samples[i] = 0.0f; 
                } 
        } 
        delete[] buf; 
} 
//------------------------------------------------------------------- 
void WigFile::SkipIntoFile(long Skip) 
{ 
        long res = mmioSeek(FileHandle,Skip +  
    InitialOffset,SEEK_SET); 
        WavRead = res - InitialOffset; 
} 
void WigFile::CloseWaveFile() 
{ 
        if(FileHandle) 
                mmioClose(FileHandle,0); 
        FileHandle=NULL; 
} 
#endif 
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//------------------------------------------------------------------- 
//---------------------------WIGAMBI.H------------------------------- 
//------------------------------------------------------------------- 
#ifndef WigAmbiH 
#define WigAmbiH 
 
#include <math.h> 
#include <mmsystem.h> 
 
#ifndef nsp_UsesTransform 
        extern "C"      { 
        #define nsp_UsesTransform 
        #include "nsp.h" 
        } 
#endif 
 
struct AmbiBuffer 
{ 
        float *W,*X,*Y,*Z,*R,*S,*T,*U,*V; 
        int Length; 
        bool Order; 
}; 
 
void DeInterlace(WAVEHDR *,float **,int NoOfChannels); 
void ReInterlace(WAVEHDR *,float **,int NoOfChannels); 
void BGain(AmbiBuffer *,float Gain); 
void BRotate(AmbiBuffer *,float RadAngle); 
void BTilt(AmbiBuffer *,float RadAngle); 
void Mono2B(float *Mono,AmbiBuffer *,float RadAzim, float RadElev); 
void BPlusB(AmbiBuffer *,AmbiBuffer *); 
void AssignChannel(AmbiBuffer *,float *,char); 
AmbiBuffer * AmbiAllocate(int Length,bool Order,bool WithChannels); 
void AmbiFree(AmbiBuffer *); 
float ** AllocDecodeArray(int NoOfSpeakers,bool Order); 
float ** AllocSampleBuffer(int Channels,int BufferLength); 
void FreeDecodeArray(float **,bool Order); 
void FreeSampleBuffer(float **,int Channels); 
void DecoderCalc(float *Azim,float *Elev,int NoOfSpeakers,bool Order,  

float WGain,float **Gains); 
void B2Speakers(float **SGains,AmbiBuffer *Ambi, float **Samples,  

int NoOfChannels,int NoOfSpeakers,bool Order); 
float MaxSample(float *Samples,int BufferLength); 
void MaxSample(WAVEHDR *,float *,int BufferLength,int NoOfChannels); 
//---------------------------------------------------------------- 
float MaxSample(float *Samples,int BufferLength) 
{ 
        float Max=0; 
        for(int i=0;i<BufferLength;i++) 
                if(Max<Samples[i])  Max=Samples[i]; 
 
        return (Max); 
} 
//---------------------------------------------------------------- 
void MaxSample(WAVEHDR *pWaveHeader,float *Max,int BufferLength, 

int NoOfChannels) 
{ 
        for(int i=0;i<NoOfChannels;i++) Max[i]=0; 
        short *Data=(short *)pWaveHeader->lpData; 
        for(int i=0;i<BufferLength;i++) 
        { 
                for(int j=0;j<NoOfChannels;j++) 
                { 
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                        if(Max[j]<(float)Data[j])  
     Max[j]=(float)Data[j]; 
                } 
                Data+=NoOfChannels; 
        } 
} 
//---------------------------------------------------------------- 
void DeInterlace(WAVEHDR *WaveBuffer,float **Samples, 

int NoOfChannels) 
{ 
        //Sort out channels 
        short *Buffer = (short *)WaveBuffer->lpData; 
        int count=0; 
        for(unsigned int i=0; 

i<WaveBuffer->dwBufferLength/(2*NoOfChannels);i++) 
        { 
                for(int j=0;j<NoOfChannels;j++) 
                { 
                        Samples[j][i]=Buffer[count++]; 
                } 
        } 
} 
//---------------------------------------------------------------- 
void ReInterlace(WAVEHDR *WaveBuffer,float **Samples, 

int NoOfChannels) 
{ 
        //Sort out channels 
        short *Buffer = (short *)WaveBuffer->lpData; 
        int count=0; 
        for(unsigned int i=0; 

i<WaveBuffer->dwBufferLength/(2*NoOfChannels);i++) 
        { 
                for(int j=0;j<NoOfChannels;j++) 
                { 
                        Buffer[count++]=(short)Samples[j][i]; 
                } 
        } 
} 
//---------------------------------------------------------------- 
void BRotate(AmbiBuffer *a,float RadAngle) 
{ 
        float x,y; 
        float s = sin(RadAngle); 
        float c = cos(RadAngle); 
        for(int i=0;i<a->Length;) 
        { 
                x = a->X[i] * c + a->Y[i] * s; 
                y = a->Y[i] * c + a->X[i] * s; 
                a->X[i] = x; 
                a->Y[i] = y; 
                i++; 
        } 
} 
void BTilt(AmbiBuffer *a,float RadAngle) 
{ 
        float x,z; 
        float s = sin(RadAngle); 
        float c = cos(RadAngle); 
        for(int i=0;i<a->Length;) 
        { 
                x = a->X[i] * c - a->Z[i] * s; 
                z = a->Z[i] * c + a->X[i] * s; 
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                a->X[i] = x; 
                a->Z[i] = z; 
                i++; 
        } 
} 
void BGain(AmbiBuffer *Ambi, float Gain) 
{ 
        if(Ambi->Order) 
        { 
                for(int i=0;i<Ambi->Length;i++) 
                { 
                        Ambi->W[i]*=Gain; 
                        Ambi->X[i]*=Gain; 
                        Ambi->Y[i]*=Gain; 
                        Ambi->Z[i]*=Gain; 
                        Ambi->R[i]*=Gain; 
                        Ambi->S[i]*=Gain; 
                        Ambi->T[i]*=Gain; 
                        Ambi->U[i]*=Gain; 
                        Ambi->V[i]*=Gain; 
                } 
        } 
        else 
        { 
                for(int i=0;i<Ambi->Length;i++) 
                { 
                        Ambi->W[i]*=Gain; 
                        Ambi->X[i]*=Gain; 
                        Ambi->Y[i]*=Gain; 
                        Ambi->Z[i]*=Gain; 
                } 
        } 
} 
//---------------------------------------------------------------- 
void Mono2B(float *Mono,AmbiBuffer *Ambi,float RadAzim,  

float RadElev) 
{ 
        float SinA=sin(RadAzim); 
        float CosA=cos(RadAzim); 
        float SinE=sin(RadElev); 
        float CosE=cos(RadElev); 
        float Sin2E=sin(2*RadElev); 
        float Sin2A=sin(2*RadAzim); 
        float Cos2A=cos(2*RadAzim); 
        float Sample,Gain[9]; 
 
        Gain[0] = 0.70710678119f; 
        Gain[1] = CosA * CosE; 
        Gain[2] = SinA * CosE; 
        Gain[3] = SinE; 
        if(Ambi->Order) 
        { 
                Gain[4] = 1.5f*SinE*SinE-0.5f; 
                Gain[5] = CosA*Sin2E; 
                Gain[6] = SinA*Sin2E; 
                Gain[7] = Cos2A*CosE*CosE; 
                Gain[8] = Sin2A*CosE*CosE; 
 
                for(int i=0;i<Ambi->Length;i++) 
                { 
                        Sample=Mono[i]; 
                        Ambi->W[i]=Sample*Gain[0]; 
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                        Ambi->X[i]=Sample*Gain[1]; 
                        Ambi->Y[i]=Sample*Gain[2]; 
                        Ambi->Z[i]=Sample*Gain[3]; 
                        Ambi->R[i]=Sample*Gain[4]; 
                        Ambi->S[i]=Sample*Gain[5]; 
                        Ambi->T[i]=Sample*Gain[6]; 
                        Ambi->U[i]=Sample*Gain[7]; 
                        Ambi->V[i]=Sample*Gain[8]; 
                } 
        } 
        else 
        { 
                for(int i=0;i<Ambi->Length;i++) 
                { 
                        Sample=Mono[i]; 
                        Ambi->W[i]=Sample*Gain[0]; 
                        Ambi->X[i]=Sample*Gain[1]; 
                        Ambi->Y[i]=Sample*Gain[2]; 
                        Ambi->Z[i]=Sample*Gain[3]; 
                } 
        } 
} 
//---------------------------------------------------------------- 
void BPlusB(AmbiBuffer *Ambi1,AmbiBuffer *Ambi2) 
{ 
        if(Ambi1->Order && Ambi2->Order) 
        { 
                for(int i=0;i<Ambi1->Length;i++) 
                { 
                        Ambi2->W[i]+=Ambi1->W[i]; 
                        Ambi2->X[i]+=Ambi1->X[i]; 
                        Ambi2->Y[i]+=Ambi1->Y[i]; 
                        Ambi2->Z[i]+=Ambi1->Z[i]; 
                        Ambi2->R[i]+=Ambi1->R[i]; 
                        Ambi2->S[i]+=Ambi1->S[i]; 
                        Ambi2->T[i]+=Ambi1->T[i]; 
                        Ambi2->U[i]+=Ambi1->U[i]; 
                        Ambi2->V[i]+=Ambi1->V[i]; 
                } 
        } 
        else 
        { 
                for(int i=0;i<Ambi1->Length;i++) 
                { 
                        Ambi2->W[i]+=Ambi1->W[i]; 
                        Ambi2->X[i]+=Ambi1->X[i]; 
                        Ambi2->Y[i]+=Ambi1->Y[i]; 
                        Ambi2->Z[i]+=Ambi1->Z[i]; 
                } 
        } 
} 
//---------------------------------------------------------------- 
AmbiBuffer * AmbiAllocate(int Length,bool Order,bool WithChannels) 
{ 
            AmbiBuffer *Ambi; 
  Ambi = new AmbiBuffer; 
 
  if(WithChannels) 
  { 
   Ambi->W = new float[Length]; 
                        memset(Ambi->W,0,sizeof(float)*Length); 
   Ambi->X = new float[Length]; 
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                        memset(Ambi->X,0,sizeof(float)*Length); 
   Ambi->Y = new float[Length]; 
                        memset(Ambi->Y,0,sizeof(float)*Length); 
   Ambi->Z = new float[Length]; 
                        memset(Ambi->Z,0,sizeof(float)*Length); 
   if(Order) 
   { 
     Ambi->R = new float[Length]; 
     Ambi->S = new float[Length]; 
     Ambi->T = new float[Length]; 
     Ambi->U = new float[Length]; 
     Ambi->V = new float[Length]; 
   } 
  } 
  Ambi->Length=Length; 
  Ambi->Order=Order; 
            return(Ambi); 
} 
//---------------------------------------------------------------- 
void AmbiFree(AmbiBuffer *Ambi) 
{ 
        if(Ambi->W)     delete [] Ambi->W; 
        if(Ambi->X)     delete [] Ambi->X; 
        if(Ambi->Y)     delete [] Ambi->Y; 
        if(Ambi->Z)     delete [] Ambi->Z; 
        if(Ambi->R && Ambi->Order)     delete [] Ambi->R; 
        if(Ambi->S && Ambi->Order)     delete [] Ambi->S; 
        if(Ambi->T && Ambi->Order)     delete [] Ambi->T; 
        if(Ambi->U && Ambi->Order)     delete [] Ambi->U; 
        if(Ambi->V && Ambi->Order)     delete [] Ambi->V; 
 
        delete Ambi; 
} 
//---------------------------------------------------------------- 
void AssignChannel(AmbiBuffer *Ambi,float *Samples,char Channel) 
{ 
 switch (Channel) 
 { 
 case 'W': 
  Ambi->W=Samples; 
  break; 
 case 'X': 
  Ambi->X=Samples; 
  break; 
 case 'Y': 
  Ambi->Y=Samples; 
  break; 
 case 'Z': 
  Ambi->Z=Samples; 
  break; 
 case 'R': 
  Ambi->R=Samples; 
  break; 
 case 'S': 
  Ambi->S=Samples; 
  break; 
 case 'T': 
  Ambi->T=Samples; 
  break; 
 case 'U': 
  Ambi->U=Samples; 
  break; 
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 case 'V': 
  Ambi->V=Samples; 
  break; 
 default: 
  break; 
 } 
} 
//---------------------------------------------------------------- 
float ** AllocSampleBuffer(int Channels, int BufferLength) 
{ 
        float **Samples; 
        int Rows,Cols; 
        Rows=Channels; 
        Cols = BufferLength; 
        Samples = new float*[Rows]; 
        for (int i=0;i<Rows;i++) 
                Samples[i] = new float[Cols]; 
 
        return(Samples); 
} 
//---------------------------------------------------------------- 
void FreeSampleBuffer(float **Samples,int Channels) 
{ 
        int Rows; 
        Rows = Channels; 
        for (int i = 0; i < Rows;  i++) 
                delete[] Samples[i]; 
        delete[] Samples; 
} 
//---------------------------------------------------------------- 
float ** AllocDecodeArray(int NoOfSpeakers,bool Order) 
{ 
        float **Gains; 
        int Rows,Cols; 
        Order?Rows=9:Rows=4; 
        Cols = NoOfSpeakers; 
        Gains = new float*[Rows]; 
        for (int i=0;i<Rows;i++) 
                Gains[i] = new float[Cols]; 
 
        return (Gains); 
} 
//---------------------------------------------------------------- 
void FreeDecodeArray(float **Gains,bool Order) 
{ 
        int Rows; 
        Order?Rows=9:Rows=4; 
        for (int i = 0; i < Rows;  i++) 
                delete[] Gains[i]; 
        delete[] Gains; 
} 
//---------------------------------------------------------------- 
void DecoderCalc(float *Azim,float *Elev,int NoOfSpeakers,bool Order,  
 float WGain, float **Gains) 
{ 
        float SinA,CosA,SinE,CosE,Sin2E,Sin2A,Cos2A; 
        if(Order) 
        { 
                //Create 2 dimensional coefs array 
                for(int i=0;i<NoOfSpeakers;i++) 
                { 
                        SinA=sin(Azim[i]); 



Appendix 

 - 347 - 

                        CosA=cos(Azim[i]); 
                        SinE=sin(Elev[i]); 
                        CosE=cos(Elev[i]); 
                        Sin2E=sin(2*Elev[i]); 
                        Sin2A=sin(2*Azim[i]); 
                        Cos2A=cos(2*Azim[i]); 
 
                        Gains[0][i] = 0.5*(WGain); 
                        Gains[1][i] = 0.5*(CosA * CosE); 
                        Gains[2][i] = 0.5*(SinA * CosE); 
                        Gains[3][i] = 0.5*(SinE); 
                        Gains[4][i] = 0.5*(1.5f*SinE*SinE-0.5f); 
                        Gains[5][i] = 0.5*(CosA*Sin2E); 
                        Gains[6][i] = 0.5*(SinA*Sin2E); 
                        Gains[7][i] = 0.5*(Cos2A*CosE*CosE); 
                        Gains[8][i] = 0.5*(Sin2A*CosE*CosE); 
                } 
        } 
 
        else 
        { 
                for(int i=0;i<NoOfSpeakers;i++) 
                { 
                        SinA=sin(Azim[i]); 
                        CosA=cos(Azim[i]); 
                        SinE=sin(Elev[i]); 
                        CosE=cos(Elev[i]); 
 
                        Gains[0][i] = 0.5*(WGain); 
                        Gains[1][i] = 0.5*(CosA * CosE); 
                        Gains[2][i] = 0.5*(SinA * CosE); 
                        Gains[3][i] = 0.5*(SinE); 
                } 
        } 
} 
//---------------------------------------------------------------- 
void B2Speakers(float **SGains,AmbiBuffer *Ambi, float **Samples,int 
NoOfChannels,  
 int NoOfSpeakers,bool Order) 
{ 
        for(int i=0;i<Ambi->Length;i++) 
        { 
                for(int j=0;j<NoOfSpeakers && j<NoOfChannels;j++) 
                { 
                        if(Order) 
                        { 
                                Samples[j][i]=Ambi->W[i]*SGains[0][j] 
                                +Ambi->X[i]*SGains[1][j] 
                                +Ambi->Y[i]*SGains[2][j] 
                                +Ambi->Z[i]*SGains[3][j] 
                                +Ambi->R[i]*SGains[4][j] 
                                +Ambi->S[i]*SGains[5][j] 
                                +Ambi->T[i]*SGains[6][j] 
                                +Ambi->U[i]*SGains[7][j] 
                                +Ambi->V[i]*SGains[8][j]; 
                        } 
                        else 
                        { 
                                Samples[j][i]=Ambi->W[i]*SGains[0][j] 
                                +Ambi->X[i]*SGains[1][j] 
                                +Ambi->Y[i]*SGains[2][j] 
                                +Ambi->Z[i]*SGains[3][j]; 
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                        } 
                } 
        } 
} 
#endif 
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